Properties

Label 7225.2.a.u.1.4
Level 72257225
Weight 22
Character 7225.1
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ16)+\Q(\zeta_{16})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2+2 x^{4} - 4x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 17)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 1.847761.84776 of defining polynomial
Character χ\chi == 7225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.414214q2+2.61313q31.82843q4+1.08239q6+1.08239q71.58579q8+3.82843q9+1.08239q114.77791q12+1.41421q13+0.448342q14+3.00000q16+1.58579q18+4.82843q19+2.82843q21+0.448342q224.14386q234.14386q24+0.585786q26+2.16478q271.97908q284.46088q29+3.24718q31+4.41421q32+2.82843q337.00000q36+3.82683q37+2.00000q38+3.69552q39+8.15640q41+1.17157q42+4.82843q431.97908q441.71644q4610.8284q47+7.83938q485.82843q492.58579q52+1.41421q53+0.896683q541.71644q56+12.6173q571.84776q58+6.00000q59+9.23880q61+1.34502q62+4.14386q634.17157q64+1.17157q66+6.82843q6710.8284q69+13.0656q716.07107q725.35757q73+1.58513q748.82843q76+1.17157q77+1.53073q78+4.14386q795.82843q81+3.37849q820.343146q835.17157q84+2.00000q8611.6569q871.71644q88+9.41421q89+1.53073q91+7.57675q92+8.48528q934.48528q94+11.5349q966.43996q972.41421q98+4.14386q99+O(q100)q+0.414214 q^{2} +2.61313 q^{3} -1.82843 q^{4} +1.08239 q^{6} +1.08239 q^{7} -1.58579 q^{8} +3.82843 q^{9} +1.08239 q^{11} -4.77791 q^{12} +1.41421 q^{13} +0.448342 q^{14} +3.00000 q^{16} +1.58579 q^{18} +4.82843 q^{19} +2.82843 q^{21} +0.448342 q^{22} -4.14386 q^{23} -4.14386 q^{24} +0.585786 q^{26} +2.16478 q^{27} -1.97908 q^{28} -4.46088 q^{29} +3.24718 q^{31} +4.41421 q^{32} +2.82843 q^{33} -7.00000 q^{36} +3.82683 q^{37} +2.00000 q^{38} +3.69552 q^{39} +8.15640 q^{41} +1.17157 q^{42} +4.82843 q^{43} -1.97908 q^{44} -1.71644 q^{46} -10.8284 q^{47} +7.83938 q^{48} -5.82843 q^{49} -2.58579 q^{52} +1.41421 q^{53} +0.896683 q^{54} -1.71644 q^{56} +12.6173 q^{57} -1.84776 q^{58} +6.00000 q^{59} +9.23880 q^{61} +1.34502 q^{62} +4.14386 q^{63} -4.17157 q^{64} +1.17157 q^{66} +6.82843 q^{67} -10.8284 q^{69} +13.0656 q^{71} -6.07107 q^{72} -5.35757 q^{73} +1.58513 q^{74} -8.82843 q^{76} +1.17157 q^{77} +1.53073 q^{78} +4.14386 q^{79} -5.82843 q^{81} +3.37849 q^{82} -0.343146 q^{83} -5.17157 q^{84} +2.00000 q^{86} -11.6569 q^{87} -1.71644 q^{88} +9.41421 q^{89} +1.53073 q^{91} +7.57675 q^{92} +8.48528 q^{93} -4.48528 q^{94} +11.5349 q^{96} -6.43996 q^{97} -2.41421 q^{98} +4.14386 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q412q8+4q9+12q16+12q18+8q19+8q26+12q3228q36+8q38+16q42+8q4332q4712q4916q52+24q5928q64+4q98+O(q100) 4 q - 4 q^{2} + 4 q^{4} - 12 q^{8} + 4 q^{9} + 12 q^{16} + 12 q^{18} + 8 q^{19} + 8 q^{26} + 12 q^{32} - 28 q^{36} + 8 q^{38} + 16 q^{42} + 8 q^{43} - 32 q^{47} - 12 q^{49} - 16 q^{52} + 24 q^{59} - 28 q^{64}+ \cdots - 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.414214 0.292893 0.146447 0.989219i 0.453216π-0.453216\pi
0.146447 + 0.989219i 0.453216π0.453216\pi
33 2.61313 1.50869 0.754344 0.656479i 0.227955π-0.227955\pi
0.754344 + 0.656479i 0.227955π0.227955\pi
44 −1.82843 −0.914214
55 0 0
66 1.08239 0.441885
77 1.08239 0.409106 0.204553 0.978856i 0.434426π-0.434426\pi
0.204553 + 0.978856i 0.434426π0.434426\pi
88 −1.58579 −0.560660
99 3.82843 1.27614
1010 0 0
1111 1.08239 0.326354 0.163177 0.986597i 0.447826π-0.447826\pi
0.163177 + 0.986597i 0.447826π0.447826\pi
1212 −4.77791 −1.37926
1313 1.41421 0.392232 0.196116 0.980581i 0.437167π-0.437167\pi
0.196116 + 0.980581i 0.437167π0.437167\pi
1414 0.448342 0.119824
1515 0 0
1616 3.00000 0.750000
1717 0 0
1818 1.58579 0.373773
1919 4.82843 1.10772 0.553859 0.832611i 0.313155π-0.313155\pi
0.553859 + 0.832611i 0.313155π0.313155\pi
2020 0 0
2121 2.82843 0.617213
2222 0.448342 0.0955867
2323 −4.14386 −0.864054 −0.432027 0.901861i 0.642202π-0.642202\pi
−0.432027 + 0.901861i 0.642202π0.642202\pi
2424 −4.14386 −0.845862
2525 0 0
2626 0.585786 0.114882
2727 2.16478 0.416613
2828 −1.97908 −0.374010
2929 −4.46088 −0.828366 −0.414183 0.910194i 0.635933π-0.635933\pi
−0.414183 + 0.910194i 0.635933π0.635933\pi
3030 0 0
3131 3.24718 0.583210 0.291605 0.956539i 0.405811π-0.405811\pi
0.291605 + 0.956539i 0.405811π0.405811\pi
3232 4.41421 0.780330
3333 2.82843 0.492366
3434 0 0
3535 0 0
3636 −7.00000 −1.16667
3737 3.82683 0.629128 0.314564 0.949236i 0.398142π-0.398142\pi
0.314564 + 0.949236i 0.398142π0.398142\pi
3838 2.00000 0.324443
3939 3.69552 0.591756
4040 0 0
4141 8.15640 1.27382 0.636908 0.770940i 0.280213π-0.280213\pi
0.636908 + 0.770940i 0.280213π0.280213\pi
4242 1.17157 0.180778
4343 4.82843 0.736328 0.368164 0.929761i 0.379986π-0.379986\pi
0.368164 + 0.929761i 0.379986π0.379986\pi
4444 −1.97908 −0.298357
4545 0 0
4646 −1.71644 −0.253076
4747 −10.8284 −1.57949 −0.789744 0.613436i 0.789787π-0.789787\pi
−0.789744 + 0.613436i 0.789787π0.789787\pi
4848 7.83938 1.13152
4949 −5.82843 −0.832632
5050 0 0
5151 0 0
5252 −2.58579 −0.358584
5353 1.41421 0.194257 0.0971286 0.995272i 0.469034π-0.469034\pi
0.0971286 + 0.995272i 0.469034π0.469034\pi
5454 0.896683 0.122023
5555 0 0
5656 −1.71644 −0.229369
5757 12.6173 1.67120
5858 −1.84776 −0.242623
