Properties

Label 425.2.m.a.376.1
Level $425$
Weight $2$
Character 425.376
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 376.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 425.376
Dual form 425.2.m.a.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.292893 + 0.292893i) q^{2} +(2.41421 - 1.00000i) q^{3} -1.82843i q^{4} +(1.00000 + 0.414214i) q^{6} +(-0.414214 + 1.00000i) q^{7} +(1.12132 - 1.12132i) q^{8} +(2.70711 - 2.70711i) q^{9} +(-1.00000 - 0.414214i) q^{11} +(-1.82843 - 4.41421i) q^{12} -1.41421i q^{13} +(-0.414214 + 0.171573i) q^{14} -3.00000 q^{16} +(2.82843 + 3.00000i) q^{17} +1.58579 q^{18} +(3.41421 + 3.41421i) q^{19} +2.82843i q^{21} +(-0.171573 - 0.414214i) q^{22} +(-3.82843 - 1.58579i) q^{23} +(1.58579 - 3.82843i) q^{24} +(0.414214 - 0.414214i) q^{26} +(0.828427 - 2.00000i) q^{27} +(1.82843 + 0.757359i) q^{28} +(-1.70711 - 4.12132i) q^{29} +(-3.00000 + 1.24264i) q^{31} +(-3.12132 - 3.12132i) q^{32} -2.82843 q^{33} +(-0.0502525 + 1.70711i) q^{34} +(-4.94975 - 4.94975i) q^{36} +(3.53553 - 1.46447i) q^{37} +2.00000i q^{38} +(-1.41421 - 3.41421i) q^{39} +(-3.12132 + 7.53553i) q^{41} +(-0.828427 + 0.828427i) q^{42} +(3.41421 - 3.41421i) q^{43} +(-0.757359 + 1.82843i) q^{44} +(-0.656854 - 1.58579i) q^{46} +10.8284i q^{47} +(-7.24264 + 3.00000i) q^{48} +(4.12132 + 4.12132i) q^{49} +(9.82843 + 4.41421i) q^{51} -2.58579 q^{52} +(1.00000 + 1.00000i) q^{53} +(0.828427 - 0.343146i) q^{54} +(0.656854 + 1.58579i) q^{56} +(11.6569 + 4.82843i) q^{57} +(0.707107 - 1.70711i) q^{58} +(-4.24264 + 4.24264i) q^{59} +(3.53553 - 8.53553i) q^{61} +(-1.24264 - 0.514719i) q^{62} +(1.58579 + 3.82843i) q^{63} +4.17157i q^{64} +(-0.828427 - 0.828427i) q^{66} -6.82843 q^{67} +(5.48528 - 5.17157i) q^{68} -10.8284 q^{69} +(12.0711 - 5.00000i) q^{71} -6.07107i q^{72} +(2.05025 + 4.94975i) q^{73} +(1.46447 + 0.606602i) q^{74} +(6.24264 - 6.24264i) q^{76} +(0.828427 - 0.828427i) q^{77} +(0.585786 - 1.41421i) q^{78} +(-3.82843 - 1.58579i) q^{79} +5.82843i q^{81} +(-3.12132 + 1.29289i) q^{82} +(0.242641 + 0.242641i) q^{83} +5.17157 q^{84} +2.00000 q^{86} +(-8.24264 - 8.24264i) q^{87} +(-1.58579 + 0.656854i) q^{88} +9.41421i q^{89} +(1.41421 + 0.585786i) q^{91} +(-2.89949 + 7.00000i) q^{92} +(-6.00000 + 6.00000i) q^{93} +(-3.17157 + 3.17157i) q^{94} +(-10.6569 - 4.41421i) q^{96} +(-2.46447 - 5.94975i) q^{97} +2.41421i q^{98} +(-3.82843 + 1.58579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{8} + 8 q^{9} - 4 q^{11} + 4 q^{12} + 4 q^{14} - 12 q^{16} + 12 q^{18} + 8 q^{19} - 12 q^{22} - 4 q^{23} + 12 q^{24} - 4 q^{26} - 8 q^{27} - 4 q^{28} - 4 q^{29}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.292893 + 0.292893i 0.207107 + 0.207107i 0.803037 0.595930i \(-0.203216\pi\)
−0.595930 + 0.803037i \(0.703216\pi\)
\(3\) 2.41421 1.00000i 1.39385 0.577350i 0.445700 0.895182i \(-0.352955\pi\)
0.948147 + 0.317832i \(0.102955\pi\)
\(4\) 1.82843i 0.914214i
\(5\) 0 0
\(6\) 1.00000 + 0.414214i 0.408248 + 0.169102i
\(7\) −0.414214 + 1.00000i −0.156558 + 0.377964i −0.982624 0.185610i \(-0.940574\pi\)
0.826066 + 0.563574i \(0.190574\pi\)
\(8\) 1.12132 1.12132i 0.396447 0.396447i
\(9\) 2.70711 2.70711i 0.902369 0.902369i
\(10\) 0 0
\(11\) −1.00000 0.414214i −0.301511 0.124890i 0.226799 0.973942i \(-0.427174\pi\)
−0.528310 + 0.849052i \(0.677174\pi\)
\(12\) −1.82843 4.41421i −0.527821 1.27427i
\(13\) 1.41421i 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) −0.414214 + 0.171573i −0.110703 + 0.0458548i
\(15\) 0 0
\(16\) −3.00000 −0.750000
\(17\) 2.82843 + 3.00000i 0.685994 + 0.727607i
\(18\) 1.58579 0.373773
\(19\) 3.41421 + 3.41421i 0.783274 + 0.783274i 0.980382 0.197108i \(-0.0631548\pi\)
−0.197108 + 0.980382i \(0.563155\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) −0.171573 0.414214i −0.0365795 0.0883106i
\(23\) −3.82843 1.58579i −0.798282 0.330659i −0.0540140 0.998540i \(-0.517202\pi\)
−0.744268 + 0.667881i \(0.767202\pi\)
\(24\) 1.58579 3.82843i 0.323697 0.781474i
\(25\) 0 0
\(26\) 0.414214 0.414214i 0.0812340 0.0812340i
\(27\) 0.828427 2.00000i 0.159431 0.384900i
\(28\) 1.82843 + 0.757359i 0.345540 + 0.143127i
\(29\) −1.70711 4.12132i −0.317002 0.765310i −0.999410 0.0343389i \(-0.989067\pi\)
0.682408 0.730971i \(-0.260933\pi\)
\(30\) 0 0
\(31\) −3.00000 + 1.24264i −0.538816 + 0.223185i −0.635460 0.772134i \(-0.719189\pi\)
0.0966436 + 0.995319i \(0.469189\pi\)
\(32\) −3.12132 3.12132i −0.551777 0.551777i
\(33\) −2.82843 −0.492366
\(34\) −0.0502525 + 1.70711i −0.00861824 + 0.292766i
\(35\) 0 0
\(36\) −4.94975 4.94975i −0.824958 0.824958i
\(37\) 3.53553 1.46447i 0.581238 0.240757i −0.0726379 0.997358i \(-0.523142\pi\)
0.653876 + 0.756602i \(0.273142\pi\)
\(38\) 2.00000i 0.324443i
\(39\) −1.41421 3.41421i −0.226455 0.546712i
\(40\) 0 0
\(41\) −3.12132 + 7.53553i −0.487468 + 1.17685i 0.468521 + 0.883452i \(0.344787\pi\)
−0.955990 + 0.293400i \(0.905213\pi\)
\(42\) −0.828427 + 0.828427i −0.127829 + 0.127829i
\(43\) 3.41421 3.41421i 0.520663 0.520663i −0.397109 0.917772i \(-0.629986\pi\)
0.917772 + 0.397109i \(0.129986\pi\)
\(44\) −0.757359 + 1.82843i −0.114176 + 0.275646i
\(45\) 0 0
\(46\) −0.656854 1.58579i −0.0968479 0.233811i
\(47\) 10.8284i 1.57949i 0.613436 + 0.789744i \(0.289787\pi\)
−0.613436 + 0.789744i \(0.710213\pi\)
\(48\) −7.24264 + 3.00000i −1.04539 + 0.433013i
\(49\) 4.12132 + 4.12132i 0.588760 + 0.588760i
\(50\) 0 0
\(51\) 9.82843 + 4.41421i 1.37626 + 0.618114i
\(52\) −2.58579 −0.358584
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) 0.828427 0.343146i 0.112735 0.0466962i
\(55\) 0 0
\(56\) 0.656854 + 1.58579i 0.0877758 + 0.211910i
\(57\) 11.6569 + 4.82843i 1.54399 + 0.639541i
\(58\) 0.707107 1.70711i 0.0928477 0.224154i
\(59\) −4.24264 + 4.24264i −0.552345 + 0.552345i −0.927117 0.374772i \(-0.877721\pi\)
0.374772 + 0.927117i \(0.377721\pi\)
\(60\) 0 0
\(61\) 3.53553 8.53553i 0.452679 1.09286i −0.518621 0.855004i \(-0.673554\pi\)
0.971300 0.237859i \(-0.0764456\pi\)
\(62\) −1.24264 0.514719i −0.157816 0.0653693i
\(63\) 1.58579 + 3.82843i 0.199790 + 0.482336i
\(64\) 4.17157i 0.521447i
\(65\) 0 0
\(66\) −0.828427 0.828427i −0.101972 0.101972i
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 5.48528 5.17157i 0.665188 0.627145i
\(69\) −10.8284 −1.30359
\(70\) 0 0
\(71\) 12.0711 5.00000i 1.43257 0.593391i 0.474587 0.880209i \(-0.342597\pi\)
0.957985 + 0.286818i \(0.0925974\pi\)
\(72\) 6.07107i 0.715482i
\(73\) 2.05025 + 4.94975i 0.239964 + 0.579324i 0.997279 0.0737261i \(-0.0234891\pi\)
−0.757315 + 0.653050i \(0.773489\pi\)
\(74\) 1.46447 + 0.606602i 0.170241 + 0.0705160i
\(75\) 0 0
\(76\) 6.24264 6.24264i 0.716080 0.716080i
\(77\) 0.828427 0.828427i 0.0944080 0.0944080i
\(78\) 0.585786 1.41421i 0.0663273 0.160128i
