Properties

Label 7225.2.a.u.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.84776\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.414214 q^{2} +2.61313 q^{3} -1.82843 q^{4} +1.08239 q^{6} +1.08239 q^{7} -1.58579 q^{8} +3.82843 q^{9} +O(q^{10})\) \(q+0.414214 q^{2} +2.61313 q^{3} -1.82843 q^{4} +1.08239 q^{6} +1.08239 q^{7} -1.58579 q^{8} +3.82843 q^{9} +1.08239 q^{11} -4.77791 q^{12} +1.41421 q^{13} +0.448342 q^{14} +3.00000 q^{16} +1.58579 q^{18} +4.82843 q^{19} +2.82843 q^{21} +0.448342 q^{22} -4.14386 q^{23} -4.14386 q^{24} +0.585786 q^{26} +2.16478 q^{27} -1.97908 q^{28} -4.46088 q^{29} +3.24718 q^{31} +4.41421 q^{32} +2.82843 q^{33} -7.00000 q^{36} +3.82683 q^{37} +2.00000 q^{38} +3.69552 q^{39} +8.15640 q^{41} +1.17157 q^{42} +4.82843 q^{43} -1.97908 q^{44} -1.71644 q^{46} -10.8284 q^{47} +7.83938 q^{48} -5.82843 q^{49} -2.58579 q^{52} +1.41421 q^{53} +0.896683 q^{54} -1.71644 q^{56} +12.6173 q^{57} -1.84776 q^{58} +6.00000 q^{59} +9.23880 q^{61} +1.34502 q^{62} +4.14386 q^{63} -4.17157 q^{64} +1.17157 q^{66} +6.82843 q^{67} -10.8284 q^{69} +13.0656 q^{71} -6.07107 q^{72} -5.35757 q^{73} +1.58513 q^{74} -8.82843 q^{76} +1.17157 q^{77} +1.53073 q^{78} +4.14386 q^{79} -5.82843 q^{81} +3.37849 q^{82} -0.343146 q^{83} -5.17157 q^{84} +2.00000 q^{86} -11.6569 q^{87} -1.71644 q^{88} +9.41421 q^{89} +1.53073 q^{91} +7.57675 q^{92} +8.48528 q^{93} -4.48528 q^{94} +11.5349 q^{96} -6.43996 q^{97} -2.41421 q^{98} +4.14386 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 12 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{4} - 12 q^{8} + 4 q^{9} + 12 q^{16} + 12 q^{18} + 8 q^{19} + 8 q^{26} + 12 q^{32} - 28 q^{36} + 8 q^{38} + 16 q^{42} + 8 q^{43} - 32 q^{47} - 12 q^{49} - 16 q^{52} + 24 q^{59} - 28 q^{64} + 16 q^{66} + 16 q^{67} - 32 q^{69} + 4 q^{72} - 24 q^{76} + 16 q^{77} - 12 q^{81} - 24 q^{83} - 32 q^{84} + 8 q^{86} - 24 q^{87} + 32 q^{89} + 16 q^{94} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214 0.292893 0.146447 0.989219i \(-0.453216\pi\)
0.146447 + 0.989219i \(0.453216\pi\)
\(3\) 2.61313 1.50869 0.754344 0.656479i \(-0.227955\pi\)
0.754344 + 0.656479i \(0.227955\pi\)
\(4\) −1.82843 −0.914214
\(5\) 0 0
\(6\) 1.08239 0.441885
\(7\) 1.08239 0.409106 0.204553 0.978856i \(-0.434426\pi\)
0.204553 + 0.978856i \(0.434426\pi\)
\(8\) −1.58579 −0.560660
\(9\) 3.82843 1.27614
\(10\) 0 0
\(11\) 1.08239 0.326354 0.163177 0.986597i \(-0.447826\pi\)
0.163177 + 0.986597i \(0.447826\pi\)
\(12\) −4.77791 −1.37926
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) 0.448342 0.119824
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 0 0
\(18\) 1.58579 0.373773
\(19\) 4.82843 1.10772 0.553859 0.832611i \(-0.313155\pi\)
0.553859 + 0.832611i \(0.313155\pi\)
\(20\) 0 0
\(21\) 2.82843 0.617213
\(22\) 0.448342 0.0955867
\(23\) −4.14386 −0.864054 −0.432027 0.901861i \(-0.642202\pi\)
−0.432027 + 0.901861i \(0.642202\pi\)
\(24\) −4.14386 −0.845862
\(25\) 0 0
\(26\) 0.585786 0.114882
\(27\) 2.16478 0.416613
\(28\) −1.97908 −0.374010
\(29\) −4.46088 −0.828366 −0.414183 0.910194i \(-0.635933\pi\)
−0.414183 + 0.910194i \(0.635933\pi\)
\(30\) 0 0
\(31\) 3.24718 0.583210 0.291605 0.956539i \(-0.405811\pi\)
0.291605 + 0.956539i \(0.405811\pi\)
\(32\) 4.41421 0.780330
\(33\) 2.82843 0.492366
\(34\) 0 0
\(35\) 0 0
\(36\) −7.00000 −1.16667
\(37\) 3.82683 0.629128 0.314564 0.949236i \(-0.398142\pi\)
0.314564 + 0.949236i \(0.398142\pi\)
\(38\) 2.00000 0.324443
\(39\) 3.69552 0.591756
\(40\) 0 0
\(41\) 8.15640 1.27382 0.636908 0.770940i \(-0.280213\pi\)
0.636908 + 0.770940i \(0.280213\pi\)
\(42\) 1.17157 0.180778
\(43\) 4.82843 0.736328 0.368164 0.929761i \(-0.379986\pi\)
0.368164 + 0.929761i \(0.379986\pi\)
\(44\) −1.97908 −0.298357
\(45\) 0 0
\(46\) −1.71644 −0.253076
\(47\) −10.8284 −1.57949 −0.789744 0.613436i \(-0.789787\pi\)
−0.789744 + 0.613436i \(0.789787\pi\)
\(48\) 7.83938 1.13152
\(49\) −5.82843 −0.832632
\(50\) 0 0
\(51\) 0 0
\(52\) −2.58579 −0.358584
\(53\) 1.41421 0.194257 0.0971286 0.995272i \(-0.469034\pi\)
0.0971286 + 0.995272i \(0.469034\pi\)
\(54\) 0.896683 0.122023
\(55\) 0 0
\(56\) −1.71644 −0.229369
\(57\) 12.6173 1.67120
\(58\) −1.84776 −0.242623
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 9.23880 1.18291 0.591453 0.806339i \(-0.298554\pi\)
0.591453 + 0.806339i \(0.298554\pi\)
\(62\) 1.34502 0.170818
\(63\) 4.14386 0.522077
\(64\) −4.17157 −0.521447
\(65\) 0 0
\(66\) 1.17157 0.144211
\(67\) 6.82843 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(68\) 0 0
\(69\) −10.8284 −1.30359
\(70\) 0 0
\(71\) 13.0656 1.55060 0.775302 0.631590i \(-0.217597\pi\)
0.775302 + 0.631590i \(0.217597\pi\)
\(72\) −6.07107 −0.715482
\(73\) −5.35757 −0.627056 −0.313528 0.949579i \(-0.601511\pi\)
−0.313528 + 0.949579i \(0.601511\pi\)
\(74\) 1.58513 0.184267
\(75\) 0 0
\(76\) −8.82843 −1.01269
\(77\) 1.17157 0.133513
\(78\) 1.53073 0.173321
\(79\) 4.14386 0.466221 0.233110 0.972450i \(-0.425110\pi\)
