Properties

Label 272.2.v.d.145.1
Level $272$
Weight $2$
Character 272.145
Analytic conductor $2.172$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [272,2,Mod(49,272)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(272, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("272.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.v (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 145.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 272.145
Dual form 272.2.v.d.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.41421 + 1.00000i) q^{3} +(0.707107 - 1.70711i) q^{5} +(-0.414214 - 1.00000i) q^{7} +(2.70711 + 2.70711i) q^{9} +O(q^{10})\) \(q+(2.41421 + 1.00000i) q^{3} +(0.707107 - 1.70711i) q^{5} +(-0.414214 - 1.00000i) q^{7} +(2.70711 + 2.70711i) q^{9} +(1.00000 - 0.414214i) q^{11} -1.41421i q^{13} +(3.41421 - 3.41421i) q^{15} +(-2.82843 + 3.00000i) q^{17} +(-3.41421 + 3.41421i) q^{19} -2.82843i q^{21} +(-3.82843 + 1.58579i) q^{23} +(1.12132 + 1.12132i) q^{25} +(0.828427 + 2.00000i) q^{27} +(-1.70711 + 4.12132i) q^{29} +(3.00000 + 1.24264i) q^{31} +2.82843 q^{33} -2.00000 q^{35} +(-3.53553 - 1.46447i) q^{37} +(1.41421 - 3.41421i) q^{39} +(-3.12132 - 7.53553i) q^{41} +(3.41421 + 3.41421i) q^{43} +(6.53553 - 2.70711i) q^{45} -10.8284i q^{47} +(4.12132 - 4.12132i) q^{49} +(-9.82843 + 4.41421i) q^{51} +(-1.00000 + 1.00000i) q^{53} -2.00000i q^{55} +(-11.6569 + 4.82843i) q^{57} +(4.24264 + 4.24264i) q^{59} +(3.53553 + 8.53553i) q^{61} +(1.58579 - 3.82843i) q^{63} +(-2.41421 - 1.00000i) q^{65} -6.82843 q^{67} -10.8284 q^{69} +(-12.0711 - 5.00000i) q^{71} +(-2.05025 + 4.94975i) q^{73} +(1.58579 + 3.82843i) q^{75} +(-0.828427 - 0.828427i) q^{77} +(3.82843 - 1.58579i) q^{79} -5.82843i q^{81} +(0.242641 - 0.242641i) q^{83} +(3.12132 + 6.94975i) q^{85} +(-8.24264 + 8.24264i) q^{87} -9.41421i q^{89} +(-1.41421 + 0.585786i) q^{91} +(6.00000 + 6.00000i) q^{93} +(3.41421 + 8.24264i) q^{95} +(2.46447 - 5.94975i) q^{97} +(3.82843 + 1.58579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} + 4 q^{7} + 8 q^{9} + 4 q^{11} + 8 q^{15} - 8 q^{19} - 4 q^{23} - 4 q^{25} - 8 q^{27} - 4 q^{29} + 12 q^{31} - 8 q^{35} - 4 q^{41} + 8 q^{43} + 12 q^{45} + 8 q^{49} - 28 q^{51} - 4 q^{53} - 24 q^{57} + 12 q^{63} - 4 q^{65} - 16 q^{67} - 32 q^{69} - 20 q^{71} - 28 q^{73} + 12 q^{75} + 8 q^{77} + 4 q^{79} - 16 q^{83} + 4 q^{85} - 16 q^{87} + 24 q^{93} + 8 q^{95} + 24 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41421 + 1.00000i 1.39385 + 0.577350i 0.948147 0.317832i \(-0.102955\pi\)