\(79\) −3.82843 1.58579i −0.430732 0.178415i 0.156775 0.987634i \(-0.449890\pi\)
−0.587506 + 0.809219i \(0.699890\pi\)
\(80\) 0 0
\(81\) 5.82843i 0.647603i
\(82\) −3.12132 + 1.29289i −0.344692 + 0.142776i
\(83\) 0.242641 + 0.242641i 0.0266333 + 0.0266333i 0.720298 0.693665i \(-0.244005\pi\)
−0.693665 + 0.720298i \(0.744005\pi\)
\(84\) 5.17157 0.564265
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −8.24264 8.24264i −0.883704 0.883704i
\(88\) −1.58579 + 0.656854i −0.169045 + 0.0700209i
\(89\) 9.41421i 0.997905i 0.866629 + 0.498952i \(0.166282\pi\)
−0.866629 + 0.498952i \(0.833718\pi\)
\(90\) 0 0
\(91\) 1.41421 + 0.585786i 0.148250 + 0.0614071i
\(92\) −2.89949 + 7.00000i −0.302293 + 0.729800i
\(93\) −6.00000 + 6.00000i −0.622171 + 0.622171i
\(94\) −3.17157 + 3.17157i −0.327123 + 0.327123i
\(95\) 0 0
\(96\) −10.6569 4.41421i −1.08766 0.450524i
\(97\) −2.46447 5.94975i −0.250229 0.604105i 0.747994 0.663706i \(-0.231017\pi\)
−0.998222 + 0.0596005i \(0.981017\pi\)
\(98\) 2.41421i 0.243872i
\(99\) −3.82843 + 1.58579i −0.384771 + 0.159378i
\(100\) 0 0
\(101\) −13.4142 −1.33476 −0.667382 0.744715i \(-0.732585\pi\)
−0.667382 + 0.744715i \(0.732585\pi\)
\(102\) 1.58579 + 4.17157i 0.157016 + 0.413047i
\(103\) 4.48528 0.441948 0.220974 0.975280i \(-0.429076\pi\)
0.220974 + 0.975280i \(0.429076\pi\)
\(104\) −1.58579 1.58579i −0.155499 0.155499i
\(105\) 0 0
\(106\) 0.585786i 0.0568966i
\(107\) 2.41421 + 5.82843i 0.233391 + 0.563455i 0.996572 0.0827292i \(-0.0263636\pi\)
−0.763181 + 0.646184i \(0.776364\pi\)
\(108\) −3.65685 1.51472i −0.351881 0.145754i
\(109\) 1.63604 3.94975i 0.156704 0.378317i −0.825956 0.563735i \(-0.809364\pi\)
0.982660 + 0.185418i \(0.0593639\pi\)
\(110\) 0 0
\(111\) 7.07107 7.07107i 0.671156 0.671156i
\(112\) 1.24264 3.00000i 0.117419 0.283473i
\(113\) −14.9497 6.19239i −1.40635 0.582531i −0.454961 0.890511i \(-0.650347\pi\)
−0.951393 + 0.307980i \(0.900347\pi\)
\(114\) 2.00000 + 4.82843i 0.187317 + 0.452224i
\(115\) 0 0
\(116\) −7.53553 + 3.12132i −0.699657 + 0.289807i
\(117\) −3.82843 3.82843i −0.353938 0.353938i
\(118\) −2.48528 −0.228789
\(119\) −4.17157 + 1.58579i −0.382407 + 0.145369i
\(120\) 0 0
\(121\) −6.94975 6.94975i −0.631795 0.631795i
\(122\) 3.53553 1.46447i 0.320092 0.132587i
\(123\) 21.3137i 1.92179i
\(124\) 2.27208 + 5.48528i 0.204039 + 0.492593i
\(125\) 0 0
\(126\) −0.656854 + 1.58579i −0.0585172 + 0.141273i
\(127\) 12.2426 12.2426i 1.08636 1.08636i 0.0904585 0.995900i \(-0.471167\pi\)
0.995900 0.0904585i \(-0.0288332\pi\)
\(128\) −7.46447 + 7.46447i −0.659772 + 0.659772i
\(129\) 4.82843 11.6569i 0.425119 1.02633i
\(130\) 0 0
\(131\) 0.0710678 + 0.171573i 0.00620922 + 0.0149904i 0.926954 0.375176i \(-0.122418\pi\)
−0.920745 + 0.390166i \(0.872418\pi\)
\(132\) 5.17157i 0.450128i
\(133\) −4.82843 + 2.00000i −0.418678 + 0.173422i
\(134\) −2.00000 2.00000i −0.172774 0.172774i
\(135\) 0 0
\(136\) 6.53553 + 0.192388i 0.560417 + 0.0164971i
\(137\) −8.72792 −0.745677 −0.372838 0.927896i \(-0.621615\pi\)
−0.372838 + 0.927896i \(0.621615\pi\)
\(138\) −3.17157 3.17157i −0.269982 0.269982i
\(139\) −13.8284 + 5.72792i −1.17291 + 0.485836i −0.882154 0.470961i \(-0.843907\pi\)
−0.290758 + 0.956797i \(0.593907\pi\)
\(140\) 0 0
\(141\) 10.8284 + 26.1421i 0.911918 + 2.20156i
\(142\) 5.00000 + 2.07107i 0.419591 + 0.173800i
\(143\) −0.585786 + 1.41421i −0.0489859 + 0.118262i
\(144\) −8.12132 + 8.12132i −0.676777 + 0.676777i
\(145\) 0 0
\(146\) −0.849242 + 2.05025i −0.0702838 + 0.169680i
\(147\) 14.0711 + 5.82843i 1.16056 + 0.480721i
\(148\) −2.67767 6.46447i −0.220103 0.531376i
\(149\) 16.9706i 1.39028i −0.718873 0.695141i \(-0.755342\pi\)
0.718873 0.695141i \(-0.244658\pi\)
\(150\) 0 0
\(151\) −9.07107 9.07107i −0.738193 0.738193i 0.234035 0.972228i \(-0.424807\pi\)
−0.972228 + 0.234035i \(0.924807\pi\)
\(152\) 7.65685 0.621053
\(153\) 15.7782 + 0.464466i 1.27559 + 0.0375499i
\(154\) 0.485281 0.0391051
\(155\) 0 0
\(156\) −6.24264 + 2.58579i −0.499811 + 0.207029i
\(157\) 1.65685i 0.132231i −0.997812 0.0661157i \(-0.978939\pi\)
0.997812 0.0661157i \(-0.0210606\pi\)
\(158\) −0.656854 1.58579i −0.0522565 0.126158i
\(159\) 3.41421 + 1.41421i 0.270765 + 0.112154i
\(160\) 0 0
\(161\) 3.17157 3.17157i 0.249955 0.249955i
\(162\) −1.70711 + 1.70711i −0.134123 + 0.134123i
\(163\) 2.17157 5.24264i 0.170091 0.410635i −0.815731 0.578431i \(-0.803665\pi\)
0.985822 + 0.167796i \(0.0536650\pi\)
\(164\) 13.7782 + 5.70711i 1.07589 + 0.445650i
\(165\) 0 0
\(166\) 0.142136i 0.0110319i
\(167\) −9.24264 + 3.82843i −0.715217 + 0.296253i −0.710461 0.703736i \(-0.751514\pi\)
−0.00475555 + 0.999989i \(0.501514\pi\)
\(168\) 3.17157 + 3.17157i 0.244692 + 0.244692i
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 18.4853 1.41360
\(172\) −6.24264 6.24264i −0.475997 0.475997i
\(173\) 3.12132 1.29289i 0.237310 0.0982969i −0.260859 0.965377i \(-0.584006\pi\)
0.498169 + 0.867080i \(0.334006\pi\)
\(174\) 4.82843i 0.366042i
\(175\) 0 0
\(176\) 3.00000 + 1.24264i 0.226134 + 0.0936676i
\(177\) −6.00000 + 14.4853i −0.450988 + 1.08878i
\(178\) −2.75736 + 2.75736i −0.206673 + 0.206673i
\(179\) 4.24264 4.24264i 0.317110 0.317110i −0.530546 0.847656i \(-0.678013\pi\)
0.847656 + 0.530546i \(0.178013\pi\)
\(180\) 0 0
\(181\) −11.5355 4.77817i −0.857429 0.355159i −0.0897278 0.995966i \(-0.528600\pi\)
−0.767702 + 0.640807i \(0.778600\pi\)
\(182\) 0.242641 + 0.585786i 0.0179857 + 0.0434214i
\(183\) 24.1421i 1.78464i
\(184\) −6.07107 + 2.51472i −0.447565 + 0.185388i
\(185\) 0 0
\(186\) −3.51472 −0.257712
\(187\) −1.58579 4.17157i −0.115964 0.305056i
\(188\) 19.7990 1.44399
\(189\) 1.65685 + 1.65685i 0.120518 + 0.120518i
\(190\) 0 0
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) 4.17157 + 10.0711i 0.301057 + 0.726817i
\(193\) −5.12132 2.12132i −0.368641 0.152696i 0.190670 0.981654i \(-0.438934\pi\)
−0.559310 + 0.828958i \(0.688934\pi\)
\(194\) 1.02082 2.46447i 0.0732903 0.176938i
\(195\) 0 0
\(196\) 7.53553 7.53553i 0.538252 0.538252i
\(197\) 5.70711 13.7782i 0.406615 0.981654i −0.579407 0.815038i \(-0.696716\pi\)
0.986022 0.166616i \(-0.0532841\pi\)
\(198\) −1.58579 0.656854i −0.112697 0.0466806i
\(199\) −0.656854 1.58579i −0.0465632 0.112413i 0.898887 0.438181i \(-0.144377\pi\)
−0.945450 + 0.325768i \(0.894377\pi\)
\(200\) 0 0
\(201\) −16.4853 + 6.82843i −1.16278 + 0.481640i
\(202\) −3.92893 3.92893i −0.276439 0.276439i
\(203\) 4.82843 0.338889
\(204\) 8.07107 17.9706i 0.565088 1.25819i
\(205\) 0 0
\(206\) 1.31371 + 1.31371i 0.0915304 + 0.0915304i
\(207\) −14.6569 + 6.07107i −1.01872 + 0.421968i
\(208\) 4.24264i 0.294174i
\(209\) −2.00000 4.82843i −0.138343 0.333989i
\(210\) 0 0
\(211\) 5.72792 13.8284i 0.394326 0.951988i −0.594659 0.803978i \(-0.702713\pi\)
0.988986 0.148010i \(-0.0472869\pi\)
\(212\) 1.82843 1.82843i 0.125577 0.125577i