0.233110 + 0.972450i \(0.425110\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) 3.37849 0.373092
\(83\) −0.343146 −0.0376651 −0.0188326 0.999823i \(-0.505995\pi\)
−0.0188326 + 0.999823i \(0.505995\pi\)
\(84\) −5.17157 −0.564265
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −11.6569 −1.24975
\(88\) −1.71644 −0.182973
\(89\) 9.41421 0.997905 0.498952 0.866629i \(-0.333718\pi\)
0.498952 + 0.866629i \(0.333718\pi\)
\(90\) 0 0
\(91\) 1.53073 0.160464
\(92\) 7.57675 0.789930
\(93\) 8.48528 0.879883
\(94\) −4.48528 −0.462621
\(95\) 0 0
\(96\) 11.5349 1.17728
\(97\) −6.43996 −0.653879 −0.326939 0.945045i \(-0.606017\pi\)
−0.326939 + 0.945045i \(0.606017\pi\)
\(98\) −2.41421 −0.243872
\(99\) 4.14386 0.416474
\(100\) 0 0
\(101\) 13.4142 1.33476 0.667382 0.744715i \(-0.267415\pi\)
0.667382 + 0.744715i \(0.267415\pi\)
\(102\) 0 0
\(103\) 4.48528 0.441948 0.220974 0.975280i \(-0.429076\pi\)
0.220974 + 0.975280i \(0.429076\pi\)
\(104\) −2.24264 −0.219909
\(105\) 0 0
\(106\) 0.585786 0.0568966
\(107\) −6.30864 −0.609880 −0.304940 0.952372i \(-0.598636\pi\)
−0.304940 + 0.952372i \(0.598636\pi\)
\(108\) −3.95815 −0.380873
\(109\) −4.27518 −0.409488 −0.204744 0.978816i \(-0.565636\pi\)
−0.204744 + 0.978816i \(0.565636\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 3.24718 0.306829
\(113\) 16.1815 1.52223 0.761113 0.648619i \(-0.224653\pi\)
0.761113 + 0.648619i \(0.224653\pi\)
\(114\) 5.22625 0.489483
\(115\) 0 0
\(116\) 8.15640 0.757303
\(117\) 5.41421 0.500544
\(118\) 2.48528 0.228789
\(119\) 0 0
\(120\) 0 0
\(121\) −9.82843 −0.893493
\(122\) 3.82683 0.346465
\(123\) 21.3137 1.92179
\(124\) −5.93723 −0.533179
\(125\) 0 0
\(126\) 1.71644 0.152913
\(127\) −17.3137 −1.53634 −0.768172 0.640244i \(-0.778833\pi\)
−0.768172 + 0.640244i \(0.778833\pi\)
\(128\) −10.5563 −0.933058
\(129\) 12.6173 1.11089
\(130\) 0 0
\(131\) 0.185709 0.0162255 0.00811274 0.999967i \(-0.497418\pi\)
0.00811274 + 0.999967i \(0.497418\pi\)
\(132\) −5.17157 −0.450128
\(133\) 5.22625 0.453174
\(134\) 2.82843 0.244339
\(135\) 0 0
\(136\) 0 0
\(137\) −8.72792 −0.745677 −0.372838 0.927896i \(-0.621615\pi\)
−0.372838 + 0.927896i \(0.621615\pi\)
\(138\) −4.48528 −0.381813
\(139\) −14.9678 −1.26955 −0.634775 0.772697i \(-0.718907\pi\)
−0.634775 + 0.772697i \(0.718907\pi\)
\(140\) 0 0
\(141\) −28.2960 −2.38296
\(142\) 5.41196 0.454162
\(143\) 1.53073 0.128006
\(144\) 11.4853 0.957107
\(145\) 0 0
\(146\) −2.21918 −0.183660
\(147\) −15.2304 −1.25618
\(148\) −6.99709 −0.575157
\(149\) 16.9706 1.39028 0.695141 0.718873i \(-0.255342\pi\)
0.695141 + 0.718873i \(0.255342\pi\)
\(150\) 0 0
\(151\) 12.8284 1.04396 0.521981 0.852957i \(-0.325193\pi\)
0.521981 + 0.852957i \(0.325193\pi\)
\(152\) −7.65685 −0.621053
\(153\) 0 0
\(154\) 0.485281 0.0391051
\(155\) 0 0
\(156\) −6.75699 −0.540992
\(157\) −1.65685 −0.132231 −0.0661157 0.997812i \(-0.521061\pi\)
−0.0661157 + 0.997812i \(0.521061\pi\)
\(158\) 1.71644 0.136553
\(159\) 3.69552 0.293074
\(160\) 0 0
\(161\) −4.48528 −0.353490
\(162\) −2.41421 −0.189679
\(163\) 5.67459 0.444468 0.222234 0.974993i \(-0.428665\pi\)
0.222234 + 0.974993i \(0.428665\pi\)
\(164\) −14.9134 −1.16454
\(165\) 0 0
\(166\) −0.142136 −0.0110319
\(167\) 10.0042 0.774145 0.387073 0.922049i \(-0.373486\pi\)
0.387073 + 0.922049i \(0.373486\pi\)
\(168\) −4.48528 −0.346047
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 18.4853 1.41360
\(172\) −8.82843 −0.673161
\(173\) 3.37849 0.256862 0.128431 0.991718i \(-0.459006\pi\)
0.128431 + 0.991718i \(0.459006\pi\)
\(174\) −4.82843 −0.366042
\(175\) 0 0
\(176\) 3.24718 0.244765
\(177\) 15.6788 1.17849
\(178\) 3.89949 0.292280
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 12.4860 0.928075 0.464037 0.885816i \(-0.346400\pi\)
0.464037 + 0.885816i \(0.346400\pi\)
\(182\) 0.634051 0.0469990
\(183\) 24.1421 1.78464
\(184\) 6.57128 0.484441
\(185\) 0 0
\(186\) 3.51472 0.257712
\(187\) 0 0
\(188\) 19.7990 1.44399
\(189\) 2.34315 0.170439
\(190\) 0 0
\(191\) 20.0000 1.44715 0.723575 0.690246i \(-0.242498\pi\)
0.723575 + 0.690246i \(0.242498\pi\)
\(192\) −10.9008 −0.786701
\(193\) −5.54328 −0.399014 −0.199507 0.979896i \(-0.563934\pi\)
−0.199507 + 0.979896i \(0.563934\pi\)
\(194\) −2.66752 −0.191517
\(195\) 0 0
\(196\) 10.6569 0.761204
\(197\) 14.9134 1.06253 0.531267 0.847204i \(-0.321716\pi\)
0.531267 + 0.847204i \(0.321716\pi\)
\(198\) 1.71644 0.121982
\(199\) −1.71644 −0.121675 −0.0608377 0.998148i \(-0.519377\pi\)
−0.0608377 + 0.998148i \(0.519377\pi\)
\(200\) 0 0
\(201\) 17.8435 1.25859
\(202\) 5.55635 0.390943
\(203\) −4.82843 −0.338889
\(204\) 0 0
\(205\) 0 0
\(206\) 1.85786 0.129444
\(207\) −15.8645 −1.10266
\(208\) 4.24264 0.294174
\(209\) 5.22625 0.361507
\(210\) 0 0
\(211\) −14.9678 −1.03042 −0.515212 0.857063i \(-0.672287\pi\)
−0.515212 + 0.857063i \(0.672287\pi\)
\(212\) −2.58579 −0.177593
\(213\) 34.1421 2.33938
\(214\) −2.61313 −0.178630
\(215\) 0 0