5959 6.00000 0.781133 0.390567 0.920575i 0.372279π-0.372279\pi
0.390567 + 0.920575i 0.372279π0.372279\pi
6060 0 0
6161 9.23880 1.18291 0.591453 0.806339i 0.298554π-0.298554\pi
0.591453 + 0.806339i 0.298554π0.298554\pi
6262 1.34502 0.170818
6363 4.14386 0.522077
6464 −4.17157 −0.521447
6565 0 0
6666 1.17157 0.144211
6767 6.82843 0.834225 0.417113 0.908855i 0.363042π-0.363042\pi
0.417113 + 0.908855i 0.363042π0.363042\pi
6868 0 0
6969 −10.8284 −1.30359
7070 0 0
7171 13.0656 1.55060 0.775302 0.631590i 0.217597π-0.217597\pi
0.775302 + 0.631590i 0.217597π0.217597\pi
7272 −6.07107 −0.715482
7373 −5.35757 −0.627056 −0.313528 0.949579i 0.601511π-0.601511\pi
−0.313528 + 0.949579i 0.601511π0.601511\pi
7474 1.58513 0.184267
7575 0 0
7676 −8.82843 −1.01269
7777 1.17157 0.133513
7878 1.53073 0.173321
7979 4.14386 0.466221 0.233110 0.972450i 0.425110π-0.425110\pi
0.233110 + 0.972450i 0.425110π0.425110\pi
8080 0 0
8181 −5.82843 −0.647603
8282 3.37849 0.373092
8383 −0.343146 −0.0376651 −0.0188326 0.999823i 0.505995π-0.505995\pi
−0.0188326 + 0.999823i 0.505995π0.505995\pi
8484 −5.17157 −0.564265
8585 0 0
8686 2.00000 0.215666
8787 −11.6569 −1.24975
8888 −1.71644 −0.182973
8989 9.41421 0.997905 0.498952 0.866629i 0.333718π-0.333718\pi
0.498952 + 0.866629i 0.333718π0.333718\pi
9090 0 0
9191 1.53073 0.160464
9292 7.57675 0.789930
9393 8.48528 0.879883
9494 −4.48528 −0.462621
9595 0 0
9696 11.5349 1.17728
9797 −6.43996 −0.653879 −0.326939 0.945045i 0.606017π-0.606017\pi
−0.326939 + 0.945045i 0.606017π0.606017\pi
9898 −2.41421 −0.243872
9999 4.14386 0.416474
100100 0 0
101101 13.4142 1.33476 0.667382 0.744715i 0.267415π-0.267415\pi
0.667382 + 0.744715i 0.267415π0.267415\pi
102102 0 0
103103 4.48528 0.441948 0.220974 0.975280i 0.429076π-0.429076\pi
0.220974 + 0.975280i 0.429076π0.429076\pi
104104 −2.24264 −0.219909
105105 0 0
106106 0.585786 0.0568966
107107 −6.30864 −0.609880 −0.304940 0.952372i 0.598636π-0.598636\pi
−0.304940 + 0.952372i 0.598636π0.598636\pi
108108 −3.95815 −0.380873
109109 −4.27518 −0.409488 −0.204744 0.978816i 0.565636π-0.565636\pi
−0.204744 + 0.978816i 0.565636π0.565636\pi
110110 0 0
111111 10.0000 0.949158
112112 3.24718 0.306829
113113 16.1815 1.52223 0.761113 0.648619i 0.224653π-0.224653\pi
0.761113 + 0.648619i 0.224653π0.224653\pi
114114 5.22625 0.489483
115115 0 0
116116 8.15640 0.757303
117117 5.41421 0.500544
118118 2.48528 0.228789
119119 0 0
120120 0 0
121121 −9.82843 −0.893493
122122 3.82683 0.346465
123123 21.3137 1.92179
124124 −5.93723 −0.533179
125125 0 0
126126 1.71644 0.152913
127127 −17.3137 −1.53634 −0.768172 0.640244i 0.778833π-0.778833\pi
−0.768172 + 0.640244i 0.778833π0.778833\pi
128128 −10.5563 −0.933058
129129 12.6173 1.11089
130130 0 0
131131 0.185709 0.0162255 0.00811274 0.999967i 0.497418π-0.497418\pi
0.00811274 + 0.999967i 0.497418π0.497418\pi
132132 −5.17157 −0.450128
133133 5.22625 0.453174
134134 2.82843 0.244339
135135 0 0
136136 0 0
137137 −8.72792 −0.745677 −0.372838 0.927896i 0.621615π-0.621615\pi
−0.372838 + 0.927896i 0.621615π0.621615\pi
138138 −4.48528 −0.381813
139139 −14.9678 −1.26955 −0.634775 0.772697i 0.718907π-0.718907\pi
−0.634775 + 0.772697i 0.718907π0.718907\pi
140140 0 0
141141 −28.2960 −2.38296
142142 5.41196 0.454162
143143 1.53073 0.128006
144144 11.4853 0.957107
145145 0 0
146146 −2.21918 −0.183660
147147 −15.2304 −1.25618
148148 −6.99709 −0.575157
149149 16.9706 1.39028 0.695141 0.718873i 0.255342π-0.255342\pi
0.695141 + 0.718873i 0.255342π0.255342\pi
150150 0 0
151151 12.8284 1.04396 0.521981 0.852957i 0.325193π-0.325193\pi
0.521981 + 0.852957i 0.325193π0.325193\pi
152152 −7.65685 −0.621053
153153 0 0
154154 0.485281 0.0391051
155155 0 0
156156 −6.75699 −0.540992
157157 −1.65685 −0.132231 −0.0661157 0.997812i 0.521061π-0.521061\pi
−0.0661157 + 0.997812i 0.521061π0.521061\pi
158158 1.71644 0.136553
159159 3.69552 0.293074
160160 0 0
161161 −4.48528 −0.353490
162162 −2.41421 −0.189679
163163 5.67459 0.444468 0.222234 0.974993i 0.428665π-0.428665\pi
0.222234 + 0.974993i 0.428665π0.428665\pi
164164 −14.9134 −1.16454
165165 0 0
166166 −0.142136 −0.0110319
167167 10.0042 0.774145 0.387073 0.922049i 0.373486π-0.373486\pi
0.387073 + 0.922049i 0.373486π0.373486\pi
168168 −4.48528 −0.346047
169169 −11.0000 −0.846154
170170 0 0
171171 18.4853 1.41360
172172 −8.82843 −0.673161
173173 3.37849 0.256862 0.128431 0.991718i 0.459006π-0.459006\pi
0.128431 + 0.991718i 0.459006π0.459006\pi
174174 −4.82843 −0.366042
175175 0 0
176176 3.24718 0.244765
177177 15.6788 1.17849
178178 3.89949 0.292280
179179 6.00000 0.448461 0.224231 0.974536i 0.428013π-0.428013\pi
0.224231 + 0.974536i 0.428013π0.428013\pi
180180 0 0
181181 12.4860 0.928075 0.464037 0.885816i 0.346400π-0.346400\pi
0.464037 + 0.885816i 0.346400π0.346400\pi
182182 0.634051 0.0469990
183183 24.1421 1.78464
184184 6.57128 0.484441
185185 0 0
186186 3.51472 0.257712
187187 0 0
188188 19.7990 1.44399
189189 2.34315 0.170439
190190 0 0
191191 20.0000 1.44715 0.723575 0.690246i 0.242498π-0.242498\pi
0.723575 + 0.690246i 0.242498π0.242498\pi
192192 −10.9008 −0.786701
193193 −5.54328 −0.399014 −0.199507 0.979896i 0.563934π-0.563934\pi