\(213\) 24.1421 24.1421i 1.65419 1.65419i
\(214\) −1.00000 + 2.41421i −0.0683586 + 0.165032i
\(215\) 0 0
\(216\) −1.31371 3.17157i −0.0893865 0.215798i
\(217\) 3.51472i 0.238595i
\(218\) 1.63604 0.677670i 0.110807 0.0458976i
\(219\) 9.89949 + 9.89949i 0.668946 + 0.668946i
\(220\) 0 0
\(221\) 4.24264 4.00000i 0.285391 0.269069i
\(222\) 4.14214 0.278002
\(223\) −0.585786 0.585786i −0.0392272 0.0392272i 0.687221 0.726448i \(-0.258830\pi\)
−0.726448 + 0.687221i \(0.758830\pi\)
\(224\) 4.41421 1.82843i 0.294937 0.122167i
\(225\) 0 0
\(226\) −2.56497 6.19239i −0.170619 0.411912i
\(227\) 4.65685 + 1.92893i 0.309086 + 0.128028i 0.531835 0.846848i \(-0.321503\pi\)
−0.222748 + 0.974876i \(0.571503\pi\)
\(228\) 8.82843 21.3137i 0.584677 1.41153i
\(229\) 16.1421 16.1421i 1.06670 1.06670i 0.0690921 0.997610i \(-0.477990\pi\)
0.997610 0.0690921i \(-0.0220102\pi\)
\(230\) 0 0
\(231\) 1.17157 2.82843i 0.0770838 0.186097i
\(232\) −6.53553 2.70711i −0.429079 0.177730i
\(233\) −3.87868 9.36396i −0.254101 0.613453i 0.744427 0.667704i \(-0.232723\pi\)
−0.998527 + 0.0542508i \(0.982723\pi\)
\(234\) 2.24264i 0.146606i
\(235\) 0 0
\(236\) 7.75736 + 7.75736i 0.504961 + 0.504961i
\(237\) −10.8284 −0.703382
\(238\) −1.68629 0.757359i −0.109306 0.0490923i
\(239\) 9.17157 0.593260 0.296630 0.954993i \(-0.404137\pi\)
0.296630 + 0.954993i \(0.404137\pi\)
\(240\) 0 0
\(241\) 11.3640 4.70711i 0.732017 0.303211i 0.0146365 0.999893i \(-0.495341\pi\)
0.717381 + 0.696681i \(0.245341\pi\)
\(242\) 4.07107i 0.261698i
\(243\) 8.31371 + 20.0711i 0.533325 + 1.28756i
\(244\) −15.6066 6.46447i −0.999110 0.413845i
\(245\) 0 0
\(246\) −6.24264 + 6.24264i −0.398016 + 0.398016i
\(247\) 4.82843 4.82843i 0.307225 0.307225i
\(248\) −1.97056 + 4.75736i −0.125131 + 0.302093i
\(249\) 0.828427 + 0.343146i 0.0524994 + 0.0217460i
\(250\) 0 0
\(251\) 3.51472i 0.221847i −0.993829 0.110924i \(-0.964619\pi\)
0.993829 0.110924i \(-0.0353809\pi\)
\(252\) 7.00000 2.89949i 0.440959 0.182651i
\(253\) 3.17157 + 3.17157i 0.199395 + 0.199395i
\(254\) 7.17157 0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 15.6569 + 15.6569i 0.976648 + 0.976648i 0.999733 0.0230858i \(-0.00734908\pi\)
−0.0230858 + 0.999733i \(0.507349\pi\)
\(258\) 4.82843 2.00000i 0.300605 0.124515i
\(259\) 4.14214i 0.257380i
\(260\) 0 0
\(261\) −15.7782 6.53553i −0.976644 0.404539i
\(262\) −0.0294373 + 0.0710678i −0.00181864 + 0.00439058i
\(263\) 4.58579 4.58579i 0.282772 0.282772i −0.551442 0.834213i \(-0.685922\pi\)
0.834213 + 0.551442i \(0.185922\pi\)
\(264\) −3.17157 + 3.17157i −0.195197 + 0.195197i
\(265\) 0 0
\(266\) −2.00000 0.828427i −0.122628 0.0507941i
\(267\) 9.41421 + 22.7279i 0.576141 + 1.39093i
\(268\) 12.4853i 0.762660i
\(269\) 5.87868 2.43503i 0.358429 0.148466i −0.196200 0.980564i \(-0.562860\pi\)
0.554629 + 0.832098i \(0.312860\pi\)
\(270\) 0 0
\(271\) −6.14214 −0.373108 −0.186554 0.982445i \(-0.559732\pi\)
−0.186554 + 0.982445i \(0.559732\pi\)
\(272\) −8.48528 9.00000i −0.514496 0.545705i
\(273\) 4.00000 0.242091
\(274\) −2.55635 2.55635i −0.154435 0.154435i
\(275\) 0 0
\(276\) 19.7990i 1.19176i
\(277\) −8.43503 20.3640i −0.506812 1.22355i −0.945709 0.325015i \(-0.894631\pi\)
0.438897 0.898537i \(-0.355369\pi\)
\(278\) −5.72792 2.37258i −0.343538 0.142298i
\(279\) −4.75736 + 11.4853i −0.284816 + 0.687606i
\(280\) 0 0
\(281\) −12.6569 + 12.6569i −0.755045 + 0.755045i −0.975416 0.220371i \(-0.929273\pi\)
0.220371 + 0.975416i \(0.429273\pi\)
\(282\) −4.48528 + 10.8284i −0.267095 + 0.644823i
\(283\) −21.1421 8.75736i −1.25677 0.520571i −0.347853 0.937549i \(-0.613089\pi\)
−0.908917 + 0.416978i \(0.863089\pi\)
\(284\) −9.14214 22.0711i −0.542486 1.30968i
\(285\) 0 0
\(286\) −0.585786 + 0.242641i −0.0346383 + 0.0143476i
\(287\) −6.24264 6.24264i −0.368491 0.368491i
\(288\) −16.8995 −0.995812
\(289\) −1.00000 + 16.9706i −0.0588235 + 0.998268i
\(290\) 0 0
\(291\) −11.8995 11.8995i −0.697561 0.697561i
\(292\) 9.05025 3.74874i 0.529626 0.219378i
\(293\) 23.6569i 1.38205i 0.722832 + 0.691024i \(0.242840\pi\)
−0.722832 + 0.691024i \(0.757160\pi\)
\(294\) 2.41421 + 5.82843i 0.140800 + 0.339921i
\(295\) 0 0
\(296\) 2.32233 5.60660i 0.134983 0.325877i
\(297\) −1.65685 + 1.65685i −0.0961404 + 0.0961404i
\(298\) 4.97056 4.97056i 0.287937 0.287937i
\(299\) −2.24264 + 5.41421i −0.129695 + 0.313112i
\(300\) 0 0
\(301\) 2.00000 + 4.82843i 0.115278 + 0.278306i
\(302\) 5.31371i 0.305770i
\(303\) −32.3848 + 13.4142i −1.86046 + 0.770626i
\(304\) −10.2426 10.2426i −0.587456 0.587456i
\(305\) 0 0
\(306\) 4.48528 + 4.75736i 0.256406 + 0.271960i
\(307\) −2.14214 −0.122258 −0.0611291 0.998130i \(-0.519470\pi\)
−0.0611291 + 0.998130i \(0.519470\pi\)
\(308\) −1.51472 1.51472i −0.0863091 0.0863091i
\(309\) 10.8284 4.48528i 0.616008 0.255159i
\(310\) 0 0
\(311\) −1.72792 4.17157i −0.0979815 0.236548i 0.867287 0.497809i \(-0.165862\pi\)
−0.965268 + 0.261261i \(0.915862\pi\)
\(312\) −5.41421 2.24264i −0.306519 0.126965i
\(313\) 4.87868 11.7782i 0.275759 0.665742i −0.723950 0.689852i \(-0.757675\pi\)
0.999709 + 0.0241106i \(0.00767540\pi\)
\(314\) 0.485281 0.485281i 0.0273860 0.0273860i
\(315\) 0 0
\(316\) −2.89949 + 7.00000i −0.163109 + 0.393781i
\(317\) 5.36396 + 2.22183i 0.301270 + 0.124790i 0.528198 0.849122i \(-0.322868\pi\)
−0.226927 + 0.973912i \(0.572868\pi\)
\(318\) 0.585786 + 1.41421i 0.0328493 + 0.0793052i
\(319\) 4.82843i 0.270340i
\(320\) 0 0
\(321\) 11.6569 + 11.6569i 0.650622 + 0.650622i
\(322\) 1.85786 0.103535
\(323\) −0.585786 + 19.8995i −0.0325940 + 1.10724i
\(324\) 10.6569 0.592047
\(325\) 0 0
\(326\) 2.17157 0.899495i 0.120272 0.0498184i
\(327\) 11.1716i 0.617789i
\(328\) 4.94975 + 11.9497i 0.273304 + 0.659814i
\(329\) −10.8284 4.48528i −0.596991 0.247282i
\(330\) 0 0
\(331\) −12.5858 + 12.5858i −0.691777 + 0.691777i −0.962623 0.270845i \(-0.912697\pi\)
0.270845 + 0.962623i \(0.412697\pi\)
\(332\) 0.443651 0.443651i 0.0243485 0.0243485i
\(333\) 5.60660 13.5355i 0.307240 0.741743i
\(334\) −3.82843 1.58579i −0.209482 0.0867704i
\(335\) 0 0
\(336\) 8.48528i 0.462910i
\(337\) 31.8492 13.1924i 1.73494 0.718635i 0.735798 0.677202i \(-0.236808\pi\)
0.999141 0.0414336i \(-0.0131925\pi\)
\(338\) 3.22183 + 3.22183i 0.175244 + 0.175244i
\(339\) −42.2843 −2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) 5.41421 + 5.41421i 0.292767 + 0.292767i
\(343\) −12.8284 + 5.31371i −0.692670 + 0.286913i
\(344\) 7.65685i 0.412830i
\(345\) 0 0
\(346\) 1.29289 + 0.535534i 0.0695064 + 0.0287905i
\(347\) 1.48528 3.58579i 0.0797341 0.192495i −0.878985 0.476849i \(-0.841779\pi\)
0.958719 + 0.284354i \(0.0917790\pi\)
\(348\) −15.0711 + 15.0711i −0.807894 + 0.807894i
\(349\) 3.00000 3.00000i 0.160586 0.160586i −0.622240 0.782826i \(-0.713777\pi\)
0.782826 + 0.622240i \(0.213777\pi\)