\(216\) −3.43289 −0.233578
\(217\) 3.51472 0.238595
\(218\) −1.77084 −0.119936
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) 4.14214 0.278002
\(223\) −0.828427 −0.0554756 −0.0277378 0.999615i \(-0.508830\pi\)
−0.0277378 + 0.999615i \(0.508830\pi\)
\(224\) 4.77791 0.319238
\(225\) 0 0
\(226\) 6.70259 0.445850
\(227\) 5.04054 0.334553 0.167276 0.985910i \(-0.446503\pi\)
0.167276 + 0.985910i \(0.446503\pi\)
\(228\) −23.0698 −1.52783
\(229\) −22.8284 −1.50854 −0.754272 0.656562i \(-0.772010\pi\)
−0.754272 + 0.656562i \(0.772010\pi\)
\(230\) 0 0
\(231\) 3.06147 0.201430
\(232\) 7.07401 0.464432
\(233\) −10.1355 −0.663997 −0.331999 0.943280i \(-0.607723\pi\)
−0.331999 + 0.943280i \(0.607723\pi\)
\(234\) 2.24264 0.146606
\(235\) 0 0
\(236\) −10.9706 −0.714123
\(237\) 10.8284 0.703382
\(238\) 0 0
\(239\) 9.17157 0.593260 0.296630 0.954993i \(-0.404137\pi\)
0.296630 + 0.954993i \(0.404137\pi\)
\(240\) 0 0
\(241\) 12.3003 0.792330 0.396165 0.918179i \(-0.370341\pi\)
0.396165 + 0.918179i \(0.370341\pi\)
\(242\) −4.07107 −0.261698
\(243\) −21.7248 −1.39364
\(244\) −16.8925 −1.08143
\(245\) 0 0
\(246\) 8.82843 0.562880
\(247\) 6.82843 0.434482
\(248\) −5.14933 −0.326983
\(249\) −0.896683 −0.0568250
\(250\) 0 0
\(251\) 3.51472 0.221847 0.110924 0.993829i \(-0.464619\pi\)
0.110924 + 0.993829i \(0.464619\pi\)
\(252\) −7.57675 −0.477290
\(253\) −4.48528 −0.281987
\(254\) −7.17157 −0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 22.1421 1.38119 0.690594 0.723242i \(-0.257349\pi\)
0.690594 + 0.723242i \(0.257349\pi\)
\(258\) 5.22625 0.325372
\(259\) 4.14214 0.257380
\(260\) 0 0
\(261\) −17.0782 −1.05711
\(262\) 0.0769232 0.00475233
\(263\) −6.48528 −0.399900 −0.199950 0.979806i \(-0.564078\pi\)
−0.199950 + 0.979806i \(0.564078\pi\)
\(264\) −4.48528 −0.276050
\(265\) 0 0
\(266\) 2.16478 0.132731
\(267\) 24.6005 1.50553
\(268\) −12.4853 −0.762660
\(269\) −6.36304 −0.387961 −0.193981 0.981005i \(-0.562140\pi\)
−0.193981 + 0.981005i \(0.562140\pi\)
\(270\) 0 0
\(271\) 6.14214 0.373108 0.186554 0.982445i \(-0.440268\pi\)
0.186554 + 0.982445i \(0.440268\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) −3.61522 −0.218404
\(275\) 0 0
\(276\) 19.7990 1.19176
\(277\) 22.0418 1.32436 0.662181 0.749344i \(-0.269631\pi\)
0.662181 + 0.749344i \(0.269631\pi\)
\(278\) −6.19986 −0.371843
\(279\) 12.4316 0.744259
\(280\) 0 0
\(281\) −17.8995 −1.06779 −0.533897 0.845549i \(-0.679273\pi\)
−0.533897 + 0.845549i \(0.679273\pi\)
\(282\) −11.7206 −0.697952
\(283\) 22.8841 1.36032 0.680159 0.733065i \(-0.261911\pi\)
0.680159 + 0.733065i \(0.261911\pi\)
\(284\) −23.8896 −1.41758
\(285\) 0 0
\(286\) 0.634051 0.0374922
\(287\) 8.82843 0.521126
\(288\) 16.8995 0.995812
\(289\) 0 0
\(290\) 0 0
\(291\) −16.8284 −0.986500
\(292\) 9.79592 0.573263
\(293\) 23.6569 1.38205 0.691024 0.722832i \(-0.257160\pi\)
0.691024 + 0.722832i \(0.257160\pi\)
\(294\) −6.30864 −0.367928
\(295\) 0 0
\(296\) −6.06854 −0.352727
\(297\) 2.34315 0.135963
\(298\) 7.02944 0.407204
\(299\) −5.86030 −0.338910
\(300\) 0 0
\(301\) 5.22625 0.301236
\(302\) 5.31371 0.305770
\(303\) 35.0530 2.01374
\(304\) 14.4853 0.830788
\(305\) 0 0
\(306\) 0 0
\(307\) −2.14214 −0.122258 −0.0611291 0.998130i \(-0.519470\pi\)
−0.0611291 + 0.998130i \(0.519470\pi\)
\(308\) −2.14214 −0.122060
\(309\) 11.7206 0.666762
\(310\) 0 0
\(311\) 4.51528 0.256038 0.128019 0.991772i \(-0.459138\pi\)
0.128019 + 0.991772i \(0.459138\pi\)
\(312\) −5.86030 −0.331774
\(313\) −12.7486 −0.720594 −0.360297 0.932838i \(-0.617325\pi\)
−0.360297 + 0.932838i \(0.617325\pi\)
\(314\) −0.686292 −0.0387297
\(315\) 0 0
\(316\) −7.57675 −0.426225
\(317\) −5.80591 −0.326092 −0.163046 0.986618i \(-0.552132\pi\)
−0.163046 + 0.986618i \(0.552132\pi\)
\(318\) 1.53073 0.0858393
\(319\) −4.82843 −0.270340
\(320\) 0 0
\(321\) −16.4853 −0.920119
\(322\) −1.85786 −0.103535
\(323\) 0 0
\(324\) 10.6569 0.592047
\(325\) 0 0
\(326\) 2.35049 0.130182
\(327\) −11.1716 −0.617789
\(328\) −12.9343 −0.714178
\(329\) −11.7206 −0.646178
\(330\) 0 0
\(331\) 17.7990 0.978321 0.489160 0.872194i \(-0.337303\pi\)
0.489160 + 0.872194i \(0.337303\pi\)
\(332\) 0.627417 0.0344340
\(333\) 14.6508 0.802857
\(334\) 4.14386 0.226742
\(335\) 0 0
\(336\) 8.48528 0.462910
\(337\) −34.4734 −1.87788 −0.938942 0.344075i \(-0.888192\pi\)
−0.938942 + 0.344075i \(0.888192\pi\)
\(338\) −4.55635 −0.247833
\(339\) 42.2843 2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) 7.65685 0.414035
\(343\) −13.8854 −0.749741
\(344\) −7.65685 −0.412830
\(345\) 0 0
\(346\) 1.39942 0.0752332
\(347\) −3.88123 −0.208355 −0.104178 0.994559i \(-0.533221\pi\)
−0.104178 + 0.994559i \(0.533221\pi\)
\(348\) 21.3137 1.14253
\(349\) 4.24264 0.227103 0.113552 0.993532i \(-0.463777\pi\)
0.113552 + 0.993532i \(0.463777\pi\)
\(350\) 0 0
\(351\) 3.06147 0.163409
\(352\) 4.77791 0.254663
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 6.49435 0.345171
\(355\) 0 0
\(356\) −17.2132 −0.912298