−0.199507 + 0.979896i 0.563934π0.563934\pi
194194 −2.66752 −0.191517
195195 0 0
196196 10.6569 0.761204
197197 14.9134 1.06253 0.531267 0.847204i 0.321716π-0.321716\pi
0.531267 + 0.847204i 0.321716π0.321716\pi
198198 1.71644 0.121982
199199 −1.71644 −0.121675 −0.0608377 0.998148i 0.519377π-0.519377\pi
−0.0608377 + 0.998148i 0.519377π0.519377\pi
200200 0 0
201201 17.8435 1.25859
202202 5.55635 0.390943
203203 −4.82843 −0.338889
204204 0 0
205205 0 0
206206 1.85786 0.129444
207207 −15.8645 −1.10266
208208 4.24264 0.294174
209209 5.22625 0.361507
210210 0 0
211211 −14.9678 −1.03042 −0.515212 0.857063i 0.672287π-0.672287\pi
−0.515212 + 0.857063i 0.672287π0.672287\pi
212212 −2.58579 −0.177593
213213 34.1421 2.33938
214214 −2.61313 −0.178630
215215 0 0
216216 −3.43289 −0.233578
217217 3.51472 0.238595
218218 −1.77084 −0.119936
219219 −14.0000 −0.946032
220220 0 0
221221 0 0
222222 4.14214 0.278002
223223 −0.828427 −0.0554756 −0.0277378 0.999615i 0.508830π-0.508830\pi
−0.0277378 + 0.999615i 0.508830π0.508830\pi
224224 4.77791 0.319238
225225 0 0
226226 6.70259 0.445850
227227 5.04054 0.334553 0.167276 0.985910i 0.446503π-0.446503\pi
0.167276 + 0.985910i 0.446503π0.446503\pi
228228 −23.0698 −1.52783
229229 −22.8284 −1.50854 −0.754272 0.656562i 0.772010π-0.772010\pi
−0.754272 + 0.656562i 0.772010π0.772010\pi
230230 0 0
231231 3.06147 0.201430
232232 7.07401 0.464432
233233 −10.1355 −0.663997 −0.331999 0.943280i 0.607723π-0.607723\pi
−0.331999 + 0.943280i 0.607723π0.607723\pi
234234 2.24264 0.146606
235235 0 0
236236 −10.9706 −0.714123
237237 10.8284 0.703382
238238 0 0
239239 9.17157 0.593260 0.296630 0.954993i 0.404137π-0.404137\pi
0.296630 + 0.954993i 0.404137π0.404137\pi
240240 0 0
241241 12.3003 0.792330 0.396165 0.918179i 0.370341π-0.370341\pi
0.396165 + 0.918179i 0.370341π0.370341\pi
242242 −4.07107 −0.261698
243243 −21.7248 −1.39364
244244 −16.8925 −1.08143
245245 0 0
246246 8.82843 0.562880
247247 6.82843 0.434482
248248 −5.14933 −0.326983
249249 −0.896683 −0.0568250
250250 0 0
251251 3.51472 0.221847 0.110924 0.993829i 0.464619π-0.464619\pi
0.110924 + 0.993829i 0.464619π0.464619\pi
252252 −7.57675 −0.477290
253253 −4.48528 −0.281987
254254 −7.17157 −0.449985
255255 0 0
256256 3.97056 0.248160
257257 22.1421 1.38119 0.690594 0.723242i 0.257349π-0.257349\pi
0.690594 + 0.723242i 0.257349π0.257349\pi
258258 5.22625 0.325372
259259 4.14214 0.257380
260260 0 0
261261 −17.0782 −1.05711
262262 0.0769232 0.00475233
263263 −6.48528 −0.399900 −0.199950 0.979806i 0.564078π-0.564078\pi
−0.199950 + 0.979806i 0.564078π0.564078\pi
264264 −4.48528 −0.276050
265265 0 0
266266 2.16478 0.132731
267267 24.6005 1.50553
268268 −12.4853 −0.762660
269269 −6.36304 −0.387961 −0.193981 0.981005i 0.562140π-0.562140\pi
−0.193981 + 0.981005i 0.562140π0.562140\pi
270270 0 0
271271 6.14214 0.373108 0.186554 0.982445i 0.440268π-0.440268\pi
0.186554 + 0.982445i 0.440268π0.440268\pi
272272 0 0
273273 4.00000 0.242091
274274 −3.61522 −0.218404
275275 0 0
276276 19.7990 1.19176
277277 22.0418 1.32436 0.662181 0.749344i 0.269631π-0.269631\pi
0.662181 + 0.749344i 0.269631π0.269631\pi
278278 −6.19986 −0.371843
279279 12.4316 0.744259
280280 0 0
281281 −17.8995 −1.06779 −0.533897 0.845549i 0.679273π-0.679273\pi
−0.533897 + 0.845549i 0.679273π0.679273\pi
282282 −11.7206 −0.697952
283283 22.8841 1.36032 0.680159 0.733065i 0.261911π-0.261911\pi
0.680159 + 0.733065i 0.261911π0.261911\pi
284284 −23.8896 −1.41758
285285 0 0
286286 0.634051 0.0374922
287287 8.82843 0.521126
288288 16.8995 0.995812
289289 0 0
290290 0 0
291291 −16.8284 −0.986500
292292 9.79592 0.573263
293293 23.6569 1.38205 0.691024 0.722832i 0.257160π-0.257160\pi
0.691024 + 0.722832i 0.257160π0.257160\pi
294294 −6.30864 −0.367928
295295 0 0
296296 −6.06854 −0.352727
297297 2.34315 0.135963
298298 7.02944 0.407204
299299 −5.86030 −0.338910
300300 0 0
301301 5.22625 0.301236
302302 5.31371 0.305770
303303 35.0530 2.01374
304304 14.4853 0.830788
305305 0 0
306306 0 0
307307 −2.14214 −0.122258 −0.0611291 0.998130i 0.519470π-0.519470\pi
−0.0611291 + 0.998130i 0.519470π0.519470\pi
308308 −2.14214 −0.122060
309309 11.7206 0.666762
310310 0 0
311311 4.51528 0.256038 0.128019 0.991772i 0.459138π-0.459138\pi
0.128019 + 0.991772i 0.459138π0.459138\pi
312312 −5.86030 −0.331774
313313 −12.7486 −0.720594 −0.360297 0.932838i 0.617325π-0.617325\pi
−0.360297 + 0.932838i 0.617325π0.617325\pi
314314 −0.686292 −0.0387297
315315 0 0
316316 −7.57675 −0.426225
317317 −5.80591 −0.326092 −0.163046 0.986618i 0.552132π-0.552132\pi
−0.163046 + 0.986618i 0.552132π0.552132\pi
318318 1.53073 0.0858393
319319 −4.82843 −0.270340
320320 0 0
321321 −16.4853 −0.920119
322322 −1.85786 −0.103535
323323 0 0
324324 10.6569 0.592047
325325 0 0
326326 2.35049 0.130182
327327 −11.1716 −0.617789
328328 −12.9343 −0.714178
329329 −11.7206 −0.646178
330330 0 0
331331 17.7990 0.978321 0.489160 0.872194i 0.337303π-0.337303\pi
0.489160 + 0.872194i 0.337303π0.337303\pi
332332 0.627417 0.0344340
333333 14.6508 0.802857
334334 4.14386 0.226742
335335 0 0
336336 8.48528 0.462910
337337 −34.4734 −1.87788 −0.938942 0.344075i 0.888192π-0.888192\pi