\(350\) 0 0
\(351\) −2.82843 1.17157i −0.150970 0.0625339i
\(352\) 1.82843 + 4.41421i 0.0974555 + 0.235278i
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) −6.00000 + 2.48528i −0.318896 + 0.132091i
\(355\) 0 0
\(356\) 17.2132 0.912298
\(357\) −8.48528 + 8.00000i −0.449089 + 0.423405i
\(358\) 2.48528 0.131351
\(359\) 16.3848 + 16.3848i 0.864755 + 0.864755i 0.991886 0.127131i \(-0.0405767\pi\)
−0.127131 + 0.991886i \(0.540577\pi\)
\(360\) 0 0
\(361\) 4.31371i 0.227037i
\(362\) −1.97918 4.77817i −0.104024 0.251135i
\(363\) −23.7279 9.82843i −1.24539 0.515859i
\(364\) 1.07107 2.58579i 0.0561392 0.135532i
\(365\) 0 0
\(366\) 7.07107 7.07107i 0.369611 0.369611i
\(367\) −10.0711 + 24.3137i −0.525705 + 1.26917i 0.408607 + 0.912710i \(0.366015\pi\)
−0.934313 + 0.356455i \(0.883985\pi\)
\(368\) 11.4853 + 4.75736i 0.598712 + 0.247994i
\(369\) 11.9497 + 28.8492i 0.622079 + 1.50183i
\(370\) 0 0
\(371\) −1.41421 + 0.585786i −0.0734223 + 0.0304125i
\(372\) 10.9706 + 10.9706i 0.568797 + 0.568797i
\(373\) 19.5563 1.01259 0.506295 0.862361i \(-0.331015\pi\)
0.506295 + 0.862361i \(0.331015\pi\)
\(374\) 0.757359 1.68629i 0.0391621 0.0871961i
\(375\) 0 0
\(376\) 12.1421 + 12.1421i 0.626183 + 0.626183i
\(377\) −5.82843 + 2.41421i −0.300179 + 0.124338i
\(378\) 0.970563i 0.0499204i
\(379\) 0.414214 + 1.00000i 0.0212767 + 0.0513665i 0.934161 0.356852i \(-0.116150\pi\)
−0.912884 + 0.408219i \(0.866150\pi\)
\(380\) 0 0
\(381\) 17.3137 41.7990i 0.887008 2.14143i
\(382\) −5.85786 + 5.85786i −0.299714 + 0.299714i
\(383\) −3.89949 + 3.89949i −0.199255 + 0.199255i −0.799681 0.600426i \(-0.794998\pi\)
0.600426 + 0.799681i \(0.294998\pi\)
\(384\) −10.5563 + 25.4853i −0.538701 + 1.30054i
\(385\) 0 0
\(386\) −0.878680 2.12132i −0.0447236 0.107972i
\(387\) 18.4853i 0.939660i
\(388\) −10.8787 + 4.50610i −0.552281 + 0.228762i
\(389\) −11.4142 11.4142i −0.578724 0.578724i 0.355828 0.934551i \(-0.384199\pi\)
−0.934551 + 0.355828i \(0.884199\pi\)
\(390\) 0 0
\(391\) −6.07107 15.9706i −0.307027 0.807666i
\(392\) 9.24264 0.466824
\(393\) 0.343146 + 0.343146i 0.0173094 + 0.0173094i
\(394\) 5.70711 2.36396i 0.287520 0.119095i
\(395\) 0 0
\(396\) 2.89949 + 7.00000i 0.145705 + 0.351763i
\(397\) −25.1924 10.4350i −1.26437 0.523719i −0.353122 0.935577i \(-0.614880\pi\)
−0.911248 + 0.411858i \(0.864880\pi\)
\(398\) 0.272078 0.656854i 0.0136380 0.0329251i
\(399\) −9.65685 + 9.65685i −0.483447 + 0.483447i
\(400\) 0 0
\(401\) 6.53553 15.7782i 0.326369 0.787924i −0.672487 0.740109i \(-0.734774\pi\)
0.998856 0.0478157i \(-0.0152260\pi\)
\(402\) −6.82843 2.82843i −0.340571 0.141069i
\(403\) 1.75736 + 4.24264i 0.0875403 + 0.211341i
\(404\) 24.5269i 1.22026i
\(405\) 0 0
\(406\) 1.41421 + 1.41421i 0.0701862 + 0.0701862i
\(407\) −4.14214 −0.205318
\(408\) 15.9706 6.07107i 0.790661 0.300563i
\(409\) 19.3137 0.955001 0.477501 0.878631i \(-0.341543\pi\)
0.477501 + 0.878631i \(0.341543\pi\)
\(410\) 0 0
\(411\) −21.0711 + 8.72792i −1.03936 + 0.430517i
\(412\) 8.20101i 0.404035i
\(413\) −2.48528 6.00000i −0.122293 0.295241i
\(414\) −6.07107 2.51472i −0.298377 0.123592i
\(415\) 0 0
\(416\) −4.41421 + 4.41421i −0.216425 + 0.216425i
\(417\) −27.6569 + 27.6569i −1.35436 + 1.35436i
\(418\) 0.828427 2.00000i 0.0405197 0.0978232i
\(419\) −24.8995 10.3137i −1.21642 0.503858i −0.320150 0.947367i \(-0.603733\pi\)
−0.896270 + 0.443509i \(0.853733\pi\)
\(420\) 0 0
\(421\) 17.4142i 0.848717i −0.905494 0.424358i \(-0.860500\pi\)
0.905494 0.424358i \(-0.139500\pi\)
\(422\) 5.72792 2.37258i 0.278831 0.115496i
\(423\) 29.3137 + 29.3137i 1.42528 + 1.42528i
\(424\) 2.24264 0.108912
\(425\) 0 0
\(426\) 14.1421 0.685189
\(427\) 7.07107 + 7.07107i 0.342193 + 0.342193i
\(428\) 10.6569 4.41421i 0.515118 0.213369i
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) −36.7990 15.2426i −1.77254 0.734212i −0.994345 0.106195i \(-0.966133\pi\)
−0.778200 0.628017i \(-0.783867\pi\)
\(432\) −2.48528 + 6.00000i −0.119573 + 0.288675i
\(433\) 10.7279 10.7279i 0.515551 0.515551i −0.400671 0.916222i \(-0.631223\pi\)
0.916222 + 0.400671i \(0.131223\pi\)
\(434\) 1.02944 1.02944i 0.0494146 0.0494146i
\(435\) 0 0
\(436\) −7.22183 2.99138i −0.345863 0.143261i
\(437\) −7.65685 18.4853i −0.366277 0.884271i
\(438\) 5.79899i 0.277086i
\(439\) 10.0711 4.17157i 0.480666 0.199098i −0.129176 0.991622i \(-0.541233\pi\)
0.609841 + 0.792523i \(0.291233\pi\)
\(440\) 0 0
\(441\) 22.3137 1.06256
\(442\) 2.41421 + 0.0710678i 0.114832 + 0.00338035i
\(443\) −15.7990 −0.750633 −0.375316 0.926897i \(-0.622466\pi\)
−0.375316 + 0.926897i \(0.622466\pi\)
\(444\) −12.9289 12.9289i −0.613580 0.613580i
\(445\) 0 0
\(446\) 0.343146i 0.0162484i
\(447\) −16.9706 40.9706i −0.802680 1.93784i
\(448\) −4.17157 1.72792i −0.197088 0.0816366i
\(449\) −7.19239 + 17.3640i −0.339430 + 0.819456i 0.658341 + 0.752720i \(0.271259\pi\)
−0.997771 + 0.0667361i \(0.978741\pi\)
\(450\) 0 0
\(451\) 6.24264 6.24264i 0.293954 0.293954i
\(452\) −11.3223 + 27.3345i −0.532558 + 1.28571i
\(453\) −30.9706 12.8284i −1.45512 0.602732i
\(454\) 0.798990 + 1.92893i 0.0374985 + 0.0905293i
\(455\) 0 0
\(456\) 18.4853 7.65685i 0.865653 0.358565i
\(457\) 13.3137 + 13.3137i 0.622789 + 0.622789i 0.946244 0.323455i \(-0.104844\pi\)
−0.323455 + 0.946244i \(0.604844\pi\)
\(458\) 9.45584 0.441843
\(459\) 8.34315 3.17157i 0.389425 0.148036i
\(460\) 0 0
\(461\) 17.0000 + 17.0000i 0.791769 + 0.791769i 0.981782 0.190013i \(-0.0608529\pi\)
−0.190013 + 0.981782i \(0.560853\pi\)
\(462\) 1.17157 0.485281i 0.0545065 0.0225773i
\(463\) 30.6274i 1.42338i 0.702495 + 0.711688i \(0.252069\pi\)
−0.702495 + 0.711688i \(0.747931\pi\)
\(464\) 5.12132 + 12.3640i 0.237751 + 0.573982i
\(465\) 0 0
\(466\) 1.60660 3.87868i 0.0744244 0.179676i
\(467\) −8.92893 + 8.92893i −0.413182 + 0.413182i −0.882845 0.469664i \(-0.844375\pi\)
0.469664 + 0.882845i \(0.344375\pi\)
\(468\) −7.00000 + 7.00000i −0.323575 + 0.323575i
\(469\) 2.82843 6.82843i 0.130605 0.315307i
\(470\) 0 0
\(471\) −1.65685 4.00000i −0.0763438 0.184310i
\(472\) 9.51472i 0.437950i
\(473\) −4.82843 + 2.00000i −0.222011 + 0.0919601i
\(474\) −3.17157 3.17157i −0.145675 0.145675i
\(475\) 0 0
\(476\) 2.89949 + 7.62742i 0.132898 + 0.349602i
\(477\) 5.41421 0.247900
\(478\) 2.68629 + 2.68629i 0.122868 + 0.122868i
\(479\) −31.9706 + 13.2426i −1.46077 + 0.605072i −0.964733 0.263229i \(-0.915213\pi\)
−0.496039 + 0.868300i \(0.665213\pi\)
\(480\) 0 0
\(481\) −2.07107 5.00000i −0.0944326 0.227980i
\(482\) 4.70711 + 1.94975i 0.214403 + 0.0888086i
\(483\) 4.48528 10.8284i 0.204087 0.492710i
\(484\) −12.7071 + 12.7071i −0.577596 + 0.577596i
\(485\) 0 0
\(486\) −3.44365 + 8.31371i −0.156207 + 0.377117i
\(487\) 4.07107 + 1.68629i 0.184478 + 0.0764132i 0.473010 0.881057i \(-0.343167\pi\)
−0.288533 + 0.957470i \(0.593167\pi\)