\(357\) 0 0
\(358\) 2.48528 0.131351
\(359\) 23.1716 1.22295 0.611474 0.791264i \(-0.290577\pi\)
0.611474 + 0.791264i \(0.290577\pi\)
\(360\) 0 0
\(361\) 4.31371 0.227037
\(362\) 5.17186 0.271827
\(363\) −25.6829 −1.34800
\(364\) −2.79884 −0.146699
\(365\) 0 0
\(366\) 10.0000 0.522708
\(367\) −26.3170 −1.37373 −0.686867 0.726783i \(-0.741015\pi\)
−0.686867 + 0.726783i \(0.741015\pi\)
\(368\) −12.4316 −0.648041
\(369\) 31.2262 1.62557
\(370\) 0 0
\(371\) 1.53073 0.0794717
\(372\) −15.5147 −0.804401
\(373\) −19.5563 −1.01259 −0.506295 0.862361i \(-0.668985\pi\)
−0.506295 + 0.862361i \(0.668985\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 17.1716 0.885556
\(377\) −6.30864 −0.324912
\(378\) 0.970563 0.0499204
\(379\) −1.08239 −0.0555988 −0.0277994 0.999614i \(-0.508850\pi\)
−0.0277994 + 0.999614i \(0.508850\pi\)
\(380\) 0 0
\(381\) −45.2429 −2.31786
\(382\) 8.28427 0.423860
\(383\) −5.51472 −0.281789 −0.140894 0.990025i \(-0.544998\pi\)
−0.140894 + 0.990025i \(0.544998\pi\)
\(384\) −27.5851 −1.40769
\(385\) 0 0
\(386\) −2.29610 −0.116868
\(387\) 18.4853 0.939660
\(388\) 11.7750 0.597785
\(389\) 16.1421 0.818439 0.409219 0.912436i \(-0.365801\pi\)
0.409219 + 0.912436i \(0.365801\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.24264 0.466824
\(393\) 0.485281 0.0244792
\(394\) 6.17733 0.311209
\(395\) 0 0
\(396\) −7.57675 −0.380746
\(397\) −27.2680 −1.36854 −0.684272 0.729227i \(-0.739880\pi\)
−0.684272 + 0.729227i \(0.739880\pi\)
\(398\) −0.710974 −0.0356379
\(399\) 13.6569 0.683698
\(400\) 0 0
\(401\) 17.0782 0.852843 0.426422 0.904525i \(-0.359774\pi\)
0.426422 + 0.904525i \(0.359774\pi\)
\(402\) 7.39104 0.368631
\(403\) 4.59220 0.228754
\(404\) −24.5269 −1.22026
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) 4.14214 0.205318
\(408\) 0 0
\(409\) 19.3137 0.955001 0.477501 0.878631i \(-0.341543\pi\)
0.477501 + 0.878631i \(0.341543\pi\)
\(410\) 0 0
\(411\) −22.8072 −1.12499
\(412\) −8.20101 −0.404035
\(413\) 6.49435 0.319566
\(414\) −6.57128 −0.322961
\(415\) 0 0
\(416\) 6.24264 0.306071
\(417\) −39.1127 −1.91536
\(418\) 2.16478 0.105883
\(419\) 26.9510 1.31664 0.658322 0.752737i \(-0.271267\pi\)
0.658322 + 0.752737i \(0.271267\pi\)
\(420\) 0 0
\(421\) 17.4142 0.848717 0.424358 0.905494i \(-0.360500\pi\)
0.424358 + 0.905494i \(0.360500\pi\)
\(422\) −6.19986 −0.301804
\(423\) −41.4558 −2.01565
\(424\) −2.24264 −0.108912
\(425\) 0 0
\(426\) 14.1421 0.685189
\(427\) 10.0000 0.483934
\(428\) 11.5349 0.557560
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −39.8309 −1.91859 −0.959294 0.282408i \(-0.908867\pi\)
−0.959294 + 0.282408i \(0.908867\pi\)
\(432\) 6.49435 0.312460
\(433\) −15.1716 −0.729099 −0.364550 0.931184i \(-0.618777\pi\)
−0.364550 + 0.931184i \(0.618777\pi\)
\(434\) 1.45584 0.0698828
\(435\) 0 0
\(436\) 7.81685 0.374359
\(437\) −20.0083 −0.957128
\(438\) −5.79899 −0.277086
\(439\) −10.9008 −0.520269 −0.260134 0.965572i \(-0.583767\pi\)
−0.260134 + 0.965572i \(0.583767\pi\)
\(440\) 0 0
\(441\) −22.3137 −1.06256
\(442\) 0 0
\(443\) −15.7990 −0.750633 −0.375316 0.926897i \(-0.622466\pi\)
−0.375316 + 0.926897i \(0.622466\pi\)
\(444\) −18.2843 −0.867733
\(445\) 0 0
\(446\) −0.343146 −0.0162484
\(447\) 44.3462 2.09750
\(448\) −4.51528 −0.213327
\(449\) 18.7946 0.886973 0.443486 0.896281i \(-0.353741\pi\)
0.443486 + 0.896281i \(0.353741\pi\)
\(450\) 0 0
\(451\) 8.82843 0.415714
\(452\) −29.5867 −1.39164
\(453\) 33.5223 1.57501
\(454\) 2.08786 0.0979882
\(455\) 0 0
\(456\) −20.0083 −0.936976
\(457\) −18.8284 −0.880757 −0.440378 0.897812i \(-0.645156\pi\)
−0.440378 + 0.897812i \(0.645156\pi\)
\(458\) −9.45584 −0.441843
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0416 1.11973 0.559865 0.828584i \(-0.310853\pi\)
0.559865 + 0.828584i \(0.310853\pi\)
\(462\) 1.26810 0.0589974
\(463\) 30.6274 1.42338 0.711688 0.702495i \(-0.247931\pi\)
0.711688 + 0.702495i \(0.247931\pi\)
\(464\) −13.3827 −0.621274
\(465\) 0 0
\(466\) −4.19825 −0.194480
\(467\) 12.6274 0.584327 0.292164 0.956368i \(-0.405625\pi\)
0.292164 + 0.956368i \(0.405625\pi\)
\(468\) −9.89949 −0.457604
\(469\) 7.39104 0.341286
\(470\) 0 0
\(471\) −4.32957 −0.199496
\(472\) −9.51472 −0.437950
\(473\) 5.22625 0.240303
\(474\) 4.48528 0.206016
\(475\) 0 0
\(476\) 0 0
\(477\) 5.41421 0.247900
\(478\) 3.79899 0.173762
\(479\) −34.6047 −1.58113 −0.790564 0.612379i \(-0.790213\pi\)
−0.790564 + 0.612379i \(0.790213\pi\)
\(480\) 0 0
\(481\) 5.41196 0.246764
\(482\) 5.09494 0.232068
\(483\) −11.7206 −0.533306
\(484\) 17.9706 0.816844
\(485\) 0 0
\(486\) −8.99869 −0.408189
\(487\) −4.40649 −0.199677 −0.0998386 0.995004i \(-0.531833\pi\)
−0.0998386 + 0.995004i \(0.531833\pi\)
\(488\) −14.6508 −0.663209
\(489\) 14.8284 0.670565
\(490\) 0 0
\(491\) −25.1127 −1.13332 −0.566660 0.823952i \(-0.691765\pi\)
−0.566660 + 0.823952i \(0.691765\pi\)
\(492\) −38.9706 −1.75693
\(493\) 0 0
\(494\) 2.82843 0.127257
\(495\) 0 0