0.445700 + 0.895182i \(0.352955\pi\)
\(4\) 0 0
\(5\) 0.707107 1.70711i 0.316228 0.763441i −0.683220 0.730213i \(-0.739421\pi\)
0.999448 0.0332288i \(-0.0105790\pi\)
\(6\) 0 0
\(7\) −0.414214 1.00000i −0.156558 0.377964i 0.826066 0.563574i \(-0.190574\pi\)
−0.982624 + 0.185610i \(0.940574\pi\)
\(8\) 0 0
\(9\) 2.70711 + 2.70711i 0.902369 + 0.902369i
\(10\) 0 0
\(11\) 1.00000 0.414214i 0.301511 0.124890i −0.226799 0.973942i \(-0.572826\pi\)
0.528310 + 0.849052i \(0.322826\pi\)
\(12\) 0 0
\(13\) 1.41421i 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) 0 0
\(15\) 3.41421 3.41421i 0.881546 0.881546i
\(16\) 0 0
\(17\) −2.82843 + 3.00000i −0.685994 + 0.727607i
\(18\) 0 0
\(19\) −3.41421 + 3.41421i −0.783274 + 0.783274i −0.980382 0.197108i \(-0.936845\pi\)
0.197108 + 0.980382i \(0.436845\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) 0 0
\(23\) −3.82843 + 1.58579i −0.798282 + 0.330659i −0.744268 0.667881i \(-0.767202\pi\)
−0.0540140 + 0.998540i \(0.517202\pi\)
\(24\) 0 0
\(25\) 1.12132 + 1.12132i 0.224264 + 0.224264i
\(26\) 0 0
\(27\) 0.828427 + 2.00000i 0.159431 + 0.384900i
\(28\) 0 0
\(29\) −1.70711 + 4.12132i −0.317002 + 0.765310i 0.682408 + 0.730971i \(0.260933\pi\)
−0.999410 + 0.0343389i \(0.989067\pi\)
\(30\) 0 0
\(31\) 3.00000 + 1.24264i 0.538816 + 0.223185i 0.635460 0.772134i \(-0.280811\pi\)
−0.0966436 + 0.995319i \(0.530811\pi\)
\(32\) 0 0
\(33\) 2.82843 0.492366
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −3.53553 1.46447i −0.581238 0.240757i 0.0726379 0.997358i \(-0.476858\pi\)
−0.653876 + 0.756602i \(0.726858\pi\)
\(38\) 0 0
\(39\) 1.41421 3.41421i 0.226455 0.546712i
\(40\) 0 0
\(41\) −3.12132 7.53553i −0.487468 1.17685i −0.955990 0.293400i \(-0.905213\pi\)
0.468521 0.883452i \(-0.344787\pi\)
\(42\) 0 0
\(43\) 3.41421 + 3.41421i 0.520663 + 0.520663i 0.917772 0.397109i \(-0.129986\pi\)
−0.397109 + 0.917772i \(0.629986\pi\)
\(44\) 0 0
\(45\) 6.53553 2.70711i 0.974260 0.403552i
\(46\) 0 0
\(47\) 10.8284i 1.57949i −0.613436 0.789744i \(-0.710213\pi\)
0.613436 0.789744i \(-0.289787\pi\)
\(48\) 0 0
\(49\) 4.12132 4.12132i 0.588760 0.588760i
\(50\) 0 0
\(51\) −9.82843 + 4.41421i −1.37626 + 0.618114i
\(52\) 0 0
\(53\) −1.00000 + 1.00000i −0.137361 + 0.137361i −0.772444 0.635083i \(-0.780966\pi\)
0.635083 + 0.772444i \(0.280966\pi\)
\(54\) 0 0
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) −11.6569 + 4.82843i −1.54399 + 0.639541i
\(58\) 0 0