−0.938942 + 0.344075i 0.888192π0.888192\pi
338338 −4.55635 −0.247833
339339 42.2843 2.29657
340340 0 0
341341 3.51472 0.190333
342342 7.65685 0.414035
343343 −13.8854 −0.749741
344344 −7.65685 −0.412830
345345 0 0
346346 1.39942 0.0752332
347347 −3.88123 −0.208355 −0.104178 0.994559i 0.533221π-0.533221\pi
−0.104178 + 0.994559i 0.533221π0.533221\pi
348348 21.3137 1.14253
349349 4.24264 0.227103 0.113552 0.993532i 0.463777π-0.463777\pi
0.113552 + 0.993532i 0.463777π0.463777\pi
350350 0 0
351351 3.06147 0.163409
352352 4.77791 0.254663
353353 14.0000 0.745145 0.372572 0.928003i 0.378476π-0.378476\pi
0.372572 + 0.928003i 0.378476π0.378476\pi
354354 6.49435 0.345171
355355 0 0
356356 −17.2132 −0.912298
357357 0 0
358358 2.48528 0.131351
359359 23.1716 1.22295 0.611474 0.791264i 0.290577π-0.290577\pi
0.611474 + 0.791264i 0.290577π0.290577\pi
360360 0 0
361361 4.31371 0.227037
362362 5.17186 0.271827
363363 −25.6829 −1.34800
364364 −2.79884 −0.146699
365365 0 0
366366 10.0000 0.522708
367367 −26.3170 −1.37373 −0.686867 0.726783i 0.741015π-0.741015\pi
−0.686867 + 0.726783i 0.741015π0.741015\pi
368368 −12.4316 −0.648041
369369 31.2262 1.62557
370370 0 0
371371 1.53073 0.0794717
372372 −15.5147 −0.804401
373373 −19.5563 −1.01259 −0.506295 0.862361i 0.668985π-0.668985\pi
−0.506295 + 0.862361i 0.668985π0.668985\pi
374374 0 0
375375 0 0
376376 17.1716 0.885556
377377 −6.30864 −0.324912
378378 0.970563 0.0499204
379379 −1.08239 −0.0555988 −0.0277994 0.999614i 0.508850π-0.508850\pi
−0.0277994 + 0.999614i 0.508850π0.508850\pi
380380 0 0
381381 −45.2429 −2.31786
382382 8.28427 0.423860
383383 −5.51472 −0.281789 −0.140894 0.990025i 0.544998π-0.544998\pi
−0.140894 + 0.990025i 0.544998π0.544998\pi
384384 −27.5851 −1.40769
385385 0 0
386386 −2.29610 −0.116868
387387 18.4853 0.939660
388388 11.7750 0.597785
389389 16.1421 0.818439 0.409219 0.912436i 0.365801π-0.365801\pi
0.409219 + 0.912436i 0.365801π0.365801\pi
390390 0 0
391391 0 0
392392 9.24264 0.466824
393393 0.485281 0.0244792
394394 6.17733 0.311209
395395 0 0
396396 −7.57675 −0.380746
397397 −27.2680 −1.36854 −0.684272 0.729227i 0.739880π-0.739880\pi
−0.684272 + 0.729227i 0.739880π0.739880\pi
398398 −0.710974 −0.0356379
399399 13.6569 0.683698
400400 0 0
401401 17.0782 0.852843 0.426422 0.904525i 0.359774π-0.359774\pi
0.426422 + 0.904525i 0.359774π0.359774\pi
402402 7.39104 0.368631
403403 4.59220 0.228754
404404 −24.5269 −1.22026
405405 0 0
406406 −2.00000 −0.0992583
407407 4.14214 0.205318
408408 0 0
409409 19.3137 0.955001 0.477501 0.878631i 0.341543π-0.341543\pi
0.477501 + 0.878631i 0.341543π0.341543\pi
410410 0 0
411411 −22.8072 −1.12499
412412 −8.20101 −0.404035
413413 6.49435 0.319566
414414 −6.57128 −0.322961
415415 0 0
416416 6.24264 0.306071
417417 −39.1127 −1.91536
418418 2.16478 0.105883
419419 26.9510 1.31664 0.658322 0.752737i 0.271267π-0.271267\pi
0.658322 + 0.752737i 0.271267π0.271267\pi
420420 0 0
421421 17.4142 0.848717 0.424358 0.905494i 0.360500π-0.360500\pi
0.424358 + 0.905494i 0.360500π0.360500\pi
422422 −6.19986 −0.301804
423423 −41.4558 −2.01565
424424 −2.24264 −0.108912
425425 0 0
426426 14.1421 0.685189
427427 10.0000 0.483934
428428 11.5349 0.557560
429429 4.00000 0.193122
430430 0 0
431431 −39.8309 −1.91859 −0.959294 0.282408i 0.908867π-0.908867\pi
−0.959294 + 0.282408i 0.908867π0.908867\pi
432432 6.49435 0.312460
433433 −15.1716 −0.729099 −0.364550 0.931184i 0.618777π-0.618777\pi
−0.364550 + 0.931184i 0.618777π0.618777\pi
434434 1.45584 0.0698828
435435 0 0
436436 7.81685 0.374359
437437 −20.0083 −0.957128
438438 −5.79899 −0.277086
439439 −10.9008 −0.520269 −0.260134 0.965572i 0.583767π-0.583767\pi
−0.260134 + 0.965572i 0.583767π0.583767\pi
440440 0 0
441441 −22.3137 −1.06256
442442 0 0
443443 −15.7990 −0.750633 −0.375316 0.926897i 0.622466π-0.622466\pi
−0.375316 + 0.926897i 0.622466π0.622466\pi
444444 −18.2843 −0.867733
445445 0 0
446446 −0.343146 −0.0162484
447447 44.3462 2.09750
448448 −4.51528 −0.213327
449449 18.7946 0.886973 0.443486 0.896281i 0.353741π-0.353741\pi
0.443486 + 0.896281i 0.353741π0.353741\pi
450450 0 0
451451 8.82843 0.415714
452452 −29.5867 −1.39164
453453 33.5223 1.57501
454454 2.08786 0.0979882
455455 0 0
456456 −20.0083 −0.936976
457457 −18.8284 −0.880757 −0.440378 0.897812i 0.645156π-0.645156\pi
−0.440378 + 0.897812i 0.645156π0.645156\pi
458458 −9.45584 −0.441843
459459 0 0
460460 0 0
461461 24.0416 1.11973 0.559865 0.828584i 0.310853π-0.310853\pi
0.559865 + 0.828584i 0.310853π0.310853\pi
462462 1.26810 0.0589974
463463 30.6274 1.42338 0.711688 0.702495i 0.247931π-0.247931\pi
0.711688 + 0.702495i 0.247931π0.247931\pi
464464 −13.3827 −0.621274
465465 0 0
466466 −4.19825 −0.194480
467467 12.6274 0.584327 0.292164 0.956368i 0.405625π-0.405625\pi
0.292164 + 0.956368i 0.405625π0.405625\pi
468468 −9.89949 −0.457604
469469 7.39104 0.341286
470470 0 0
471471 −4.32957 −0.199496
472472 −9.51472 −0.437950
473473 5.22625 0.240303
474474 4.48528 0.206016
475475 0 0
476476 0 0
477477 5.41421 0.247900
478478 3.79899 0.173762
479479 −34.6047 −1.58113 −0.790564 0.612379i 0.790213π-0.790213\pi