\(496\) 9.74153 0.437408
\(497\) 14.1421 0.634361
\(498\) −0.371418 −0.0166437
\(499\) 37.0321 1.65778 0.828892 0.559408i \(-0.188972\pi\)
0.828892 + 0.559408i \(0.188972\pi\)
\(500\) 0 0
\(501\) 26.1421 1.16794
\(502\) 1.45584 0.0649775
\(503\) −14.9678 −0.667380 −0.333690 0.942683i \(-0.608294\pi\)
−0.333690 + 0.942683i \(0.608294\pi\)
\(504\) −6.57128 −0.292708
\(505\) 0 0
\(506\) −1.85786 −0.0825921
\(507\) −28.7444 −1.27658
\(508\) 31.6569 1.40455
\(509\) 3.02944 0.134277 0.0671387 0.997744i \(-0.478613\pi\)
0.0671387 + 0.997744i \(0.478613\pi\)
\(510\) 0 0
\(511\) −5.79899 −0.256532
\(512\) 22.7574 1.00574
\(513\) 10.4525 0.461489
\(514\) 9.17157 0.404541
\(515\) 0 0
\(516\) −23.0698 −1.01559
\(517\) −11.7206 −0.515472
\(518\) 1.71573 0.0753848
\(519\) 8.82843 0.387525
\(520\) 0 0
\(521\) −3.11586 −0.136508 −0.0682542 0.997668i \(-0.521743\pi\)
−0.0682542 + 0.997668i \(0.521743\pi\)
\(522\) −7.07401 −0.309621
\(523\) −6.82843 −0.298586 −0.149293 0.988793i \(-0.547700\pi\)
−0.149293 + 0.988793i \(0.547700\pi\)
\(524\) −0.339556 −0.0148336
\(525\) 0 0
\(526\) −2.68629 −0.117128
\(527\) 0 0
\(528\) 8.48528 0.369274
\(529\) −5.82843 −0.253410
\(530\) 0 0
\(531\) 22.9706 0.996838
\(532\) −9.55582 −0.414297
\(533\) 11.5349 0.499632
\(534\) 10.1899 0.440959
\(535\) 0 0
\(536\) −10.8284 −0.467717
\(537\) 15.6788 0.676588
\(538\) −2.63566 −0.113631
\(539\) −6.30864 −0.271733
\(540\) 0 0
\(541\) 18.3463 0.788768 0.394384 0.918946i \(-0.370958\pi\)
0.394384 + 0.918946i \(0.370958\pi\)
\(542\) 2.54416 0.109281
\(543\) 32.6274 1.40018
\(544\) 0 0
\(545\) 0 0
\(546\) 1.65685 0.0709068
\(547\) −24.7862 −1.05978 −0.529891 0.848065i \(-0.677767\pi\)
−0.529891 + 0.848065i \(0.677767\pi\)
\(548\) 15.9584 0.681708
\(549\) 35.3701 1.50956
\(550\) 0 0
\(551\) −21.5391 −0.917595
\(552\) 17.1716 0.730871
\(553\) 4.48528 0.190734
\(554\) 9.13001 0.387897
\(555\) 0 0
\(556\) 27.3675 1.16064
\(557\) 28.2426 1.19668 0.598340 0.801243i \(-0.295827\pi\)
0.598340 + 0.801243i \(0.295827\pi\)
\(558\) 5.14933 0.217988
\(559\) 6.82843 0.288812
\(560\) 0 0
\(561\) 0 0
\(562\) −7.41421 −0.312750
\(563\) −38.7696 −1.63394 −0.816971 0.576679i \(-0.804348\pi\)
−0.816971 + 0.576679i \(0.804348\pi\)
\(564\) 51.7373 2.17853
\(565\) 0 0
\(566\) 9.47890 0.398428
\(567\) −6.30864 −0.264938
\(568\) −20.7193 −0.869362
\(569\) −36.0416 −1.51094 −0.755472 0.655181i \(-0.772592\pi\)
−0.755472 + 0.655181i \(0.772592\pi\)
\(570\) 0 0
\(571\) −47.2220 −1.97618 −0.988089 0.153883i \(-0.950822\pi\)
−0.988089 + 0.153883i \(0.950822\pi\)
\(572\) −2.79884 −0.117025
\(573\) 52.2625 2.18330
\(574\) 3.65685 0.152634
\(575\) 0 0
\(576\) −15.9706 −0.665440
\(577\) −12.9289 −0.538238 −0.269119 0.963107i \(-0.586733\pi\)
−0.269119 + 0.963107i \(0.586733\pi\)
\(578\) 0 0
\(579\) −14.4853 −0.601988
\(580\) 0 0
\(581\) −0.371418 −0.0154090
\(582\) −6.97056 −0.288939
\(583\) 1.53073 0.0633965
\(584\) 8.49596 0.351565
\(585\) 0 0
\(586\) 9.79899 0.404793
\(587\) 22.6863 0.936363 0.468182 0.883632i \(-0.344909\pi\)
0.468182 + 0.883632i \(0.344909\pi\)
\(588\) 27.8477 1.14842
\(589\) 15.6788 0.646032
\(590\) 0 0
\(591\) 38.9706 1.60303
\(592\) 11.4805 0.471846
\(593\) −27.0711 −1.11168 −0.555838 0.831291i \(-0.687602\pi\)
−0.555838 + 0.831291i \(0.687602\pi\)
\(594\) 0.970563 0.0398227
\(595\) 0 0
\(596\) −31.0294 −1.27102
\(597\) −4.48528 −0.183570
\(598\) −2.42742 −0.0992645
\(599\) 34.6274 1.41484 0.707419 0.706794i \(-0.249859\pi\)
0.707419 + 0.706794i \(0.249859\pi\)
\(600\) 0 0
\(601\) −20.3253 −0.829088 −0.414544 0.910029i \(-0.636059\pi\)
−0.414544 + 0.910029i \(0.636059\pi\)
\(602\) 2.16478 0.0882300
\(603\) 26.1421 1.06459
\(604\) −23.4558 −0.954405
\(605\) 0 0
\(606\) 14.5194 0.589812
\(607\) 34.3421 1.39390 0.696951 0.717119i \(-0.254540\pi\)
0.696951 + 0.717119i \(0.254540\pi\)
\(608\) 21.3137 0.864385
\(609\) −12.6173 −0.511278
\(610\) 0 0
\(611\) −15.3137 −0.619526
\(612\) 0 0
\(613\) 17.3137 0.699294 0.349647 0.936881i \(-0.386302\pi\)
0.349647 + 0.936881i \(0.386302\pi\)
\(614\) −0.887302 −0.0358086
\(615\) 0 0
\(616\) −1.85786 −0.0748555
\(617\) −3.37849 −0.136013 −0.0680065 0.997685i \(-0.521664\pi\)
−0.0680065 + 0.997685i \(0.521664\pi\)
\(618\) 4.85483 0.195290
\(619\) −9.63274 −0.387173 −0.193586 0.981083i \(-0.562012\pi\)
−0.193586 + 0.981083i \(0.562012\pi\)
\(620\) 0 0
\(621\) −8.97056 −0.359976
\(622\) 1.87029 0.0749918
\(623\) 10.1899 0.408249
\(624\) 11.0866 0.443817
\(625\) 0 0
\(626\) −5.28064 −0.211057
\(627\) 13.6569 0.545402
\(628\) 3.02944 0.120888
\(629\) 0 0
\(630\) 0 0
\(631\) 6.68629 0.266177 0.133089 0.991104i \(-0.457511\pi\)
0.133089 + 0.991104i \(0.457511\pi\)
\(632\) −6.57128 −0.261391
\(633\) −39.1127 −1.55459
\(634\) −2.40489 −0.0955102
\(635\) 0 0
\(636\) −6.75699 −0.267932
\(637\) −8.24264 −0.326585
\(638\) −2.00000 −0.0791808
\(639\) 50.0208 1.97879
\(640\) 0 0
\(641\) −14.9903 −0.592082 −0.296041 0.955175i \(-0.595666\pi\)