\(59\) 4.24264 + 4.24264i 0.552345 + 0.552345i 0.927117 0.374772i \(-0.122279\pi\)
−0.374772 + 0.927117i \(0.622279\pi\)
\(60\) 0 0
\(61\) 3.53553 + 8.53553i 0.452679 + 1.09286i 0.971300 + 0.237859i \(0.0764456\pi\)
−0.518621 + 0.855004i \(0.673554\pi\)
\(62\) 0 0
\(63\) 1.58579 3.82843i 0.199790 0.482336i
\(64\) 0 0
\(65\) −2.41421 1.00000i −0.299446 0.124035i
\(66\) 0 0
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 0 0
\(69\) −10.8284 −1.30359
\(70\) 0 0
\(71\) −12.0711 5.00000i −1.43257 0.593391i −0.474587 0.880209i \(-0.657403\pi\)
−0.957985 + 0.286818i \(0.907403\pi\)
\(72\) 0 0
\(73\) −2.05025 + 4.94975i −0.239964 + 0.579324i −0.997279 0.0737261i \(-0.976511\pi\)
0.757315 + 0.653050i \(0.226511\pi\)
\(74\) 0 0
\(75\) 1.58579 + 3.82843i 0.183111 + 0.442069i
\(76\) 0 0
\(77\) −0.828427 0.828427i −0.0944080 0.0944080i
\(78\) 0 0
\(79\) 3.82843 1.58579i 0.430732 0.178415i −0.156775 0.987634i \(-0.550110\pi\)
0.587506 + 0.809219i \(0.300110\pi\)
\(80\) 0 0
\(81\) 5.82843i 0.647603i
\(82\) 0 0
\(83\) 0.242641 0.242641i 0.0266333 0.0266333i −0.693665 0.720298i \(-0.744005\pi\)
0.720298 + 0.693665i \(0.244005\pi\)
\(84\) 0 0
\(85\) 3.12132 + 6.94975i 0.338555 + 0.753806i
\(86\) 0 0
\(87\) −8.24264 + 8.24264i −0.883704 + 0.883704i
\(88\) 0 0
\(89\) 9.41421i 0.997905i −0.866629 0.498952i \(-0.833718\pi\)
0.866629 0.498952i \(-0.166282\pi\)
\(90\) 0 0
\(91\) −1.41421 + 0.585786i −0.148250 + 0.0614071i
\(92\) 0 0
\(93\) 6.00000 + 6.00000i 0.622171 + 0.622171i
\(94\) 0 0
\(95\) 3.41421 + 8.24264i 0.350291 + 0.845677i
\(96\) 0 0
\(97\) 2.46447 5.94975i 0.250229 0.604105i −0.747994 0.663706i \(-0.768983\pi\)
0.998222 + 0.0596005i \(0.0189827\pi\)
\(98\) 0 0
\(99\) 3.82843 + 1.58579i 0.384771 + 0.159378i
\(100\) 0 0
\(101\) −13.4142 −1.33476 −0.667382 0.744715i \(-0.732585\pi\)
−0.667382 + 0.744715i \(0.732585\pi\)
\(102\) 0 0
\(103\) 4.48528 0.441948 0.220974 0.975280i \(-0.429076\pi\)
0.220974 + 0.975280i \(0.429076\pi\)
\(104\) 0 0
\(105\) −4.82843 2.00000i −0.471206 0.195180i
\(106\) 0 0
\(107\) 2.41421 5.82843i 0.233391 0.563455i −0.763181 0.646184i \(-0.776364\pi\)
0.996572 + 0.0827292i \(0.0263636\pi\)
\(108\) 0 0
\(109\) 1.63604 + 3.94975i 0.156704 + 0.378317i 0.982660 0.185418i \(-0.0593639\pi\)
−0.825956 + 0.563735i \(0.809364\pi\)
\(110\) 0 0
\(111\) −7.07107 7.07107i −0.671156 0.671156i
\(112\) 0 0
\(113\) 14.9497 6.19239i 1.40635 0.582531i 0.454961 0.890511i \(-0.349653\pi\)
0.951393 + 0.307980i \(0.0996531\pi\)
\(114\) 0 0
\(115\) 7.65685i 0.714005i
\(116\) 0 0