−0.790564 + 0.612379i 0.790213π0.790213\pi
480480 0 0
481481 5.41196 0.246764
482482 5.09494 0.232068
483483 −11.7206 −0.533306
484484 17.9706 0.816844
485485 0 0
486486 −8.99869 −0.408189
487487 −4.40649 −0.199677 −0.0998386 0.995004i 0.531833π-0.531833\pi
−0.0998386 + 0.995004i 0.531833π0.531833\pi
488488 −14.6508 −0.663209
489489 14.8284 0.670565
490490 0 0
491491 −25.1127 −1.13332 −0.566660 0.823952i 0.691765π-0.691765\pi
−0.566660 + 0.823952i 0.691765π0.691765\pi
492492 −38.9706 −1.75693
493493 0 0
494494 2.82843 0.127257
495495 0 0
496496 9.74153 0.437408
497497 14.1421 0.634361
498498 −0.371418 −0.0166437
499499 37.0321 1.65778 0.828892 0.559408i 0.188972π-0.188972\pi
0.828892 + 0.559408i 0.188972π0.188972\pi
500500 0 0
501501 26.1421 1.16794
502502 1.45584 0.0649775
503503 −14.9678 −0.667380 −0.333690 0.942683i 0.608294π-0.608294\pi
−0.333690 + 0.942683i 0.608294π0.608294\pi
504504 −6.57128 −0.292708
505505 0 0
506506 −1.85786 −0.0825921
507507 −28.7444 −1.27658
508508 31.6569 1.40455
509509 3.02944 0.134277 0.0671387 0.997744i 0.478613π-0.478613\pi
0.0671387 + 0.997744i 0.478613π0.478613\pi
510510 0 0
511511 −5.79899 −0.256532
512512 22.7574 1.00574
513513 10.4525 0.461489
514514 9.17157 0.404541
515515 0 0
516516 −23.0698 −1.01559
517517 −11.7206 −0.515472
518518 1.71573 0.0753848
519519 8.82843 0.387525
520520 0 0
521521 −3.11586 −0.136508 −0.0682542 0.997668i 0.521743π-0.521743\pi
−0.0682542 + 0.997668i 0.521743π0.521743\pi
522522 −7.07401 −0.309621
523523 −6.82843 −0.298586 −0.149293 0.988793i 0.547700π-0.547700\pi
−0.149293 + 0.988793i 0.547700π0.547700\pi
524524 −0.339556 −0.0148336
525525 0 0
526526 −2.68629 −0.117128
527527 0 0
528528 8.48528 0.369274
529529 −5.82843 −0.253410
530530 0 0
531531 22.9706 0.996838
532532 −9.55582 −0.414297
533533 11.5349 0.499632
534534 10.1899 0.440959
535535 0 0
536536 −10.8284 −0.467717
537537 15.6788 0.676588
538538 −2.63566 −0.113631
539539 −6.30864 −0.271733
540540 0 0
541541 18.3463 0.788768 0.394384 0.918946i 0.370958π-0.370958\pi
0.394384 + 0.918946i 0.370958π0.370958\pi
542542 2.54416 0.109281
543543 32.6274 1.40018
544544 0 0
545545 0 0
546546 1.65685 0.0709068
547547 −24.7862 −1.05978 −0.529891 0.848065i 0.677767π-0.677767\pi
−0.529891 + 0.848065i 0.677767π0.677767\pi
548548 15.9584 0.681708
549549 35.3701 1.50956
550550 0 0
551551 −21.5391 −0.917595
552552 17.1716 0.730871
553553 4.48528 0.190734
554554 9.13001 0.387897
555555 0 0
556556 27.3675 1.16064
557557 28.2426 1.19668 0.598340 0.801243i 0.295827π-0.295827\pi
0.598340 + 0.801243i 0.295827π0.295827\pi
558558 5.14933 0.217988
559559 6.82843 0.288812
560560 0 0
561561 0 0
562562 −7.41421 −0.312750
563563 −38.7696 −1.63394 −0.816971 0.576679i 0.804348π-0.804348\pi
−0.816971 + 0.576679i 0.804348π0.804348\pi
564564 51.7373 2.17853
565565 0 0
566566 9.47890 0.398428
567567 −6.30864 −0.264938
568568 −20.7193 −0.869362
569569 −36.0416 −1.51094 −0.755472 0.655181i 0.772592π-0.772592\pi
−0.755472 + 0.655181i 0.772592π0.772592\pi
570570 0 0
571571 −47.2220 −1.97618 −0.988089 0.153883i 0.950822π-0.950822\pi
−0.988089 + 0.153883i 0.950822π0.950822\pi
572572 −2.79884 −0.117025
573573 52.2625 2.18330
574574 3.65685 0.152634
575575 0 0
576576 −15.9706 −0.665440
577577 −12.9289 −0.538238 −0.269119 0.963107i 0.586733π-0.586733\pi
−0.269119 + 0.963107i 0.586733π0.586733\pi
578578 0 0
579579 −14.4853 −0.601988
580580 0 0
581581 −0.371418 −0.0154090
582582 −6.97056 −0.288939
583583 1.53073 0.0633965
584584 8.49596 0.351565
585585 0 0
586586 9.79899 0.404793
587587 22.6863 0.936363 0.468182 0.883632i 0.344909π-0.344909\pi
0.468182 + 0.883632i 0.344909π0.344909\pi
588588 27.8477 1.14842
589589 15.6788 0.646032
590590 0 0
591591 38.9706 1.60303
592592 11.4805 0.471846
593593 −27.0711 −1.11168 −0.555838 0.831291i 0.687602π-0.687602\pi
−0.555838 + 0.831291i 0.687602π0.687602\pi
594594 0.970563 0.0398227
595595 0 0
596596 −31.0294 −1.27102
597597 −4.48528 −0.183570
598598 −2.42742 −0.0992645
599599 34.6274 1.41484 0.707419 0.706794i 0.249859π-0.249859\pi
0.707419 + 0.706794i 0.249859π0.249859\pi
600600 0 0
601601 −20.3253 −0.829088 −0.414544 0.910029i 0.636059π-0.636059\pi
−0.414544 + 0.910029i 0.636059π0.636059\pi
602602 2.16478 0.0882300
603603 26.1421 1.06459
604604 −23.4558 −0.954405
605605 0 0
606606 14.5194 0.589812
607607 34.3421 1.39390 0.696951 0.717119i 0.254540π-0.254540\pi
0.696951 + 0.717119i 0.254540π0.254540\pi
608608 21.3137 0.864385
609609 −12.6173 −0.511278
610610 0 0
611611 −15.3137 −0.619526
612612 0 0
613613 17.3137 0.699294 0.349647 0.936881i 0.386302π-0.386302\pi
0.349647 + 0.936881i 0.386302π0.386302\pi
614614 −0.887302 −0.0358086
615615 0 0
616616 −1.85786 −0.0748555
617617 −3.37849 −0.136013 −0.0680065 0.997685i 0.521664π-0.521664\pi
−0.0680065 + 0.997685i 0.521664π0.521664\pi
618618 4.85483 0.195290
619619 −9.63274 −0.387173 −0.193586 0.981083i 0.562012π-0.562012\pi
−0.193586 + 0.981083i 0.562012π0.562012\pi
620620 0 0
621621 −8.97056 −0.359976
622622 1.87029 0.0749918
623623 10.1899 0.408249
624624 11.0866 0.443817
625625 0 0
626626 −5.28064 −0.211057
627627 13.6569 0.545402
628628 3.02944 0.120888
629629 0 0