−0.296041 + 0.955175i \(0.595666\pi\)
\(642\) −6.82843 −0.269497
\(643\) −40.0936 −1.58114 −0.790568 0.612374i \(-0.790215\pi\)
−0.790568 + 0.612374i \(0.790215\pi\)
\(644\) 8.20101 0.323165
\(645\) 0 0
\(646\) 0 0
\(647\) −2.82843 −0.111197 −0.0555985 0.998453i \(-0.517707\pi\)
−0.0555985 + 0.998453i \(0.517707\pi\)
\(648\) 9.24264 0.363085
\(649\) 6.49435 0.254926
\(650\) 0 0
\(651\) 9.18440 0.359965
\(652\) −10.3756 −0.406339
\(653\) −17.7122 −0.693133 −0.346566 0.938025i \(-0.612652\pi\)
−0.346566 + 0.938025i \(0.612652\pi\)
\(654\) −4.62742 −0.180946
\(655\) 0 0
\(656\) 24.4692 0.955362
\(657\) −20.5111 −0.800213
\(658\) −4.85483 −0.189261
\(659\) 8.48528 0.330540 0.165270 0.986248i \(-0.447151\pi\)
0.165270 + 0.986248i \(0.447151\pi\)
\(660\) 0 0
\(661\) −41.2132 −1.60301 −0.801504 0.597990i \(-0.795966\pi\)
−0.801504 + 0.597990i \(0.795966\pi\)
\(662\) 7.37258 0.286544
\(663\) 0 0
\(664\) 0.544156 0.0211173
\(665\) 0 0
\(666\) 6.06854 0.235151
\(667\) 18.4853 0.715753
\(668\) −18.2919 −0.707734
\(669\) −2.16478 −0.0836954
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 12.4853 0.481630
\(673\) 0.317025 0.0122204 0.00611021 0.999981i \(-0.498055\pi\)
0.00611021 + 0.999981i \(0.498055\pi\)
\(674\) −14.2793 −0.550020
\(675\) 0 0
\(676\) 20.1127 0.773565
\(677\) 43.9204 1.68800 0.843999 0.536344i \(-0.180195\pi\)
0.843999 + 0.536344i \(0.180195\pi\)
\(678\) 17.5147 0.672649
\(679\) −6.97056 −0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) 1.45584 0.0557472
\(683\) 31.2806 1.19692 0.598459 0.801153i \(-0.295780\pi\)
0.598459 + 0.801153i \(0.295780\pi\)
\(684\) −33.7990 −1.29234
\(685\) 0 0
\(686\) −5.75152 −0.219594
\(687\) −59.6536 −2.27593
\(688\) 14.4853 0.552246
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) −40.7276 −1.54935 −0.774676 0.632358i \(-0.782087\pi\)
−0.774676 + 0.632358i \(0.782087\pi\)
\(692\) −6.17733 −0.234827
\(693\) 4.48528 0.170382
\(694\) −1.60766 −0.0610258
\(695\) 0 0
\(696\) 18.4853 0.700683
\(697\) 0 0
\(698\) 1.75736 0.0665170
\(699\) −26.4853 −1.00177
\(700\) 0 0
\(701\) −21.6985 −0.819540 −0.409770 0.912189i \(-0.634391\pi\)
−0.409770 + 0.912189i \(0.634391\pi\)
\(702\) 1.26810 0.0478614
\(703\) 18.4776 0.696896
\(704\) −4.51528 −0.170176
\(705\) 0 0
\(706\) 5.79899 0.218248
\(707\) 14.5194 0.546060
\(708\) −28.6675 −1.07739
\(709\) −11.5893 −0.435245 −0.217622 0.976033i \(-0.569830\pi\)
−0.217622 + 0.976033i \(0.569830\pi\)
\(710\) 0 0
\(711\) 15.8645 0.594964
\(712\) −14.9289 −0.559485
\(713\) −13.4558 −0.503925
\(714\) 0 0
\(715\) 0 0
\(716\) −10.9706 −0.409989
\(717\) 23.9665 0.895044
\(718\) 9.59798 0.358193
\(719\) −14.0711 −0.524763 −0.262382 0.964964i \(-0.584508\pi\)
−0.262382 + 0.964964i \(0.584508\pi\)
\(720\) 0 0
\(721\) 4.85483 0.180803
\(722\) 1.78680 0.0664977
\(723\) 32.1421 1.19538
\(724\) −22.8297 −0.848459
\(725\) 0 0
\(726\) −10.6382 −0.394821
\(727\) −19.1127 −0.708851 −0.354425 0.935084i \(-0.615324\pi\)
−0.354425 + 0.935084i \(0.615324\pi\)
\(728\) −2.42742 −0.0899661
\(729\) −39.2843 −1.45497
\(730\) 0 0
\(731\) 0 0
\(732\) −44.1421 −1.63154
\(733\) 12.0416 0.444768 0.222384 0.974959i \(-0.428616\pi\)
0.222384 + 0.974959i \(0.428616\pi\)
\(734\) −10.9008 −0.402358
\(735\) 0 0
\(736\) −18.2919 −0.674248
\(737\) 7.39104 0.272252
\(738\) 12.9343 0.476119
\(739\) −34.2843 −1.26117 −0.630584 0.776121i \(-0.717184\pi\)
−0.630584 + 0.776121i \(0.717184\pi\)
\(740\) 0 0
\(741\) 17.8435 0.655499
\(742\) 0.634051 0.0232767
\(743\) −49.2780 −1.80783 −0.903917 0.427708i \(-0.859321\pi\)
−0.903917 + 0.427708i \(0.859321\pi\)
\(744\) −13.4558 −0.493315
\(745\) 0 0
\(746\) −8.10051 −0.296581
\(747\) −1.31371 −0.0480661
\(748\) 0 0
\(749\) −6.82843 −0.249505
\(750\) 0 0
\(751\) −26.2082 −0.956350 −0.478175 0.878265i \(-0.658702\pi\)
−0.478175 + 0.878265i \(0.658702\pi\)
\(752\) −32.4853 −1.18462
\(753\) 9.18440 0.334698
\(754\) −2.61313 −0.0951644
\(755\) 0 0
\(756\) −4.28427 −0.155817
\(757\) −53.4558 −1.94289 −0.971443 0.237274i \(-0.923746\pi\)
−0.971443 + 0.237274i \(0.923746\pi\)
\(758\) −0.448342 −0.0162845
\(759\) −11.7206 −0.425431
\(760\) 0 0
\(761\) −21.6985 −0.786569 −0.393285 0.919417i \(-0.628661\pi\)
−0.393285 + 0.919417i \(0.628661\pi\)
\(762\) −18.7402 −0.678887
\(763\) −4.62742 −0.167524
\(764\) −36.5685 −1.32300
\(765\) 0 0
\(766\) −2.28427 −0.0825341
\(767\) 8.48528 0.306386
\(768\) 10.3756 0.374397
\(769\) −12.7279 −0.458981 −0.229490 0.973311i \(-0.573706\pi\)
−0.229490 + 0.973311i \(0.573706\pi\)
\(770\) 0 0
\(771\) 57.8602 2.08378
\(772\) 10.1355 0.364784
\(773\) −4.82843 −0.173666 −0.0868332 0.996223i \(-0.527675\pi\)
−0.0868332 + 0.996223i \(0.527675\pi\)
\(774\) 7.65685 0.275220
\(775\) 0 0
\(776\) 10.2124 0.366604
\(777\) 10.8239 0.388306
\(778\) 6.68629 0.239715
\(779\) 39.3826 1.41103
\(780\) 0 0
\(781\) 14.1421 0.506045
\(782\) 0 0
\(783\) −9.65685 −0.345108
\(784\) −17.4853 −0.624474
\(785\) 0 0
\(786\) 0.201010 0.00716979