\(117\) 3.82843 3.82843i 0.353938 0.353938i
\(118\) 0 0
\(119\) 4.17157 + 1.58579i 0.382407 + 0.145369i
\(120\) 0 0
\(121\) −6.94975 + 6.94975i −0.631795 + 0.631795i
\(122\) 0 0
\(123\) 21.3137i 1.92179i
\(124\) 0 0
\(125\) 11.2426 4.65685i 1.00557 0.416522i
\(126\) 0 0
\(127\) 12.2426 + 12.2426i 1.08636 + 1.08636i 0.995900 + 0.0904585i \(0.0288332\pi\)
0.0904585 + 0.995900i \(0.471167\pi\)
\(128\) 0 0
\(129\) 4.82843 + 11.6569i 0.425119 + 1.02633i
\(130\) 0 0
\(131\) −0.0710678 + 0.171573i −0.00620922 + 0.0149904i −0.926954 0.375176i \(-0.877582\pi\)
0.920745 + 0.390166i \(0.127582\pi\)
\(132\) 0 0
\(133\) 4.82843 + 2.00000i 0.418678 + 0.173422i
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 8.72792 0.745677 0.372838 0.927896i \(-0.378385\pi\)
0.372838 + 0.927896i \(0.378385\pi\)
\(138\) 0 0
\(139\) 13.8284 + 5.72792i 1.17291 + 0.485836i 0.882154 0.470961i \(-0.156093\pi\)
0.290758 + 0.956797i \(0.406093\pi\)
\(140\) 0 0
\(141\) 10.8284 26.1421i 0.911918 2.20156i
\(142\) 0 0
\(143\) −0.585786 1.41421i −0.0489859 0.118262i
\(144\) 0 0
\(145\) 5.82843 + 5.82843i 0.484025 + 0.484025i
\(146\) 0 0
\(147\) 14.0711 5.82843i 1.16056 0.480721i
\(148\) 0 0
\(149\) 16.9706i 1.39028i 0.718873 + 0.695141i \(0.244658\pi\)
−0.718873 + 0.695141i \(0.755342\pi\)
\(150\) 0 0
\(151\) 9.07107 9.07107i 0.738193 0.738193i −0.234035 0.972228i \(-0.575193\pi\)
0.972228 + 0.234035i \(0.0751931\pi\)
\(152\) 0 0
\(153\) −15.7782 + 0.464466i −1.27559 + 0.0375499i
\(154\) 0 0
\(155\) 4.24264 4.24264i 0.340777 0.340777i
\(156\) 0 0
\(157\) 1.65685i 0.132231i −0.997812 0.0661157i \(-0.978939\pi\)
0.997812 0.0661157i \(-0.0210606\pi\)
\(158\) 0 0
\(159\) −3.41421 + 1.41421i −0.270765 + 0.112154i
\(160\) 0 0
\(161\) 3.17157 + 3.17157i 0.249955 + 0.249955i
\(162\) 0 0
\(163\) 2.17157 + 5.24264i 0.170091 + 0.410635i 0.985822 0.167796i \(-0.0536650\pi\)
−0.815731 + 0.578431i \(0.803665\pi\)
\(164\) 0 0
\(165\) 2.00000 4.82843i 0.155700 0.375893i
\(166\) 0 0
\(167\) −9.24264 3.82843i −0.715217 0.296253i −0.00475555 0.999989i \(-0.501514\pi\)
−0.710461 + 0.703736i \(0.751514\pi\)
\(168\) 0 0
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) −18.4853 −1.41360
\(172\) 0 0
\(173\) −3.12132 1.29289i −0.237310 0.0982969i 0.260859 0.965377i \(-0.415994\pi\)
−0.498169 + 0.867080i \(0.665994\pi\)
\(174\) 0 0
\(175\) 0.656854 1.58579i 0.0496535 0.119874i
\(176\) 0 0
\(177\) 6.00000 + 14.4853i 0.450988 + 1.08878i
\(178\) 0 0
\(179\) −4.24264 4.24264i −0.317110 0.317110i 0.530546 0.847656i \(-0.321987\pi\)