630630 0 0
631631 6.68629 0.266177 0.133089 0.991104i 0.457511π-0.457511\pi
0.133089 + 0.991104i 0.457511π0.457511\pi
632632 −6.57128 −0.261391
633633 −39.1127 −1.55459
634634 −2.40489 −0.0955102
635635 0 0
636636 −6.75699 −0.267932
637637 −8.24264 −0.326585
638638 −2.00000 −0.0791808
639639 50.0208 1.97879
640640 0 0
641641 −14.9903 −0.592082 −0.296041 0.955175i 0.595666π-0.595666\pi
−0.296041 + 0.955175i 0.595666π0.595666\pi
642642 −6.82843 −0.269497
643643 −40.0936 −1.58114 −0.790568 0.612374i 0.790215π-0.790215\pi
−0.790568 + 0.612374i 0.790215π0.790215\pi
644644 8.20101 0.323165
645645 0 0
646646 0 0
647647 −2.82843 −0.111197 −0.0555985 0.998453i 0.517707π-0.517707\pi
−0.0555985 + 0.998453i 0.517707π0.517707\pi
648648 9.24264 0.363085
649649 6.49435 0.254926
650650 0 0
651651 9.18440 0.359965
652652 −10.3756 −0.406339
653653 −17.7122 −0.693133 −0.346566 0.938025i 0.612652π-0.612652\pi
−0.346566 + 0.938025i 0.612652π0.612652\pi
654654 −4.62742 −0.180946
655655 0 0
656656 24.4692 0.955362
657657 −20.5111 −0.800213
658658 −4.85483 −0.189261
659659 8.48528 0.330540 0.165270 0.986248i 0.447151π-0.447151\pi
0.165270 + 0.986248i 0.447151π0.447151\pi
660660 0 0
661661 −41.2132 −1.60301 −0.801504 0.597990i 0.795966π-0.795966\pi
−0.801504 + 0.597990i 0.795966π0.795966\pi
662662 7.37258 0.286544
663663 0 0
664664 0.544156 0.0211173
665665 0 0
666666 6.06854 0.235151
667667 18.4853 0.715753
668668 −18.2919 −0.707734
669669 −2.16478 −0.0836954
670670 0 0
671671 10.0000 0.386046
672672 12.4853 0.481630
673673 0.317025 0.0122204 0.00611021 0.999981i 0.498055π-0.498055\pi
0.00611021 + 0.999981i 0.498055π0.498055\pi
674674 −14.2793 −0.550020
675675 0 0
676676 20.1127 0.773565
677677 43.9204 1.68800 0.843999 0.536344i 0.180195π-0.180195\pi
0.843999 + 0.536344i 0.180195π0.180195\pi
678678 17.5147 0.672649
679679 −6.97056 −0.267506
680680 0 0
681681 13.1716 0.504736
682682 1.45584 0.0557472
683683 31.2806 1.19692 0.598459 0.801153i 0.295780π-0.295780\pi
0.598459 + 0.801153i 0.295780π0.295780\pi
684684 −33.7990 −1.29234
685685 0 0
686686 −5.75152 −0.219594
687687 −59.6536 −2.27593
688688 14.4853 0.552246
689689 2.00000 0.0761939
690690 0 0
691691 −40.7276 −1.54935 −0.774676 0.632358i 0.782087π-0.782087\pi
−0.774676 + 0.632358i 0.782087π0.782087\pi
692692 −6.17733 −0.234827
693693 4.48528 0.170382
694694 −1.60766 −0.0610258
695695 0 0
696696 18.4853 0.700683
697697 0 0
698698 1.75736 0.0665170
699699 −26.4853 −1.00177
700700 0 0
701701 −21.6985 −0.819540 −0.409770 0.912189i 0.634391π-0.634391\pi
−0.409770 + 0.912189i 0.634391π0.634391\pi
702702 1.26810 0.0478614
703703 18.4776 0.696896
704704 −4.51528 −0.170176
705705 0 0
706706 5.79899 0.218248
707707 14.5194 0.546060
708708 −28.6675 −1.07739
709709 −11.5893 −0.435245 −0.217622 0.976033i 0.569830π-0.569830\pi
−0.217622 + 0.976033i 0.569830π0.569830\pi
710710 0 0
711711 15.8645 0.594964
712712 −14.9289 −0.559485
713713 −13.4558 −0.503925
714714 0 0
715715 0 0
716716 −10.9706 −0.409989
717717 23.9665 0.895044
718718 9.59798 0.358193
719719 −14.0711 −0.524763 −0.262382 0.964964i 0.584508π-0.584508\pi
−0.262382 + 0.964964i 0.584508π0.584508\pi
720720 0 0
721721 4.85483 0.180803
722722 1.78680 0.0664977
723723 32.1421 1.19538
724724 −22.8297 −0.848459
725725 0 0
726726 −10.6382 −0.394821
727727 −19.1127 −0.708851 −0.354425 0.935084i 0.615324π-0.615324\pi
−0.354425 + 0.935084i 0.615324π0.615324\pi
728728 −2.42742 −0.0899661
729729 −39.2843 −1.45497
730730 0 0
731731 0 0
732732 −44.1421 −1.63154
733733 12.0416 0.444768 0.222384 0.974959i 0.428616π-0.428616\pi
0.222384 + 0.974959i 0.428616π0.428616\pi
734734 −10.9008 −0.402358
735735 0 0
736736 −18.2919 −0.674248
737737 7.39104 0.272252
738738 12.9343 0.476119
739739 −34.2843 −1.26117 −0.630584 0.776121i 0.717184π-0.717184\pi
−0.630584 + 0.776121i 0.717184π0.717184\pi
740740 0 0
741741 17.8435 0.655499
742742 0.634051 0.0232767
743743 −49.2780 −1.80783 −0.903917 0.427708i 0.859321π-0.859321\pi
−0.903917 + 0.427708i 0.859321π0.859321\pi
744744 −13.4558 −0.493315
745745 0 0
746746 −8.10051 −0.296581
747747 −1.31371 −0.0480661
748748 0 0
749749 −6.82843 −0.249505
750750 0 0
751751 −26.2082 −0.956350 −0.478175 0.878265i 0.658702π-0.658702\pi
−0.478175 + 0.878265i 0.658702π0.658702\pi
752752 −32.4853 −1.18462
753753 9.18440 0.334698
754754 −2.61313 −0.0951644
755755 0 0
756756 −4.28427 −0.155817
757757 −53.4558 −1.94289 −0.971443 0.237274i 0.923746π-0.923746\pi
−0.971443 + 0.237274i 0.923746π0.923746\pi
758758 −0.448342 −0.0162845
759759 −11.7206 −0.425431
760760 0 0
761761 −21.6985 −0.786569 −0.393285 0.919417i 0.628661π-0.628661\pi
−0.393285 + 0.919417i 0.628661π0.628661\pi
762762 −18.7402 −0.678887
763763 −4.62742 −0.167524
764764 −36.5685 −1.32300
765765 0 0
766766 −2.28427 −0.0825341
767767 8.48528 0.306386
768768 10.3756 0.374397
769769 −12.7279 −0.458981 −0.229490 0.973311i 0.573706π-0.573706\pi
−0.229490 + 0.973311i 0.573706π0.573706\pi
770770 0 0
771771 57.8602 2.08378
772772 10.1355 0.364784
773773 −4.82843 −0.173666 −0.0868332 0.996223i 0.527675π-0.527675\pi
−0.0868332 + 0.996223i 0.527675π0.527675\pi
774774 7.65685 0.275220