\(488\) −5.60660 13.5355i −0.253799 0.612725i
\(489\) 14.8284i 0.670565i
\(490\) 0 0
\(491\) 17.7574 + 17.7574i 0.801378 + 0.801378i 0.983311 0.181933i \(-0.0582353\pi\)
−0.181933 + 0.983311i \(0.558235\pi\)
\(492\) 38.9706 1.75693
\(493\) 7.53553 16.7782i 0.339383 0.755651i
\(494\) 2.82843 0.127257
\(495\) 0 0
\(496\) 9.00000 3.72792i 0.404112 0.167389i
\(497\) 14.1421i 0.634361i
\(498\) 0.142136 + 0.343146i 0.00636925 + 0.0153767i
\(499\) 34.2132 + 14.1716i 1.53159 + 0.634407i 0.979873 0.199622i \(-0.0639715\pi\)
0.551720 + 0.834029i \(0.313972\pi\)
\(500\) 0 0
\(501\) −18.4853 + 18.4853i −0.825861 + 0.825861i
\(502\) 1.02944 1.02944i 0.0459460 0.0459460i
\(503\) −5.72792 + 13.8284i −0.255395 + 0.616579i −0.998623 0.0524595i \(-0.983294\pi\)
0.743228 + 0.669039i \(0.233294\pi\)
\(504\) 6.07107 + 2.51472i 0.270427 + 0.112014i
\(505\) 0 0
\(506\) 1.85786i 0.0825921i
\(507\) 26.5563 11.0000i 1.17941 0.488527i
\(508\) −22.3848 22.3848i −0.993164 0.993164i
\(509\) −3.02944 −0.134277 −0.0671387 0.997744i \(-0.521387\pi\)
−0.0671387 + 0.997744i \(0.521387\pi\)
\(510\) 0 0
\(511\) −5.79899 −0.256532
\(512\) 16.0919 + 16.0919i 0.711167 + 0.711167i
\(513\) 9.65685 4.00000i 0.426361 0.176604i
\(514\) 9.17157i 0.404541i
\(515\) 0 0
\(516\) −21.3137 8.82843i −0.938284 0.388650i
\(517\) 4.48528 10.8284i 0.197262 0.476234i
\(518\) −1.21320 + 1.21320i −0.0533051 + 0.0533051i
\(519\) 6.24264 6.24264i 0.274022 0.274022i
\(520\) 0 0
\(521\) 2.87868 + 1.19239i 0.126117 + 0.0522395i 0.444850 0.895605i \(-0.353257\pi\)
−0.318732 + 0.947845i \(0.603257\pi\)
\(522\) −2.70711 6.53553i −0.118487 0.286053i
\(523\) 6.82843i 0.298586i 0.988793 + 0.149293i \(0.0476998\pi\)
−0.988793 + 0.149293i \(0.952300\pi\)
\(524\) 0.313708 0.129942i 0.0137044 0.00567656i
\(525\) 0 0
\(526\) 2.68629 0.117128
\(527\) −12.2132 5.48528i −0.532015 0.238943i
\(528\) 8.48528 0.369274
\(529\) −4.12132 4.12132i −0.179188 0.179188i
\(530\) 0 0
\(531\) 22.9706i 0.996838i
\(532\) 3.65685 + 8.82843i 0.158545 + 0.382761i
\(533\) 10.6569 + 4.41421i 0.461600 + 0.191201i
\(534\) −3.89949 + 9.41421i −0.168748 + 0.407393i
\(535\) 0 0
\(536\) −7.65685 + 7.65685i −0.330726 + 0.330726i
\(537\) 6.00000 14.4853i 0.258919 0.625086i
\(538\) 2.43503 + 1.00862i 0.104982 + 0.0434848i
\(539\) −2.41421 5.82843i −0.103988 0.251048i
\(540\) 0 0
\(541\) −16.9497 + 7.02082i −0.728727 + 0.301848i −0.716029 0.698071i \(-0.754042\pi\)
−0.0126980 + 0.999919i \(0.504042\pi\)
\(542\) −1.79899 1.79899i −0.0772732 0.0772732i
\(543\) −32.6274 −1.40018
\(544\) 0.535534 18.1924i 0.0229608 0.779992i
\(545\) 0 0
\(546\) 1.17157 + 1.17157i 0.0501387 + 0.0501387i
\(547\) −22.8995 + 9.48528i −0.979112 + 0.405561i −0.814096 0.580730i \(-0.802767\pi\)
−0.165015 + 0.986291i \(0.552767\pi\)
\(548\) 15.9584i 0.681708i
\(549\) −13.5355 32.6777i −0.577683 1.39465i
\(550\) 0 0
\(551\) 8.24264 19.8995i 0.351148 0.847747i
\(552\) −12.1421 + 12.1421i −0.516804 + 0.516804i
\(553\) 3.17157 3.17157i 0.134869 0.134869i
\(554\) 3.49390 8.43503i 0.148442 0.358370i
\(555\) 0 0
\(556\) 10.4731 + 25.2843i 0.444158 + 1.07229i
\(557\) 28.2426i 1.19668i −0.801243 0.598340i \(-0.795827\pi\)
0.801243 0.598340i \(-0.204173\pi\)
\(558\) −4.75736 + 1.97056i −0.201395 + 0.0834206i
\(559\) −4.82843 4.82843i −0.204221 0.204221i
\(560\) 0 0
\(561\) −8.00000 8.48528i −0.337760 0.358249i
\(562\) −7.41421 −0.312750
\(563\) −27.4142 27.4142i −1.15537 1.15537i −0.985459 0.169912i \(-0.945652\pi\)
−0.169912 0.985459i \(-0.554348\pi\)
\(564\) 47.7990 19.7990i 2.01270 0.833688i
\(565\) 0 0
\(566\) −3.62742 8.75736i −0.152472 0.368099i
\(567\) −5.82843 2.41421i −0.244771 0.101387i
\(568\) 7.92893 19.1421i 0.332691 0.803186i
\(569\) 25.4853 25.4853i 1.06840 1.06840i 0.0709163 0.997482i \(-0.477408\pi\)
0.997482 0.0709163i \(-0.0225923\pi\)
\(570\) 0 0
\(571\) −18.0711 + 43.6274i −0.756251 + 1.82575i −0.235956 + 0.971764i \(0.575822\pi\)
−0.520295 + 0.853987i \(0.674178\pi\)
\(572\) 2.58579 + 1.07107i 0.108117 + 0.0447836i
\(573\) 20.0000 + 48.2843i 0.835512 + 2.01710i
\(574\) 3.65685i 0.152634i
\(575\) 0 0
\(576\) 11.2929 + 11.2929i 0.470537 + 0.470537i
\(577\) 12.9289 0.538238 0.269119 0.963107i \(-0.413267\pi\)
0.269119 + 0.963107i \(0.413267\pi\)
\(578\) −5.26346 + 4.67767i −0.218931 + 0.194565i
\(579\) −14.4853 −0.601988
\(580\) 0 0
\(581\) −0.343146 + 0.142136i −0.0142361 + 0.00589678i
\(582\) 6.97056i 0.288939i
\(583\) −0.585786 1.41421i −0.0242608 0.0585707i
\(584\) 7.84924 + 3.25126i 0.324804 + 0.134538i
\(585\) 0 0
\(586\) −6.92893 + 6.92893i −0.286232 + 0.286232i
\(587\) 16.0416 16.0416i 0.662109 0.662109i −0.293768 0.955877i \(-0.594909\pi\)
0.955877 + 0.293768i \(0.0949093\pi\)
\(588\) 10.6569 25.7279i 0.439481 1.06100i
\(589\) −14.4853 6.00000i −0.596856 0.247226i
\(590\) 0 0
\(591\) 38.9706i 1.60303i
\(592\) −10.6066 + 4.39340i −0.435929 + 0.180568i
\(593\) 19.1421 + 19.1421i 0.786073 + 0.786073i 0.980848 0.194775i \(-0.0623976\pi\)
−0.194775 + 0.980848i \(0.562398\pi\)
\(594\) −0.970563 −0.0398227
\(595\) 0 0
\(596\) −31.0294 −1.27102
\(597\) −3.17157 3.17157i −0.129804 0.129804i
\(598\) −2.24264 + 0.928932i −0.0917084 + 0.0379869i
\(599\) 34.6274i 1.41484i 0.706794 + 0.707419i \(0.250141\pi\)
−0.706794 + 0.707419i \(0.749859\pi\)
\(600\) 0 0
\(601\) −18.7782 7.77817i −0.765978 0.317278i −0.0347358 0.999397i \(-0.511059\pi\)
−0.731242 + 0.682118i \(0.761059\pi\)
\(602\) −0.828427 + 2.00000i −0.0337642 + 0.0815139i
\(603\) −18.4853 + 18.4853i −0.752779 + 0.752779i
\(604\) −16.5858 + 16.5858i −0.674866 + 0.674866i
\(605\) 0 0
\(606\) −13.4142 5.55635i −0.544915 0.225711i
\(607\) 13.1421 + 31.7279i 0.533423 + 1.28780i 0.929243 + 0.369469i \(0.120460\pi\)
−0.395820 + 0.918328i \(0.629540\pi\)
\(608\) 21.3137i 0.864385i
\(609\) 11.6569 4.82843i 0.472360 0.195658i
\(610\) 0 0
\(611\) 15.3137 0.619526
\(612\) 0.849242 28.8492i 0.0343286 1.16616i
\(613\) 17.3137 0.699294 0.349647 0.936881i \(-0.386302\pi\)
0.349647 + 0.936881i \(0.386302\pi\)
\(614\) −0.627417 0.627417i −0.0253205 0.0253205i
\(615\) 0 0
\(616\) 1.85786i 0.0748555i
\(617\) 1.29289 + 3.12132i 0.0520499 + 0.125660i 0.947766 0.318968i \(-0.103336\pi\)
−0.895716 + 0.444627i \(0.853336\pi\)
\(618\) 4.48528 + 1.85786i 0.180424 + 0.0747343i
\(619\) 3.68629 8.89949i 0.148165 0.357701i −0.832320 0.554295i \(-0.812988\pi\)
0.980485 + 0.196594i \(0.0629880\pi\)
\(620\) 0 0
\(621\) −6.34315 + 6.34315i −0.254542 + 0.254542i
\(622\) 0.715729 1.72792i 0.0286981 0.0692834i
\(623\) −9.41421 3.89949i −0.377173 0.156230i
\(624\) 4.24264 + 10.2426i 0.169842 + 0.410034i
\(625\) 0 0
\(626\) 4.87868 2.02082i 0.194991 0.0807680i
\(627\) −9.65685 9.65685i −0.385658 0.385658i
\(628\) −3.02944 −0.120888
\(629\) 14.3934 + 6.46447i 0.573902 + 0.257755i