−0.847656 + 0.530546i \(0.821987\pi\)
\(180\) 0 0
\(181\) −11.5355 + 4.77817i −0.857429 + 0.355159i −0.767702 0.640807i \(-0.778600\pi\)
−0.0897278 + 0.995966i \(0.528600\pi\)
\(182\) 0 0
\(183\) 24.1421i 1.78464i
\(184\) 0 0
\(185\) −5.00000 + 5.00000i −0.367607 + 0.367607i
\(186\) 0 0
\(187\) −1.58579 + 4.17157i −0.115964 + 0.305056i
\(188\) 0 0
\(189\) 1.65685 1.65685i 0.120518 0.120518i
\(190\) 0 0
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) 0 0
\(193\) 5.12132 2.12132i 0.368641 0.152696i −0.190670 0.981654i \(-0.561066\pi\)
0.559310 + 0.828958i \(0.311066\pi\)
\(194\) 0 0
\(195\) −4.82843 4.82843i −0.345771 0.345771i
\(196\) 0 0
\(197\) −5.70711 13.7782i −0.406615 0.981654i −0.986022 0.166616i \(-0.946716\pi\)
0.579407 0.815038i \(-0.303284\pi\)
\(198\) 0 0
\(199\) 0.656854 1.58579i 0.0465632 0.112413i −0.898887 0.438181i \(-0.855623\pi\)
0.945450 + 0.325768i \(0.105623\pi\)
\(200\) 0 0
\(201\) −16.4853 6.82843i −1.16278 0.481640i
\(202\) 0 0
\(203\) 4.82843 0.338889
\(204\) 0 0
\(205\) −15.0711 −1.05261
\(206\) 0 0
\(207\) −14.6569 6.07107i −1.01872 0.421968i
\(208\) 0 0
\(209\) −2.00000 + 4.82843i −0.138343 + 0.333989i
\(210\) 0 0
\(211\) −5.72792 13.8284i −0.394326 0.951988i −0.988986 0.148010i \(-0.952713\pi\)
0.594659 0.803978i \(-0.297287\pi\)
\(212\) 0 0
\(213\) −24.1421 24.1421i −1.65419 1.65419i
\(214\) 0 0
\(215\) 8.24264 3.41421i 0.562143 0.232847i
\(216\) 0 0
\(217\) 3.51472i 0.238595i
\(218\) 0 0
\(219\) −9.89949 + 9.89949i −0.668946 + 0.668946i
\(220\) 0 0
\(221\) 4.24264 + 4.00000i 0.285391 + 0.269069i
\(222\) 0 0
\(223\) −0.585786 + 0.585786i −0.0392272 + 0.0392272i −0.726448 0.687221i \(-0.758830\pi\)
0.687221 + 0.726448i \(0.258830\pi\)
\(224\) 0 0
\(225\) 6.07107i 0.404738i
\(226\) 0 0
\(227\) 4.65685 1.92893i 0.309086 0.128028i −0.222748 0.974876i \(-0.571503\pi\)
0.531835 + 0.846848i \(0.321503\pi\)
\(228\) 0 0
\(229\) 16.1421 + 16.1421i 1.06670 + 1.06670i 0.997610 + 0.0690921i \(0.0220102\pi\)
0.0690921 + 0.997610i \(0.477990\pi\)
\(230\) 0 0
\(231\) −1.17157 2.82843i −0.0770838 0.186097i
\(232\) 0 0
\(233\) 3.87868 9.36396i 0.254101 0.613453i −0.744427 0.667704i \(-0.767277\pi\)
0.998527 + 0.0542508i \(0.0172771\pi\)
\(234\) 0 0
\(235\) −18.4853 7.65685i −1.20585 0.499478i
\(236\) 0 0
\(237\) 10.8284 0.703382
\(238\) 0 0
\(239\) −9.17157 −0.593260 −0.296630 0.954993i \(-0.595863\pi\)
−0.296630 + 0.954993i \(0.595863\pi\)
\(240\) 0 0
\(241\) 11.3640 + 4.70711i 0.732017 + 0.303211i 0.717381 0.696681i \(-0.245341\pi\)