775775 0 0
776776 10.2124 0.366604
777777 10.8239 0.388306
778778 6.68629 0.239715
779779 39.3826 1.41103
780780 0 0
781781 14.1421 0.506045
782782 0 0
783783 −9.65685 −0.345108
784784 −17.4853 −0.624474
785785 0 0
786786 0.201010 0.00716979
787787 −49.6494 −1.76981 −0.884905 0.465772i 0.845777π-0.845777\pi
−0.884905 + 0.465772i 0.845777π0.845777\pi
788788 −27.2680 −0.971384
789789 −16.9469 −0.603324
790790 0 0
791791 17.5147 0.622752
792792 −6.57128 −0.233500
793793 13.0656 0.463974
794794 −11.2948 −0.400837
795795 0 0
796796 3.13839 0.111237
797797 −17.2132 −0.609723 −0.304861 0.952397i 0.598610π-0.598610\pi
−0.304861 + 0.952397i 0.598610π0.598610\pi
798798 5.65685 0.200250
799799 0 0
800800 0 0
801801 36.0416 1.27347
802802 7.07401 0.249792
803803 −5.79899 −0.204642
804804 −32.6256 −1.15062
805805 0 0
806806 1.90215 0.0670004
807807 −16.6274 −0.585313
808808 −21.2721 −0.748349
809809 −29.7724 −1.04674 −0.523371 0.852105i 0.675326π-0.675326\pi
−0.523371 + 0.852105i 0.675326π0.675326\pi
810810 0 0
811811 44.2693 1.55451 0.777253 0.629189i 0.216613π-0.216613\pi
0.777253 + 0.629189i 0.216613π0.216613\pi
812812 8.82843 0.309817
813813 16.0502 0.562904
814814 1.71573 0.0601363
815815 0 0
816816 0 0
817817 23.3137 0.815643
818818 8.00000 0.279713
819819 5.86030 0.204776
820820 0 0
821821 14.3881 0.502149 0.251074 0.967968i 0.419216π-0.419216\pi
0.251074 + 0.967968i 0.419216π0.419216\pi
822822 −9.44703 −0.329503
823823 23.5181 0.819791 0.409895 0.912133i 0.365565π-0.365565\pi
0.409895 + 0.912133i 0.365565π0.365565\pi
824824 −7.11270 −0.247783
825825 0 0
826826 2.69005 0.0935988
827827 −34.7135 −1.20711 −0.603553 0.797323i 0.706249π-0.706249\pi
−0.603553 + 0.797323i 0.706249π0.706249\pi
828828 29.0070 1.00806
829829 −13.9411 −0.484195 −0.242098 0.970252i 0.577835π-0.577835\pi
−0.242098 + 0.970252i 0.577835π0.577835\pi
830830 0 0
831831 57.5980 1.99805
832832 −5.89949 −0.204528
833833 0 0
834834 −16.2010 −0.560995
835835 0 0
836836 −9.55582 −0.330495
837837 7.02944 0.242973
838838 11.1635 0.385636
839839 −3.88123 −0.133995 −0.0669974 0.997753i 0.521342π-0.521342\pi
−0.0669974 + 0.997753i 0.521342π0.521342\pi
840840 0 0
841841 −9.10051 −0.313811
842842 7.21320 0.248583
843843 −46.7736 −1.61097
844844 27.3675 0.942028
845845 0 0
846846 −17.1716 −0.590371
847847 −10.6382 −0.365533
848848 4.24264 0.145693
849849 59.7990 2.05230
850850 0 0
851851 −15.8579 −0.543601
852852 −62.4264 −2.13869
853853 −42.5754 −1.45775 −0.728877 0.684645i 0.759957π-0.759957\pi
−0.728877 + 0.684645i 0.759957π0.759957\pi
854854 4.14214 0.141741
855855 0 0
856856 10.0042 0.341935
857857 −3.82683 −0.130722 −0.0653611 0.997862i 0.520820π-0.520820\pi
−0.0653611 + 0.997862i 0.520820π0.520820\pi
858858 1.65685 0.0565641
859859 −1.02944 −0.0351239 −0.0175620 0.999846i 0.505590π-0.505590\pi
−0.0175620 + 0.999846i 0.505590π0.505590\pi
860860 0 0
861861 23.0698 0.786216
862862 −16.4985 −0.561942
863863 −34.6274 −1.17873 −0.589365 0.807867i 0.700622π-0.700622\pi
−0.589365 + 0.807867i 0.700622π0.700622\pi
864864 9.55582 0.325096
865865 0 0
866866 −6.28427 −0.213548
867867 0 0
868868 −6.42641 −0.218126
869869 4.48528 0.152153
870870 0 0
871871 9.65685 0.327210
872872 6.77952 0.229583
873873 −24.6549 −0.834443
874874 −8.28772 −0.280336
875875 0 0
876876 25.5980 0.864876
877877 37.6436 1.27113 0.635567 0.772045i 0.280766π-0.280766\pi
0.635567 + 0.772045i 0.280766π0.280766\pi
878878 −4.51528 −0.152383
879879 61.8183 2.08508
880880 0 0
881881 −18.5320 −0.624358 −0.312179 0.950023i 0.601059π-0.601059\pi
−0.312179 + 0.950023i 0.601059π0.601059\pi
882882 −9.24264 −0.311216
883883 8.00000 0.269221 0.134611 0.990899i 0.457022π-0.457022\pi
0.134611 + 0.990899i 0.457022π0.457022\pi
884884 0 0
885885 0 0
886886 −6.54416 −0.219855
887887 −48.8615 −1.64061 −0.820304 0.571927i 0.806196π-0.806196\pi
−0.820304 + 0.571927i 0.806196π0.806196\pi
888888 −15.8579 −0.532155
889889 −18.7402 −0.628527
890890 0 0
891891 −6.30864 −0.211348
892892 1.51472 0.0507165
893893 −52.2843 −1.74963
894894 18.3688 0.614345
895895 0 0
896896 −11.4261 −0.381720
897897 −15.3137 −0.511310
898898 7.78498 0.259788
899899 −14.4853 −0.483111
900900 0 0
901901 0 0
902902 3.65685 0.121760
903903 13.6569 0.454472
904904 −25.6604 −0.853452
905905 0 0
906906 13.8854 0.461311
907907 25.0489 0.831734 0.415867 0.909425i 0.363478π-0.363478\pi
0.415867 + 0.909425i 0.363478π0.363478\pi
908908 −9.21627 −0.305852
909909 51.3553 1.70335
910910 0 0
911911 −8.47343 −0.280737 −0.140369 0.990099i 0.544829π-0.544829\pi
−0.140369 + 0.990099i 0.544829π0.544829\pi
912912 37.8519 1.25340
913913 −0.371418 −0.0122922
914914 −7.79899 −0.257968
915915 0 0
916916 41.7401 1.37913
917917 0.201010 0.00663794
918918 0 0
919919 −3.31371 −0.109309 −0.0546546 0.998505i 0.517406π-0.517406\pi
−0.0546546 + 0.998505i 0.517406π0.517406\pi
920920 0 0
921921 −5.59767 −0.184450
922922 9.95837 0.327961
923923 18.4776 0.608197
924924 −5.59767 −0.184150
925925 0 0
926926 12.6863 0.416897
927927 17.1716 0.563988
928928 −19.6913 −0.646399
929929 −20.9594 −0.687656 −0.343828 0.939033i 0.611724π-0.611724\pi
−0.343828 + 0.939033i 0.611724π0.611724\pi