\(630\) 0 0
\(631\) 4.72792 + 4.72792i 0.188216 + 0.188216i 0.794924 0.606709i \(-0.207511\pi\)
−0.606709 + 0.794924i \(0.707511\pi\)
\(632\) −6.07107 + 2.51472i −0.241494 + 0.100030i
\(633\) 39.1127i 1.55459i
\(634\) 0.920310 + 2.22183i 0.0365502 + 0.0882400i
\(635\) 0 0
\(636\) 2.58579 6.24264i 0.102533 0.247537i
\(637\) 5.82843 5.82843i 0.230931 0.230931i
\(638\) −1.41421 + 1.41421i −0.0559893 + 0.0559893i
\(639\) 19.1421 46.2132i 0.757251 1.82817i
\(640\) 0 0
\(641\) −5.73654 13.8492i −0.226580 0.547012i 0.769177 0.639036i \(-0.220666\pi\)
−0.995757 + 0.0920237i \(0.970666\pi\)
\(642\) 6.82843i 0.269497i
\(643\) 37.0416 15.3431i 1.46078 0.605075i 0.496044 0.868297i \(-0.334785\pi\)
0.964735 + 0.263223i \(0.0847854\pi\)
\(644\) −5.79899 5.79899i −0.228512 0.228512i
\(645\) 0 0
\(646\) −6.00000 + 5.65685i −0.236067 + 0.222566i
\(647\) −2.82843 −0.111197 −0.0555985 0.998453i \(-0.517707\pi\)
−0.0555985 + 0.998453i \(0.517707\pi\)
\(648\) 6.53553 + 6.53553i 0.256740 + 0.256740i
\(649\) 6.00000 2.48528i 0.235521 0.0975558i
\(650\) 0 0
\(651\) −3.51472 8.48528i −0.137753 0.332564i
\(652\) −9.58579 3.97056i −0.375408 0.155499i
\(653\) 6.77817 16.3640i 0.265250 0.640371i −0.733997 0.679152i \(-0.762348\pi\)
0.999248 + 0.0387812i \(0.0123475\pi\)
\(654\) 3.27208 3.27208i 0.127948 0.127948i
\(655\) 0 0
\(656\) 9.36396 22.6066i 0.365601 0.882640i
\(657\) 18.9497 + 7.84924i 0.739300 + 0.306228i
\(658\) −1.85786 4.48528i −0.0724271 0.174854i
\(659\) 8.48528i 0.330540i −0.986248 0.165270i \(-0.947151\pi\)
0.986248 0.165270i \(-0.0528495\pi\)
\(660\) 0 0
\(661\) 29.1421 + 29.1421i 1.13350 + 1.13350i 0.989591 + 0.143906i \(0.0459664\pi\)
0.143906 + 0.989591i \(0.454034\pi\)
\(662\) −7.37258 −0.286544
\(663\) 6.24264 13.8995i 0.242444 0.539812i
\(664\) 0.544156 0.0211173
\(665\) 0 0
\(666\) 5.60660 2.32233i 0.217251 0.0899885i
\(667\) 18.4853i 0.715753i
\(668\) 7.00000 + 16.8995i 0.270838 + 0.653861i
\(669\) −2.00000 0.828427i −0.0773245 0.0320288i
\(670\) 0 0
\(671\) −7.07107 + 7.07107i −0.272976 + 0.272976i
\(672\) 8.82843 8.82843i 0.340564 0.340564i
\(673\) 0.121320 0.292893i 0.00467656 0.0112902i −0.921524 0.388321i \(-0.873055\pi\)
0.926201 + 0.377031i \(0.123055\pi\)
\(674\) 13.1924 + 5.46447i 0.508152 + 0.210483i
\(675\) 0 0
\(676\) 20.1127i 0.773565i
\(677\) −40.5772 + 16.8076i −1.55951 + 0.645969i −0.985004 0.172533i \(-0.944805\pi\)
−0.574503 + 0.818502i \(0.694805\pi\)
\(678\) −12.3848 12.3848i −0.475634 0.475634i
\(679\) 6.97056 0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) 1.02944 + 1.02944i 0.0394192 + 0.0394192i
\(683\) 28.8995 11.9706i 1.10581 0.458041i 0.246316 0.969190i \(-0.420780\pi\)
0.859492 + 0.511149i \(0.170780\pi\)
\(684\) 33.7990i 1.29234i
\(685\) 0 0
\(686\) −5.31371 2.20101i −0.202878 0.0840350i
\(687\) 22.8284 55.1127i 0.870959 2.10268i
\(688\) −10.2426 + 10.2426i −0.390497 + 0.390497i
\(689\) 1.41421 1.41421i 0.0538772 0.0538772i
\(690\) 0 0
\(691\) 37.6274 + 15.5858i 1.43141 + 0.592911i 0.957700 0.287767i \(-0.0929130\pi\)
0.473714 + 0.880679i \(0.342913\pi\)
\(692\) −2.36396 5.70711i −0.0898643 0.216952i
\(693\) 4.48528i 0.170382i
\(694\) 1.48528 0.615224i 0.0563805 0.0233536i
\(695\) 0 0
\(696\) −18.4853 −0.700683
\(697\) −31.4350 + 11.9497i −1.19069 + 0.452629i
\(698\) 1.75736 0.0665170
\(699\) −18.7279 18.7279i −0.708355 0.708355i
\(700\) 0 0
\(701\) 21.6985i 0.819540i −0.912189 0.409770i \(-0.865609\pi\)
0.912189 0.409770i \(-0.134391\pi\)
\(702\) −0.485281 1.17157i −0.0183158 0.0442182i
\(703\) 17.0711 + 7.07107i 0.643848 + 0.266690i
\(704\) 1.72792 4.17157i 0.0651235 0.157222i
\(705\) 0 0
\(706\) 4.10051 4.10051i 0.154325 0.154325i
\(707\) 5.55635 13.4142i 0.208968 0.504493i
\(708\) 26.4853 + 10.9706i 0.995378 + 0.412299i
\(709\) −4.43503 10.7071i −0.166561 0.402114i 0.818456 0.574569i \(-0.194830\pi\)
−0.985017 + 0.172455i \(0.944830\pi\)
\(710\) 0 0
\(711\) −14.6569 + 6.07107i −0.549675 + 0.227683i
\(712\) 10.5563 + 10.5563i 0.395616 + 0.395616i
\(713\) 13.4558 0.503925
\(714\) −4.82843 0.142136i −0.180699 0.00531929i
\(715\) 0 0
\(716\) −7.75736 7.75736i −0.289906 0.289906i
\(717\) 22.1421 9.17157i 0.826913 0.342519i
\(718\) 9.59798i 0.358193i
\(719\) 5.38478 + 13.0000i 0.200818 + 0.484818i 0.991920 0.126867i \(-0.0404920\pi\)
−0.791102 + 0.611685i \(0.790492\pi\)
\(720\) 0 0
\(721\) −1.85786 + 4.48528i −0.0691905 + 0.167041i
\(722\) −1.26346 + 1.26346i −0.0470210 + 0.0470210i
\(723\) 22.7279 22.7279i 0.845261 0.845261i
\(724\) −8.73654 + 21.0919i −0.324691 + 0.783874i
\(725\) 0 0
\(726\) −4.07107 9.82843i −0.151091 0.364767i
\(727\) 19.1127i 0.708851i 0.935084 + 0.354425i \(0.115324\pi\)
−0.935084 + 0.354425i \(0.884676\pi\)
\(728\) 2.24264 0.928932i 0.0831178 0.0344285i
\(729\) 27.7782 + 27.7782i 1.02882 + 1.02882i
\(730\) 0 0
\(731\) 19.8995 + 0.585786i 0.736009 + 0.0216661i
\(732\) −44.1421 −1.63154
\(733\) 8.51472 + 8.51472i 0.314498 + 0.314498i 0.846649 0.532151i \(-0.178616\pi\)
−0.532151 + 0.846649i \(0.678616\pi\)
\(734\) −10.0711 + 4.17157i −0.371730 + 0.153976i
\(735\) 0 0
\(736\) 7.00000 + 16.8995i 0.258023 + 0.622924i
\(737\) 6.82843 + 2.82843i 0.251528 + 0.104186i
\(738\) −4.94975 + 11.9497i −0.182203 + 0.439876i
\(739\) 24.2426 24.2426i 0.891780 0.891780i −0.102911 0.994691i \(-0.532816\pi\)
0.994691 + 0.102911i \(0.0328156\pi\)
\(740\) 0 0
\(741\) 6.82843 16.4853i 0.250849 0.605602i
\(742\) −0.585786 0.242641i −0.0215049 0.00890762i
\(743\) −18.8579 45.5269i −0.691828 1.67022i −0.741065 0.671433i \(-0.765679\pi\)
0.0492371 0.998787i \(-0.484321\pi\)
\(744\) 13.4558i 0.493315i
\(745\) 0 0
\(746\) 5.72792 + 5.72792i 0.209714 + 0.209714i
\(747\) 1.31371 0.0480661
\(748\) −7.62742 + 2.89949i −0.278886 + 0.106016i
\(749\) −6.82843 −0.249505
\(750\) 0 0
\(751\) −24.2132 + 10.0294i −0.883552 + 0.365979i −0.777873 0.628421i \(-0.783702\pi\)
−0.105679 + 0.994400i \(0.533702\pi\)
\(752\) 32.4853i 1.18462i
\(753\) −3.51472 8.48528i −0.128083 0.309221i
\(754\) −2.41421 1.00000i −0.0879205 0.0364179i
\(755\) 0 0
\(756\) 3.02944 3.02944i 0.110180 0.110180i
\(757\) −37.7990 + 37.7990i −1.37383 + 1.37383i −0.519136 + 0.854692i \(0.673746\pi\)
−0.854692 + 0.519136i \(0.826254\pi\)
\(758\) −0.171573 + 0.414214i −0.00623181 + 0.0150449i
\(759\) 10.8284 + 4.48528i 0.393047 + 0.162805i
\(760\) 0 0
\(761\) 21.6985i 0.786569i 0.919417 + 0.393285i \(0.128661\pi\)
−0.919417 + 0.393285i \(0.871339\pi\)
\(762\) 17.3137 7.17157i 0.627209 0.259799i
\(763\) 3.27208 + 3.27208i 0.118457 + 0.118457i
\(764\) 36.5685 1.32300
\(765\) 0 0
\(766\) −2.28427 −0.0825341
\(767\) 6.00000 + 6.00000i 0.216647 + 0.216647i
\(768\) 9.58579 3.97056i 0.345897 0.143275i
\(769\) 12.7279i 0.458981i −0.973311 0.229490i \(-0.926294\pi\)
0.973311 0.229490i \(-0.0737059\pi\)