\(787\) −49.6494 −1.76981 −0.884905 0.465772i \(-0.845777\pi\)
−0.884905 + 0.465772i \(0.845777\pi\)
\(788\) −27.2680 −0.971384
\(789\) −16.9469 −0.603324
\(790\) 0 0
\(791\) 17.5147 0.622752
\(792\) −6.57128 −0.233500
\(793\) 13.0656 0.463974
\(794\) −11.2948 −0.400837
\(795\) 0 0
\(796\) 3.13839 0.111237
\(797\) −17.2132 −0.609723 −0.304861 0.952397i \(-0.598610\pi\)
−0.304861 + 0.952397i \(0.598610\pi\)
\(798\) 5.65685 0.200250
\(799\) 0 0
\(800\) 0 0
\(801\) 36.0416 1.27347
\(802\) 7.07401 0.249792
\(803\) −5.79899 −0.204642
\(804\) −32.6256 −1.15062
\(805\) 0 0
\(806\) 1.90215 0.0670004
\(807\) −16.6274 −0.585313
\(808\) −21.2721 −0.748349
\(809\) −29.7724 −1.04674 −0.523371 0.852105i \(-0.675326\pi\)
−0.523371 + 0.852105i \(0.675326\pi\)
\(810\) 0 0
\(811\) 44.2693 1.55451 0.777253 0.629189i \(-0.216613\pi\)
0.777253 + 0.629189i \(0.216613\pi\)
\(812\) 8.82843 0.309817
\(813\) 16.0502 0.562904
\(814\) 1.71573 0.0601363
\(815\) 0 0
\(816\) 0 0
\(817\) 23.3137 0.815643
\(818\) 8.00000 0.279713
\(819\) 5.86030 0.204776
\(820\) 0 0
\(821\) 14.3881 0.502149 0.251074 0.967968i \(-0.419216\pi\)
0.251074 + 0.967968i \(0.419216\pi\)
\(822\) −9.44703 −0.329503
\(823\) 23.5181 0.819791 0.409895 0.912133i \(-0.365565\pi\)
0.409895 + 0.912133i \(0.365565\pi\)
\(824\) −7.11270 −0.247783
\(825\) 0 0
\(826\) 2.69005 0.0935988
\(827\) −34.7135 −1.20711 −0.603553 0.797323i \(-0.706249\pi\)
−0.603553 + 0.797323i \(0.706249\pi\)
\(828\) 29.0070 1.00806
\(829\) −13.9411 −0.484195 −0.242098 0.970252i \(-0.577835\pi\)
−0.242098 + 0.970252i \(0.577835\pi\)
\(830\) 0 0
\(831\) 57.5980 1.99805
\(832\) −5.89949 −0.204528
\(833\) 0 0
\(834\) −16.2010 −0.560995
\(835\) 0 0
\(836\) −9.55582 −0.330495
\(837\) 7.02944 0.242973
\(838\) 11.1635 0.385636
\(839\) −3.88123 −0.133995 −0.0669974 0.997753i \(-0.521342\pi\)
−0.0669974 + 0.997753i \(0.521342\pi\)
\(840\) 0 0
\(841\) −9.10051 −0.313811
\(842\) 7.21320 0.248583
\(843\) −46.7736 −1.61097
\(844\) 27.3675 0.942028
\(845\) 0 0
\(846\) −17.1716 −0.590371
\(847\) −10.6382 −0.365533
\(848\) 4.24264 0.145693
\(849\) 59.7990 2.05230
\(850\) 0 0
\(851\) −15.8579 −0.543601
\(852\) −62.4264 −2.13869
\(853\) −42.5754 −1.45775 −0.728877 0.684645i \(-0.759957\pi\)
−0.728877 + 0.684645i \(0.759957\pi\)
\(854\) 4.14214 0.141741
\(855\) 0 0
\(856\) 10.0042 0.341935
\(857\) −3.82683 −0.130722 −0.0653611 0.997862i \(-0.520820\pi\)
−0.0653611 + 0.997862i \(0.520820\pi\)
\(858\) 1.65685 0.0565641
\(859\) −1.02944 −0.0351239 −0.0175620 0.999846i \(-0.505590\pi\)
−0.0175620 + 0.999846i \(0.505590\pi\)
\(860\) 0 0
\(861\) 23.0698 0.786216
\(862\) −16.4985 −0.561942
\(863\) −34.6274 −1.17873 −0.589365 0.807867i \(-0.700622\pi\)
−0.589365 + 0.807867i \(0.700622\pi\)
\(864\) 9.55582 0.325096
\(865\) 0 0
\(866\) −6.28427 −0.213548
\(867\) 0 0
\(868\) −6.42641 −0.218126
\(869\) 4.48528 0.152153
\(870\) 0 0
\(871\) 9.65685 0.327210
\(872\) 6.77952 0.229583
\(873\) −24.6549 −0.834443
\(874\) −8.28772 −0.280336
\(875\) 0 0
\(876\) 25.5980 0.864876
\(877\) 37.6436 1.27113 0.635567 0.772045i \(-0.280766\pi\)
0.635567 + 0.772045i \(0.280766\pi\)
\(878\) −4.51528 −0.152383
\(879\) 61.8183 2.08508
\(880\) 0 0
\(881\) −18.5320 −0.624358 −0.312179 0.950023i \(-0.601059\pi\)
−0.312179 + 0.950023i \(0.601059\pi\)
\(882\) −9.24264 −0.311216
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.54416 −0.219855
\(887\) −48.8615 −1.64061 −0.820304 0.571927i \(-0.806196\pi\)
−0.820304 + 0.571927i \(0.806196\pi\)
\(888\) −15.8579 −0.532155
\(889\) −18.7402 −0.628527
\(890\) 0 0
\(891\) −6.30864 −0.211348
\(892\) 1.51472 0.0507165
\(893\) −52.2843 −1.74963
\(894\) 18.3688 0.614345
\(895\) 0 0
\(896\) −11.4261 −0.381720
\(897\) −15.3137 −0.511310
\(898\) 7.78498 0.259788
\(899\) −14.4853 −0.483111
\(900\) 0 0
\(901\) 0 0
\(902\) 3.65685 0.121760
\(903\) 13.6569 0.454472
\(904\) −25.6604 −0.853452
\(905\) 0 0
\(906\) 13.8854 0.461311
\(907\) 25.0489 0.831734 0.415867 0.909425i \(-0.363478\pi\)
0.415867 + 0.909425i \(0.363478\pi\)
\(908\) −9.21627 −0.305852
\(909\) 51.3553 1.70335
\(910\) 0 0
\(911\) −8.47343 −0.280737 −0.140369 0.990099i \(-0.544829\pi\)
−0.140369 + 0.990099i \(0.544829\pi\)
\(912\) 37.8519 1.25340
\(913\) −0.371418 −0.0122922
\(914\) −7.79899 −0.257968
\(915\) 0 0
\(916\) 41.7401 1.37913
\(917\) 0.201010 0.00663794
\(918\) 0 0
\(919\) −3.31371 −0.109309 −0.0546546 0.998505i \(-0.517406\pi\)
−0.0546546 + 0.998505i \(0.517406\pi\)
\(920\) 0 0
\(921\) −5.59767 −0.184450
\(922\) 9.95837 0.327961
\(923\) 18.4776 0.608197
\(924\) −5.59767 −0.184150
\(925\) 0 0
\(926\) 12.6863 0.416897
\(927\) 17.1716 0.563988
\(928\) −19.6913 −0.646399
\(929\) −20.9594 −0.687656 −0.343828 0.939033i \(-0.611724\pi\)
−0.343828 + 0.939033i \(0.611724\pi\)
\(930\) 0 0
\(931\) −28.1421 −0.922321
\(932\) 18.5320 0.607035
\(933\) 11.7990 0.386282
\(934\) 5.23045 0.171145
\(935\) 0 0
\(936\) −8.58579 −0.280635