930930 0 0
931931 −28.1421 −0.922321
932932 18.5320 0.607035
933933 11.7990 0.386282
934934 5.23045 0.171145
935935 0 0
936936 −8.58579 −0.280635
937937 −3.55635 −0.116181 −0.0580904 0.998311i 0.518501π-0.518501\pi
−0.0580904 + 0.998311i 0.518501π0.518501\pi
938938 3.06147 0.0999605
939939 −33.3137 −1.08715
940940 0 0
941941 18.6858 0.609141 0.304570 0.952490i 0.401487π-0.401487\pi
0.304570 + 0.952490i 0.401487π0.401487\pi
942942 −1.79337 −0.0584310
943943 −33.7990 −1.10065
944944 18.0000 0.585850
945945 0 0
946946 2.16478 0.0703832
947947 −14.8590 −0.482852 −0.241426 0.970419i 0.577615π-0.577615\pi
−0.241426 + 0.970419i 0.577615π0.577615\pi
948948 −19.7990 −0.643041
949949 −7.57675 −0.245952
950950 0 0
951951 −15.1716 −0.491972
952952 0 0
953953 9.69848 0.314165 0.157082 0.987586i 0.449791π-0.449791\pi
0.157082 + 0.987586i 0.449791π0.449791\pi
954954 2.24264 0.0726082
955955 0 0
956956 −16.7696 −0.542366
957957 −12.6173 −0.407859
958958 −14.3337 −0.463102
959959 −9.44703 −0.305061
960960 0 0
961961 −20.4558 −0.659866
962962 2.24171 0.0722756
963963 −24.1522 −0.778293
964964 −22.4901 −0.724358
965965 0 0
966966 −4.85483 −0.156202
967967 32.3431 1.04009 0.520043 0.854140i 0.325916π-0.325916\pi
0.520043 + 0.854140i 0.325916π0.325916\pi
968968 15.5858 0.500946
969969 0 0
970970 0 0
971971 −55.7401 −1.78879 −0.894393 0.447283i 0.852392π-0.852392\pi
−0.894393 + 0.447283i 0.852392π0.852392\pi
972972 39.7222 1.27409
973973 −16.2010 −0.519381
974974 −1.82523 −0.0584841
975975 0 0
976976 27.7164 0.887180
977977 1.61522 0.0516756 0.0258378 0.999666i 0.491775π-0.491775\pi
0.0258378 + 0.999666i 0.491775π0.491775\pi
978978 6.14214 0.196404
979979 10.1899 0.325670
980980 0 0
981981 −16.3672 −0.522564
982982 −10.4020 −0.331942
983983 −23.5181 −0.750112 −0.375056 0.927002i 0.622377π-0.622377\pi
−0.375056 + 0.927002i 0.622377π0.622377\pi
984984 −33.7990 −1.07747
985985 0 0
986986 0 0
987987 −30.6274 −0.974881
988988 −12.4853 −0.397210
989989 −20.0083 −0.636228
990990 0 0
991991 −32.0685 −1.01869 −0.509345 0.860563i 0.670112π-0.670112\pi
−0.509345 + 0.860563i 0.670112π0.670112\pi
992992 14.3337 0.455096
993993 46.5110 1.47598
994994 5.85786 0.185800
995995 0 0
996996 1.63952 0.0519502
997997 −7.70806 −0.244117 −0.122058 0.992523i 0.538950π-0.538950\pi
−0.122058 + 0.992523i 0.538950π0.538950\pi
998998 15.3392 0.485554
999999 8.28427 0.262103
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.u.1.4 4
5.4 even 2 289.2.a.f.1.1 4
15.14 odd 2 2601.2.a.bb.1.4 4
17.3 odd 16 425.2.m.a.26.1 4
17.6 odd 16 425.2.m.a.376.1 4
17.16 even 2 inner 7225.2.a.u.1.3 4
20.19 odd 2 4624.2.a.bp.1.4 4
85.3 even 16 425.2.n.a.349.1 4
85.4 even 4 289.2.b.b.288.4 4
85.9 even 8 289.2.c.c.251.3 8
85.14 odd 16 289.2.d.a.179.1 4
85.19 even 8 289.2.c.c.38.1 8
85.23 even 16 425.2.n.b.274.1 4
85.24 odd 16 289.2.d.c.134.1 4
85.29 odd 16 289.2.d.b.110.1 4
85.37 even 16 425.2.n.b.349.1 4
85.39 odd 16 289.2.d.c.110.1 4
85.44 odd 16 289.2.d.b.134.1 4
85.49 even 8 289.2.c.c.38.2 8
85.54 odd 16 17.2.d.a.9.1 yes 4
85.57 even 16 425.2.n.a.274.1 4
85.59 even 8 289.2.c.c.251.4 8
85.64 even 4 289.2.b.b.288.3 4
85.74 odd 16 17.2.d.a.2.1 4
85.79 odd 16 289.2.d.a.155.1 4
85.84 even 2 289.2.a.f.1.2 4
255.74 even 16 153.2.l.c.19.1 4
255.224 even 16 153.2.l.c.145.1 4
255.254 odd 2 2601.2.a.bb.1.3 4
340.139 even 16 272.2.v.d.145.1 4
340.159 even 16 272.2.v.d.257.1 4
340.339 odd 2 4624.2.a.bp.1.1 4
595.54 even 48 833.2.v.a.655.1 8
595.74 odd 48 833.2.v.b.716.1 8
595.139 even 16 833.2.l.a.638.1 4
595.159 even 48 833.2.v.a.410.1 8
595.244 even 16 833.2.l.a.393.1 4
595.394 odd 48 833.2.v.b.655.1 8
595.479 even 48 833.2.v.a.128.1 8
595.499 odd 48 833.2.v.b.410.1 8
595.564 odd 48 833.2.v.b.128.1 8
595.584 even 48 833.2.v.a.716.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 85.74 odd 16
17.2.d.a.9.1 yes 4 85.54 odd 16
153.2.l.c.19.1 4 255.74 even 16
153.2.l.c.145.1 4 255.224 even 16
272.2.v.d.145.1 4 340.139 even 16
272.2.v.d.257.1 4 340.159 even 16
289.2.a.f.1.1 4 5.4 even 2
289.2.a.f.1.2 4 85.84 even 2
289.2.b.b.288.3 4 85.64 even 4
289.2.b.b.288.4 4 85.4 even 4
289.2.c.c.38.1 8 85.19 even 8
289.2.c.c.38.2 8 85.49 even 8
289.2.c.c.251.3 8 85.9 even 8
289.2.c.c.251.4 8 85.59 even 8
289.2.d.a.155.1 4 85.79 odd 16
289.2.d.a.179.1 4 85.14 odd 16
289.2.d.b.110.1 4 85.29 odd 16
289.2.d.b.134.1 4 85.44 odd 16
289.2.d.c.110.1 4 85.39 odd 16
289.2.d.c.134.1 4 85.24 odd 16
425.2.m.a.26.1 4 17.3 odd 16
425.2.m.a.376.1 4 17.6 odd 16
425.2.n.a.274.1 4 85.57 even 16
425.2.n.a.349.1 4 85.3 even 16
425.2.n.b.274.1 4 85.23 even 16
425.2.n.b.349.1 4 85.37 even 16
833.2.l.a.393.1 4 595.244 even 16
833.2.l.a.638.1 4 595.139 even 16
833.2.v.a.128.1 8 595.479 even 48
833.2.v.a.410.1 8 595.159 even 48
833.2.v.a.655.1 8 595.54 even 48
833.2.v.a.716.1 8 595.584 even 48
833.2.v.b.128.1 8 595.564 odd 48
833.2.v.b.410.1 8 595.499 odd 48
833.2.v.b.655.1 8 595.394 odd 48
833.2.v.b.716.1 8 595.74 odd 48
2601.2.a.bb.1.3 4 255.254 odd 2
2601.2.a.bb.1.4 4 15.14 odd 2
4624.2.a.bp.1.1 4 340.339 odd 2
4624.2.a.bp.1.4 4 20.19 odd 2
7225.2.a.u.1.3 4 17.16 even 2 inner
7225.2.a.u.1.4 4 1.1 even 1 trivial