\(770\) 0 0
\(771\) 53.4558 + 22.1421i 1.92517 + 0.797430i
\(772\) −3.87868 + 9.36396i −0.139597 + 0.337016i
\(773\) 3.41421 3.41421i 0.122801 0.122801i −0.643036 0.765836i \(-0.722325\pi\)
0.765836 + 0.643036i \(0.222325\pi\)
\(774\) 5.41421 5.41421i 0.194610 0.194610i
\(775\) 0 0
\(776\) −9.43503 3.90812i −0.338698 0.140293i
\(777\) 4.14214 + 10.0000i 0.148598 + 0.358748i
\(778\) 6.68629i 0.239715i
\(779\) −36.3848 + 15.0711i −1.30362 + 0.539977i
\(780\) 0 0
\(781\) −14.1421 −0.506045
\(782\) 2.89949 6.45584i 0.103686 0.230861i
\(783\) −9.65685 −0.345108
\(784\) −12.3640 12.3640i −0.441570 0.441570i
\(785\) 0 0
\(786\) 0.201010i 0.00716979i
\(787\) 19.0000 + 45.8701i 0.677277 + 1.63509i 0.768955 + 0.639302i \(0.220777\pi\)
−0.0916786 + 0.995789i \(0.529223\pi\)
\(788\) −25.1924 10.4350i −0.897442 0.371733i
\(789\) 6.48528 15.6569i 0.230882 0.557399i
\(790\) 0 0
\(791\) 12.3848 12.3848i 0.440352 0.440352i
\(792\) −2.51472 + 6.07107i −0.0893566 + 0.215726i
\(793\) −12.0711 5.00000i −0.428656 0.177555i
\(794\) −4.32233 10.4350i −0.153394 0.370325i
\(795\) 0 0
\(796\) −2.89949 + 1.20101i −0.102770 + 0.0425687i
\(797\) 12.1716 + 12.1716i 0.431139 + 0.431139i 0.889016 0.457877i \(-0.151390\pi\)
−0.457877 + 0.889016i \(0.651390\pi\)
\(798\) −5.65685 −0.200250
\(799\) −32.4853 + 30.6274i −1.14925 + 1.08352i
\(800\) 0 0
\(801\) 25.4853 + 25.4853i 0.900478 + 0.900478i
\(802\) 6.53553 2.70711i 0.230778 0.0955913i
\(803\) 5.79899i 0.204642i
\(804\) 12.4853 + 30.1421i 0.440322 + 1.06303i
\(805\) 0 0
\(806\) −0.727922 + 1.75736i −0.0256400 + 0.0619003i
\(807\) 11.7574 11.7574i 0.413879 0.413879i
\(808\) −15.0416 + 15.0416i −0.529163 + 0.529163i
\(809\) −11.3934 + 27.5061i −0.400571 + 0.967063i 0.586957 + 0.809618i \(0.300326\pi\)
−0.987528 + 0.157445i \(0.949674\pi\)
\(810\) 0 0
\(811\) 16.9411 + 40.8995i 0.594883 + 1.43618i 0.878736 + 0.477308i \(0.158387\pi\)
−0.283853 + 0.958868i \(0.591613\pi\)
\(812\) 8.82843i 0.309817i
\(813\) −14.8284 + 6.14214i −0.520056 + 0.215414i
\(814\) −1.21320 1.21320i −0.0425228 0.0425228i
\(815\) 0 0
\(816\) −29.4853 13.2426i −1.03219 0.463585i
\(817\) 23.3137 0.815643
\(818\) 5.65685 + 5.65685i 0.197787 + 0.197787i
\(819\) 5.41421 2.24264i 0.189188 0.0783642i
\(820\) 0 0
\(821\) −5.50610 13.2929i −0.192164 0.463925i 0.798204 0.602388i \(-0.205784\pi\)
−0.990368 + 0.138463i \(0.955784\pi\)
\(822\) −8.72792 3.61522i −0.304421 0.126095i
\(823\) −9.00000 + 21.7279i −0.313720 + 0.757388i 0.685840 + 0.727752i \(0.259435\pi\)
−0.999561 + 0.0296358i \(0.990565\pi\)
\(824\) 5.02944 5.02944i 0.175209 0.175209i
\(825\) 0 0
\(826\) 1.02944 2.48528i 0.0358187 0.0864740i
\(827\) 32.0711 + 13.2843i 1.11522 + 0.461939i 0.862732 0.505661i \(-0.168751\pi\)
0.252488 + 0.967600i \(0.418751\pi\)
\(828\) 11.1005 + 26.7990i 0.385769 + 0.931329i
\(829\) 13.9411i 0.484195i 0.970252 + 0.242098i \(0.0778354\pi\)
−0.970252 + 0.242098i \(0.922165\pi\)
\(830\) 0 0
\(831\) −40.7279 40.7279i −1.41284 1.41284i
\(832\) 5.89949 0.204528
\(833\) −0.707107 + 24.0208i −0.0244998 + 0.832272i
\(834\) −16.2010 −0.560995
\(835\) 0 0
\(836\) −8.82843 + 3.65685i −0.305338 + 0.126475i
\(837\) 7.02944i 0.242973i
\(838\) −4.27208 10.3137i −0.147576 0.356281i
\(839\) −3.58579 1.48528i −0.123795 0.0512776i 0.319926 0.947443i \(-0.396342\pi\)
−0.443721 + 0.896165i \(0.646342\pi\)
\(840\) 0 0
\(841\) 6.43503 6.43503i 0.221898 0.221898i
\(842\) 5.10051 5.10051i 0.175775 0.175775i
\(843\) −17.8995 + 43.2132i −0.616491 + 1.48834i
\(844\) −25.2843 10.4731i −0.870321 0.360499i
\(845\) 0 0
\(846\) 17.1716i 0.590371i
\(847\) 9.82843 4.07107i 0.337709 0.139884i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) −59.7990 −2.05230
\(850\) 0 0
\(851\) −15.8579 −0.543601
\(852\) −44.1421 44.1421i −1.51228 1.51228i
\(853\) −39.3345 + 16.2929i −1.34679 + 0.557858i −0.935397 0.353601i \(-0.884957\pi\)
−0.411392 + 0.911459i \(0.634957\pi\)
\(854\) 4.14214i 0.141741i
\(855\) 0 0
\(856\) 9.24264 + 3.82843i 0.315907 + 0.130853i
\(857\) 1.46447 3.53553i 0.0500252 0.120772i −0.896891 0.442251i \(-0.854180\pi\)
0.946917 + 0.321479i \(0.104180\pi\)
\(858\) −1.17157 + 1.17157i −0.0399968 + 0.0399968i
\(859\) −0.727922 + 0.727922i −0.0248364 + 0.0248364i −0.719416 0.694580i \(-0.755590\pi\)
0.694580 + 0.719416i \(0.255590\pi\)
\(860\) 0 0
\(861\) −21.3137 8.82843i −0.726369 0.300872i
\(862\) −6.31371 15.2426i −0.215046 0.519166i
\(863\) 34.6274i 1.17873i 0.807867 + 0.589365i \(0.200622\pi\)
−0.807867 + 0.589365i \(0.799378\pi\)
\(864\) −8.82843 + 3.65685i −0.300349 + 0.124409i
\(865\) 0 0
\(866\) 6.28427 0.213548
\(867\) 14.5563 + 41.9706i 0.494360 + 1.42540i
\(868\) −6.42641 −0.218126
\(869\) 3.17157 + 3.17157i 0.107588 + 0.107588i
\(870\) 0 0
\(871\) 9.65685i 0.327210i
\(872\) −2.59441 6.26346i −0.0878578 0.212107i
\(873\) −22.7782 9.43503i −0.770924 0.319327i
\(874\) 3.17157 7.65685i 0.107280 0.258997i
\(875\) 0 0
\(876\) 18.1005 18.1005i 0.611559 0.611559i
\(877\) 14.4056 34.7782i 0.486442 1.17438i −0.470056 0.882637i \(-0.655766\pi\)
0.956498 0.291739i \(-0.0942338\pi\)
\(878\) 4.17157 + 1.72792i 0.140784 + 0.0583145i
\(879\) 23.6569 + 57.1127i 0.797926 + 1.92636i
\(880\) 0 0
\(881\) 17.1213 7.09188i 0.576832 0.238932i −0.0751422 0.997173i \(-0.523941\pi\)
0.651974 + 0.758241i \(0.273941\pi\)
\(882\) 6.53553 + 6.53553i 0.220063 + 0.220063i
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) −7.31371 7.75736i −0.245987 0.260908i
\(885\) 0 0
\(886\) −4.62742 4.62742i −0.155461 0.155461i
\(887\) −45.1421 + 18.6985i −1.51572 + 0.627834i −0.976729 0.214475i \(-0.931196\pi\)
−0.538995 + 0.842309i \(0.681196\pi\)
\(888\) 15.8579i 0.532155i
\(889\) 7.17157 + 17.3137i 0.240527 + 0.580683i
\(890\) 0 0
\(891\) 2.41421 5.82843i 0.0808792 0.195260i
\(892\) −1.07107 + 1.07107i −0.0358620 + 0.0358620i
\(893\) −36.9706 + 36.9706i −1.23717 + 1.23717i
\(894\) 7.02944 16.9706i 0.235100 0.567581i
\(895\) 0 0
\(896\) −4.37258 10.5563i −0.146078 0.352663i
\(897\) 15.3137i 0.511310i
\(898\) −7.19239 + 2.97918i −0.240013 + 0.0994167i
\(899\) 10.2426 + 10.2426i 0.341611 + 0.341611i
\(900\) 0 0
\(901\) −0.171573 + 5.82843i −0.00571592 + 0.194173i
\(902\) 3.65685 0.121760
\(903\) 9.65685 + 9.65685i 0.321360 + 0.321360i
\(904\) −23.7071 + 9.81981i −0.788487 + 0.326602i
\(905\) 0 0
\(906\) −5.31371 12.8284i −0.176536 0.426196i
\(907\) 23.1421 + 9.58579i 0.768422 + 0.318291i 0.732233 0.681054i \(-0.238478\pi\)
0.0361889 + 0.999345i \(0.488478\pi\)
\(908\) 3.52691 8.51472i 0.117045 0.282571i
\(909\) −36.3137 + 36.3137i −1.20445 + 1.20445i
\(910\) 0 0
\(911\) −3.24264 + 7.82843i −0.107433 + 0.259367i −0.968449 0.249211i \(-0.919829\pi\)
0.861016 + 0.508578i \(0.169829\pi\)
\(912\) −34.9706 14.4853i −1.15799 0.479656i
\(913\) −0.142136 0.343146i −0.00470400 0.0113565i