\(937\) −3.55635 −0.116181 −0.0580904 0.998311i \(-0.518501\pi\)
−0.0580904 + 0.998311i \(0.518501\pi\)
\(938\) 3.06147 0.0999605
\(939\) −33.3137 −1.08715
\(940\) 0 0
\(941\) 18.6858 0.609141 0.304570 0.952490i \(-0.401487\pi\)
0.304570 + 0.952490i \(0.401487\pi\)
\(942\) −1.79337 −0.0584310
\(943\) −33.7990 −1.10065
\(944\) 18.0000 0.585850
\(945\) 0 0
\(946\) 2.16478 0.0703832
\(947\) −14.8590 −0.482852 −0.241426 0.970419i \(-0.577615\pi\)
−0.241426 + 0.970419i \(0.577615\pi\)
\(948\) −19.7990 −0.643041
\(949\) −7.57675 −0.245952
\(950\) 0 0
\(951\) −15.1716 −0.491972
\(952\) 0 0
\(953\) 9.69848 0.314165 0.157082 0.987586i \(-0.449791\pi\)
0.157082 + 0.987586i \(0.449791\pi\)
\(954\) 2.24264 0.0726082
\(955\) 0 0
\(956\) −16.7696 −0.542366
\(957\) −12.6173 −0.407859
\(958\) −14.3337 −0.463102
\(959\) −9.44703 −0.305061
\(960\) 0 0
\(961\) −20.4558 −0.659866
\(962\) 2.24171 0.0722756
\(963\) −24.1522 −0.778293
\(964\) −22.4901 −0.724358
\(965\) 0 0
\(966\) −4.85483 −0.156202
\(967\) 32.3431 1.04009 0.520043 0.854140i \(-0.325916\pi\)
0.520043 + 0.854140i \(0.325916\pi\)
\(968\) 15.5858 0.500946
\(969\) 0 0
\(970\) 0 0
\(971\) −55.7401 −1.78879 −0.894393 0.447283i \(-0.852392\pi\)
−0.894393 + 0.447283i \(0.852392\pi\)
\(972\) 39.7222 1.27409
\(973\) −16.2010 −0.519381
\(974\) −1.82523 −0.0584841
\(975\) 0 0
\(976\) 27.7164 0.887180
\(977\) 1.61522 0.0516756 0.0258378 0.999666i \(-0.491775\pi\)
0.0258378 + 0.999666i \(0.491775\pi\)
\(978\) 6.14214 0.196404
\(979\) 10.1899 0.325670
\(980\) 0 0
\(981\) −16.3672 −0.522564
\(982\) −10.4020 −0.331942
\(983\) −23.5181 −0.750112 −0.375056 0.927002i \(-0.622377\pi\)
−0.375056 + 0.927002i \(0.622377\pi\)
\(984\) −33.7990 −1.07747
\(985\) 0 0
\(986\) 0 0
\(987\) −30.6274 −0.974881
\(988\) −12.4853 −0.397210
\(989\) −20.0083 −0.636228
\(990\) 0 0
\(991\) −32.0685 −1.01869 −0.509345 0.860563i \(-0.670112\pi\)
−0.509345 + 0.860563i \(0.670112\pi\)
\(992\) 14.3337 0.455096
\(993\) 46.5110 1.47598
\(994\) 5.85786 0.185800
\(995\) 0 0
\(996\) 1.63952 0.0519502
\(997\) −7.70806 −0.244117 −0.122058 0.992523i \(-0.538950\pi\)
−0.122058 + 0.992523i \(0.538950\pi\)
\(998\) 15.3392 0.485554
\(999\) 8.28427 0.262103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.u.1.4 4
5.4 even 2 289.2.a.f.1.1 4
15.14 odd 2 2601.2.a.bb.1.4 4
17.3 odd 16 425.2.m.a.26.1 4
17.6 odd 16 425.2.m.a.376.1 4
17.16 even 2 inner 7225.2.a.u.1.3 4
20.19 odd 2 4624.2.a.bp.1.4 4
85.3 even 16 425.2.n.a.349.1 4
85.4 even 4 289.2.b.b.288.4 4
85.9 even 8 289.2.c.c.251.3 8
85.14 odd 16 289.2.d.a.179.1 4
85.19 even 8 289.2.c.c.38.1 8
85.23 even 16 425.2.n.b.274.1 4
85.24 odd 16 289.2.d.c.134.1 4
85.29 odd 16 289.2.d.b.110.1 4
85.37 even 16 425.2.n.b.349.1 4
85.39 odd 16 289.2.d.c.110.1 4
85.44 odd 16 289.2.d.b.134.1 4
85.49 even 8 289.2.c.c.38.2 8
85.54 odd 16 17.2.d.a.9.1 yes 4
85.57 even 16 425.2.n.a.274.1 4
85.59 even 8 289.2.c.c.251.4 8
85.64 even 4 289.2.b.b.288.3 4
85.74 odd 16 17.2.d.a.2.1 4
85.79 odd 16 289.2.d.a.155.1 4
85.84 even 2 289.2.a.f.1.2 4
255.74 even 16 153.2.l.c.19.1 4
255.224 even 16 153.2.l.c.145.1 4
255.254 odd 2 2601.2.a.bb.1.3 4
340.139 even 16 272.2.v.d.145.1 4
340.159 even 16 272.2.v.d.257.1 4
340.339 odd 2 4624.2.a.bp.1.1 4
595.54 even 48 833.2.v.a.655.1 8
595.74 odd 48 833.2.v.b.716.1 8
595.139 even 16 833.2.l.a.638.1 4
595.159 even 48 833.2.v.a.410.1 8
595.244 even 16 833.2.l.a.393.1 4
595.394 odd 48 833.2.v.b.655.1 8
595.479 even 48 833.2.v.a.128.1 8
595.499 odd 48 833.2.v.b.410.1 8
595.564 odd 48 833.2.v.b.128.1 8
595.584 even 48 833.2.v.a.716.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 85.74 odd 16
17.2.d.a.9.1 yes 4 85.54 odd 16
153.2.l.c.19.1 4 255.74 even 16
153.2.l.c.145.1 4 255.224 even 16
272.2.v.d.145.1 4 340.139 even 16
272.2.v.d.257.1 4 340.159 even 16
289.2.a.f.1.1 4 5.4 even 2
289.2.a.f.1.2 4 85.84 even 2
289.2.b.b.288.3 4 85.64 even 4
289.2.b.b.288.4 4 85.4 even 4
289.2.c.c.38.1 8 85.19 even 8
289.2.c.c.38.2 8 85.49 even 8
289.2.c.c.251.3 8 85.9 even 8
289.2.c.c.251.4 8 85.59 even 8
289.2.d.a.155.1 4 85.79 odd 16
289.2.d.a.179.1 4 85.14 odd 16
289.2.d.b.110.1 4 85.29 odd 16
289.2.d.b.134.1 4 85.44 odd 16
289.2.d.c.110.1 4 85.39 odd 16
289.2.d.c.134.1 4 85.24 odd 16
425.2.m.a.26.1 4 17.3 odd 16
425.2.m.a.376.1 4 17.6 odd 16
425.2.n.a.274.1 4 85.57 even 16
425.2.n.a.349.1 4 85.3 even 16
425.2.n.b.274.1 4 85.23 even 16
425.2.n.b.349.1 4 85.37 even 16
833.2.l.a.393.1 4 595.244 even 16
833.2.l.a.638.1 4 595.139 even 16
833.2.v.a.128.1 8 595.479 even 48
833.2.v.a.410.1 8 595.159 even 48
833.2.v.a.655.1 8 595.54 even 48
833.2.v.a.716.1 8 595.584 even 48
833.2.v.b.128.1 8 595.564 odd 48
833.2.v.b.410.1 8 595.499 odd 48
833.2.v.b.655.1 8 595.394 odd 48
833.2.v.b.716.1 8 595.74 odd 48
2601.2.a.bb.1.3 4 255.254 odd 2
2601.2.a.bb.1.4 4 15.14 odd 2
4624.2.a.bp.1.1 4 340.339 odd 2
4624.2.a.bp.1.4 4 20.19 odd 2
7225.2.a.u.1.3 4 17.16 even 2 inner
7225.2.a.u.1.4 4 1.1 even 1 trivial