0.0146365 + 0.999893i \(0.495341\pi\)
\(242\) 0 0
\(243\) 8.31371 20.0711i 0.533325 1.28756i
\(244\) 0 0
\(245\) −4.12132 9.94975i −0.263301 0.635666i
\(246\) 0 0
\(247\) 4.82843 + 4.82843i 0.307225 + 0.307225i
\(248\) 0 0
\(249\) 0.828427 0.343146i 0.0524994 0.0217460i
\(250\) 0 0
\(251\) 3.51472i 0.221847i −0.993829 0.110924i \(-0.964619\pi\)
0.993829 0.110924i \(-0.0353809\pi\)
\(252\) 0 0
\(253\) −3.17157 + 3.17157i −0.199395 + 0.199395i
\(254\) 0 0
\(255\) 0.585786 + 19.8995i 0.0366834 + 1.24615i
\(256\) 0 0
\(257\) −15.6569 + 15.6569i −0.976648 + 0.976648i −0.999733 0.0230858i \(-0.992651\pi\)
0.0230858 + 0.999733i \(0.492651\pi\)
\(258\) 0 0
\(259\) 4.14214i 0.257380i
\(260\) 0 0
\(261\) −15.7782 + 6.53553i −0.976644 + 0.404539i
\(262\) 0 0
\(263\) 4.58579 + 4.58579i 0.282772 + 0.282772i 0.834213 0.551442i \(-0.185922\pi\)
−0.551442 + 0.834213i \(0.685922\pi\)
\(264\) 0 0
\(265\) 1.00000 + 2.41421i 0.0614295 + 0.148304i
\(266\) 0 0
\(267\) 9.41421 22.7279i 0.576141 1.39093i
\(268\) 0 0
\(269\) 5.87868 + 2.43503i 0.358429 + 0.148466i 0.554629 0.832098i \(-0.312860\pi\)
−0.196200 + 0.980564i \(0.562860\pi\)
\(270\) 0 0
\(271\) 6.14214 0.373108 0.186554 0.982445i \(-0.440268\pi\)
0.186554 + 0.982445i \(0.440268\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 1.58579 + 0.656854i 0.0956265 + 0.0396098i
\(276\) 0 0
\(277\) 8.43503 20.3640i 0.506812 1.22355i −0.438897 0.898537i \(-0.644631\pi\)
0.945709 0.325015i \(-0.105369\pi\)
\(278\) 0 0
\(279\) 4.75736 + 11.4853i 0.284816 + 0.687606i
\(280\) 0 0
\(281\) −12.6569 12.6569i −0.755045 0.755045i 0.220371 0.975416i \(-0.429273\pi\)
−0.975416 + 0.220371i \(0.929273\pi\)
\(282\) 0 0
\(283\) −21.1421 + 8.75736i −1.25677 + 0.520571i −0.908917 0.416978i \(-0.863089\pi\)
−0.347853 + 0.937549i \(0.613089\pi\)
\(284\) 0 0
\(285\) 23.3137i 1.38098i
\(286\) 0 0
\(287\) −6.24264 + 6.24264i −0.368491 + 0.368491i
\(288\) 0 0
\(289\) −1.00000 16.9706i −0.0588235 0.998268i
\(290\) 0 0
\(291\) 11.8995 11.8995i 0.697561 0.697561i
\(292\) 0 0
\(293\) 23.6569i 1.38205i 0.722832 + 0.691024i \(0.242840\pi\)
−0.722832 + 0.691024i \(0.757160\pi\)
\(294\) 0 0
\(295\) 10.2426 4.24264i 0.596350 0.247016i
\(296\) 0 0
\(297\) 1.65685 + 1.65685i 0.0961404 + 0.0961404i
\(298\) 0 0
\(299\) 2.24264 + 5.41421i 0.129695 + 0.313112i
\(300\) 0 0
\(301\) 2.00000 4.82843i 0.115278 0.278306i
\(302\) 0 0
\(303\) −32.3848 13.4142i −1.86046 0.770626i
\(304\) 0 0
\(305\) 17.0711 0.977486
\(306\) 0 0