\(914\) 7.79899i 0.257968i
\(915\) 0 0
\(916\) −29.5147 29.5147i −0.975194 0.975194i
\(917\) −0.201010 −0.00663794
\(918\) 3.37258 + 1.51472i 0.111312 + 0.0499932i
\(919\) −3.31371 −0.109309 −0.0546546 0.998505i \(-0.517406\pi\)
−0.0546546 + 0.998505i \(0.517406\pi\)
\(920\) 0 0
\(921\) −5.17157 + 2.14214i −0.170409 + 0.0705858i
\(922\) 9.95837i 0.327961i
\(923\) −7.07107 17.0711i −0.232747 0.561901i
\(924\) −5.17157 2.14214i −0.170132 0.0704711i
\(925\) 0 0
\(926\) −8.97056 + 8.97056i −0.294791 + 0.294791i
\(927\) 12.1421 12.1421i 0.398800 0.398800i
\(928\) −7.53553 + 18.1924i −0.247366 + 0.597194i
\(929\) 19.3640 + 8.02082i 0.635311 + 0.263154i 0.677008 0.735976i \(-0.263276\pi\)
−0.0416968 + 0.999130i \(0.513276\pi\)
\(930\) 0 0
\(931\) 28.1421i 0.922321i
\(932\) −17.1213 + 7.09188i −0.560827 + 0.232302i
\(933\) −8.34315 8.34315i −0.273142 0.273142i
\(934\) −5.23045 −0.171145
\(935\) 0 0
\(936\) −8.58579 −0.280635
\(937\) −2.51472 2.51472i −0.0821523 0.0821523i 0.664837 0.746989i \(-0.268501\pi\)
−0.746989 + 0.664837i \(0.768501\pi\)
\(938\) 2.82843 1.17157i 0.0923514 0.0382532i
\(939\) 33.3137i 1.08715i
\(940\) 0 0
\(941\) 17.2635 + 7.15076i 0.562773 + 0.233108i 0.645888 0.763432i \(-0.276487\pi\)
−0.0831158 + 0.996540i \(0.526487\pi\)
\(942\) 0.686292 1.65685i 0.0223606 0.0539832i
\(943\) 23.8995 23.8995i 0.778275 0.778275i
\(944\) 12.7279 12.7279i 0.414259 0.414259i
\(945\) 0 0
\(946\) −2.00000 0.828427i −0.0650256 0.0269345i
\(947\) −5.68629 13.7279i −0.184780 0.446098i 0.804161 0.594412i \(-0.202615\pi\)
−0.988940 + 0.148315i \(0.952615\pi\)
\(948\) 19.7990i 0.643041i
\(949\) 7.00000 2.89949i 0.227230 0.0941216i
\(950\) 0 0
\(951\) 15.1716 0.491972
\(952\) −2.89949 + 6.45584i −0.0939732 + 0.209235i
\(953\) 9.69848 0.314165 0.157082 0.987586i \(-0.449791\pi\)
0.157082 + 0.987586i \(0.449791\pi\)
\(954\) 1.58579 + 1.58579i 0.0513417 + 0.0513417i
\(955\) 0 0
\(956\) 16.7696i 0.542366i
\(957\) 4.82843 + 11.6569i 0.156081 + 0.376813i
\(958\) −13.2426 5.48528i −0.427850 0.177221i
\(959\) 3.61522 8.72792i 0.116742 0.281839i
\(960\) 0 0
\(961\) −14.4645 + 14.4645i −0.466596 + 0.466596i
\(962\) 0.857864 2.07107i 0.0276587 0.0667739i
\(963\) 22.3137 + 9.24264i 0.719049 + 0.297840i
\(964\) −8.60660 20.7782i −0.277200 0.669220i
\(965\) 0 0
\(966\) 4.48528 1.85786i 0.144312 0.0597758i
\(967\) −22.8701 22.8701i −0.735451 0.735451i 0.236243 0.971694i \(-0.424084\pi\)
−0.971694 + 0.236243i \(0.924084\pi\)
\(968\) −15.5858 −0.500946
\(969\) 18.4853 + 48.6274i 0.593833 + 1.56214i
\(970\) 0 0
\(971\) −39.4142 39.4142i −1.26486 1.26486i −0.948708 0.316155i \(-0.897608\pi\)
−0.316155 0.948708i \(-0.602392\pi\)
\(972\) 36.6985 15.2010i 1.17710 0.487573i
\(973\) 16.2010i 0.519381i
\(974\) 0.698485 + 1.68629i 0.0223809 + 0.0540323i
\(975\) 0 0
\(976\) −10.6066 + 25.6066i −0.339509 + 0.819647i
\(977\) −1.14214 + 1.14214i −0.0365402 + 0.0365402i −0.725141 0.688601i \(-0.758225\pi\)
0.688601 + 0.725141i \(0.258225\pi\)
\(978\) 4.34315 4.34315i 0.138878 0.138878i
\(979\) 3.89949 9.41421i 0.124628 0.300880i
\(980\) 0 0
\(981\) −6.26346 15.1213i −0.199977 0.482787i
\(982\) 10.4020i 0.331942i
\(983\) 21.7279 9.00000i 0.693013 0.287055i −0.00824183 0.999966i \(-0.502623\pi\)
0.701255 + 0.712911i \(0.252623\pi\)
\(984\) 23.8995 + 23.8995i 0.761888 + 0.761888i
\(985\) 0 0
\(986\) 7.12132 2.70711i 0.226789 0.0862118i
\(987\) −30.6274 −0.974881
\(988\) −8.82843 8.82843i −0.280870 0.280870i
\(989\) −18.4853 + 7.65685i −0.587798 + 0.243474i
\(990\) 0 0
\(991\) 12.2721 + 29.6274i 0.389835 + 0.941146i 0.989974 + 0.141250i \(0.0451121\pi\)
−0.600139 + 0.799896i \(0.704888\pi\)
\(992\) 13.2426 + 5.48528i 0.420454 + 0.174158i
\(993\) −17.7990 + 42.9706i −0.564834 + 1.36363i
\(994\) −4.14214 + 4.14214i −0.131381 + 0.131381i
\(995\) 0 0
\(996\) 0.627417 1.51472i 0.0198805 0.0479957i
\(997\) 7.12132 + 2.94975i 0.225534 + 0.0934194i 0.492589 0.870262i \(-0.336050\pi\)
−0.267055 + 0.963681i \(0.586050\pi\)
\(998\) 5.87006 + 14.1716i 0.185813 + 0.448593i
\(999\) 8.28427i 0.262103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.a.376.1 4
5.2 odd 4 425.2.n.a.274.1 4
5.3 odd 4 425.2.n.b.274.1 4
5.4 even 2 17.2.d.a.2.1 4
15.14 odd 2 153.2.l.c.19.1 4
17.3 odd 16 7225.2.a.u.1.4 4
17.9 even 8 inner 425.2.m.a.26.1 4
17.14 odd 16 7225.2.a.u.1.3 4
20.19 odd 2 272.2.v.d.257.1 4
35.4 even 6 833.2.v.b.716.1 8
35.9 even 6 833.2.v.b.410.1 8
35.19 odd 6 833.2.v.a.410.1 8
35.24 odd 6 833.2.v.a.716.1 8
35.34 odd 2 833.2.l.a.393.1 4
85.4 even 4 289.2.d.c.134.1 4
85.9 even 8 17.2.d.a.9.1 yes 4
85.14 odd 16 289.2.a.f.1.2 4
85.19 even 8 289.2.d.b.110.1 4
85.24 odd 16 289.2.c.c.251.4 8
85.29 odd 16 289.2.b.b.288.4 4
85.39 odd 16 289.2.b.b.288.3 4
85.43 odd 8 425.2.n.a.349.1 4
85.44 odd 16 289.2.c.c.251.3 8
85.49 even 8 289.2.d.c.110.1 4
85.54 odd 16 289.2.a.f.1.1 4
85.59 even 8 289.2.d.a.179.1 4
85.64 even 4 289.2.d.b.134.1 4
85.74 odd 16 289.2.c.c.38.1 8
85.77 odd 8 425.2.n.b.349.1 4
85.79 odd 16 289.2.c.c.38.2 8
85.84 even 2 289.2.d.a.155.1 4
255.14 even 16 2601.2.a.bb.1.3 4
255.179 odd 8 153.2.l.c.145.1 4
255.224 even 16 2601.2.a.bb.1.4 4
340.99 even 16 4624.2.a.bp.1.1 4
340.139 even 16 4624.2.a.bp.1.4 4
340.179 odd 8 272.2.v.d.145.1 4
595.9 even 24 833.2.v.b.655.1 8
595.94 odd 24 833.2.v.a.128.1 8
595.179 even 24 833.2.v.b.128.1 8
595.264 odd 24 833.2.v.a.655.1 8
595.349 odd 8 833.2.l.a.638.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 5.4 even 2
17.2.d.a.9.1 yes 4 85.9 even 8
153.2.l.c.19.1 4 15.14 odd 2
153.2.l.c.145.1 4 255.179 odd 8
272.2.v.d.145.1 4 340.179 odd 8
272.2.v.d.257.1 4 20.19 odd 2
289.2.a.f.1.1 4 85.54 odd 16
289.2.a.f.1.2 4 85.14 odd 16
289.2.b.b.288.3 4 85.39 odd 16
289.2.b.b.288.4 4 85.29 odd 16
289.2.c.c.38.1 8 85.74 odd 16
289.2.c.c.38.2 8 85.79 odd 16
289.2.c.c.251.3 8 85.44 odd 16
289.2.c.c.251.4 8 85.24 odd 16
289.2.d.a.155.1 4 85.84 even 2
289.2.d.a.179.1 4 85.59 even 8
289.2.d.b.110.1 4 85.19 even 8
289.2.d.b.134.1 4 85.64 even 4
289.2.d.c.110.1 4 85.49 even 8
289.2.d.c.134.1 4 85.4 even 4
425.2.m.a.26.1 4 17.9 even 8 inner
425.2.m.a.376.1 4 1.1 even 1 trivial
425.2.n.a.274.1 4 5.2 odd 4
425.2.n.a.349.1 4 85.43 odd 8
425.2.n.b.274.1 4 5.3 odd 4
425.2.n.b.349.1 4 85.77 odd 8
833.2.l.a.393.1 4 35.34 odd 2
833.2.l.a.638.1 4 595.349 odd 8
833.2.v.a.128.1 8 595.94 odd 24
833.2.v.a.410.1 8 35.19 odd 6
833.2.v.a.655.1 8 595.264 odd 24
833.2.v.a.716.1 8 35.24 odd 6
833.2.v.b.128.1 8 595.179 even 24
833.2.v.b.410.1 8 35.9 even 6
833.2.v.b.655.1 8 595.9 even 24
833.2.v.b.716.1 8 35.4 even 6
2601.2.a.bb.1.3 4 255.14 even 16
2601.2.a.bb.1.4 4 255.224 even 16
4624.2.a.bp.1.1 4 340.99 even 16
4624.2.a.bp.1.4 4 340.139 even 16
7225.2.a.u.1.3 4 17.14 odd 16
7225.2.a.u.1.4 4 17.3 odd 16