\(307\) −2.14214 −0.122258 −0.0611291 0.998130i \(-0.519470\pi\)
−0.0611291 + 0.998130i \(0.519470\pi\)
\(308\) 0 0
\(309\) 10.8284 + 4.48528i 0.616008 + 0.255159i
\(310\) 0 0
\(311\) 1.72792 4.17157i 0.0979815 0.236548i −0.867287 0.497809i \(-0.834138\pi\)
0.965268 + 0.261261i \(0.0841382\pi\)
\(312\) 0 0
\(313\) −4.87868 11.7782i −0.275759 0.665742i 0.723950 0.689852i \(-0.242325\pi\)
−0.999709 + 0.0241106i \(0.992325\pi\)
\(314\) 0 0
\(315\) −5.41421 5.41421i −0.305056 0.305056i
\(316\) 0 0
\(317\) −5.36396 + 2.22183i −0.301270 + 0.124790i −0.528198 0.849122i \(-0.677132\pi\)
0.226927 + 0.973912i \(0.427132\pi\)
\(318\) 0 0
\(319\) 4.82843i 0.270340i
\(320\) 0 0
\(321\) 11.6569 11.6569i 0.650622 0.650622i
\(322\) 0 0
\(323\) −0.585786 19.8995i −0.0325940 1.10724i
\(324\) 0 0
\(325\) 1.58579 1.58579i 0.0879636 0.0879636i
\(326\) 0 0
\(327\) 11.1716i 0.617789i
\(328\) 0 0
\(329\) −10.8284 + 4.48528i −0.596991 + 0.247282i
\(330\) 0 0
\(331\) 12.5858 + 12.5858i 0.691777 + 0.691777i 0.962623 0.270845i \(-0.0873032\pi\)
−0.270845 + 0.962623i \(0.587303\pi\)
\(332\) 0 0
\(333\) −5.60660 13.5355i −0.307240 0.741743i
\(334\) 0 0
\(335\) −4.82843 + 11.6569i −0.263805 + 0.636882i
\(336\) 0 0
\(337\) −31.8492 13.1924i −1.73494 0.718635i −0.999141 0.0414336i \(-0.986808\pi\)
−0.735798 0.677202i \(-0.763192\pi\)
\(338\) 0 0
\(339\) 42.2843 2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) 0 0
\(343\) −12.8284 5.31371i −0.692670 0.286913i
\(344\) 0 0
\(345\) −7.65685 + 18.4853i −0.412231 + 0.995214i
\(346\) 0 0
\(347\) 1.48528 + 3.58579i 0.0797341 + 0.192495i 0.958719 0.284354i \(-0.0917790\pi\)
−0.878985 + 0.476849i \(0.841779\pi\)
\(348\) 0 0
\(349\) 3.00000 + 3.00000i 0.160586 + 0.160586i 0.782826 0.622240i \(-0.213777\pi\)
−0.622240 + 0.782826i \(0.713777\pi\)
\(350\) 0 0
\(351\) 2.82843 1.17157i 0.150970 0.0625339i
\(352\) 0 0
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) −17.0711 + 17.0711i −0.906038 + 0.906038i
\(356\) 0 0
\(357\) 8.48528 + 8.00000i 0.449089 + 0.423405i
\(358\) 0 0
\(359\) −16.3848 + 16.3848i −0.864755 + 0.864755i −0.991886 0.127131i \(-0.959423\pi\)
0.127131 + 0.991886i \(0.459423\pi\)
\(360\) 0 0
\(361\) 4.31371i 0.227037i
\(362\) 0 0
\(363\) −23.7279 + 9.82843i −1.24539 + 0.515859i
\(364\) 0 0
\(365\) 7.00000 + 7.00000i 0.366397 + 0.366397i
\(366\) 0 0
\(367\) −10.0711 24.3137i −0.525705 1.26917i −0.934313 0.356455i \(-0.883985\pi\)
0.408607 0.912710i \(-0.366015\pi\)
\(368\) 0 0
\(369\) 11.9497 28.8492i 0.622079 1.50183i
\(370\) 0 0
\(371\) 1.41421 + 0.585786i 0.0734223 + 0.0304125i
\(372\) 0 0
\(373\) −19.5563 −1.01259 −0.506295 0.862361i \(-0.668985\pi\)
−0.506295 + 0.862361i \(0.668985\pi\)
\(374\) 0 0
\(375\) 31.7990 1.64209
\(376\) 0 0
\(377\) 5.82843 + 2.41421i 0.300179 + 0.124338i
\(378\) 0 0
\(379\) −0.414214 + 1.00000i −0.0212767 + 0.0513665i −0.934161 0.356852i \(-0.883850\pi\)
0.912884 + 0.408219i \(0.133850\pi\)
\(380\) 0 0
\(381\) 17.3137 + 41.7990i 0.887008 + 2.14143i
\(382\) 0 0
\(383\) −3.89949 3.89949i −0.199255 0.199255i 0.600426 0.799681i \(-0.294998\pi\)
−0.799681 + 0.600426i \(0.794998\pi\)
\(384\) 0 0
\(385\) −2.00000 + 0.828427i −0.101929 + 0.0422206i
\(386\) 0 0
\(387\) 18.4853i 0.939660i
\(388\) 0 0
\(389\) −11.4142 + 11.4142i −0.578724 + 0.578724i −0.934551 0.355828i \(-0.884199\pi\)
0.355828 + 0.934551i \(0.384199\pi\)
\(390\) 0 0
\(391\) 6.07107 15.9706i 0.307027 0.807666i
\(392\) 0 0
\(393\) −0.343146 + 0.343146i −0.0173094 + 0.0173094i
\(394\) 0 0
\(395\) 7.65685i 0.385258i
\(396\) 0 0
\(397\) 25.1924 10.4350i 1.26437 0.523719i 0.353122 0.935577i \(-0.385120\pi\)
0.911248 + 0.411858i \(0.135120\pi\)
\(398\) 0 0
\(399\) 9.65685 + 9.65685i 0.483447 + 0.483447i
\(400\) 0 0
\(401\) 6.53553 + 15.7782i 0.326369 + 0.787924i 0.998856 + 0.0478157i \(0.0152260\pi\)
−0.672487 + 0.740109i \(0.734774\pi\)
\(402\) 0 0
\(403\) 1.75736 4.24264i 0.0875403 0.211341i
\(404\) 0 0
\(405\) −9.94975 4.12132i −0.494407 0.204790i
\(406\) 0 0
\(407\) −4.14214 −0.205318
\(408\) 0 0
\(409\) 19.3137 0.955001 0.477501 0.878631i \(-0.341543\pi\)
0.477501 + 0.878631i \(0.341543\pi\)
\(410\) 0 0
\(411\) 21.0711 + 8.72792i 1.03936 + 0.430517i
\(412\) 0 0
\(413\) 2.48528 6.00000i 0.122293 0.295241i
\(414\) 0 0
\(415\) −0.242641 0.585786i −0.0119108 0.0287551i
\(416\) 0 0
\(417\) 27.6569 + 27.6569i 1.35436 + 1.35436i
\(418\) 0 0
\(419\) 24.8995 10.3137i 1.21642 0.503858i 0.320150 0.947367i \(-0.396267\pi\)
0.896270 + 0.443509i \(0.146267\pi\)
\(420\) 0 0
\(421\) 17.4142i 0.848717i 0.905494 + 0.424358i \(0.139500\pi\)
−0.905494 + 0.424358i \(0.860500\pi\)
\(422\) 0 0
\(423\) 29.3137 29.3137i 1.42528 1.42528i
\(424\) 0 0
\(425\) −6.53553 + 0.192388i −0.317020 + 0.00933220i
\(426\) 0 0
\(427\) 7.07107 7.07107i 0.342193 0.342193i
\(428\) 0 0
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) 36.7990 15.2426i 1.77254 0.734212i 0.778200 0.628017i \(-0.216133\pi\)
0.994345 0.106195i \(-0.0338669\pi\)
\(432\) 0 0
\(433\) −10.7279 10.7279i −0.515551 0.515551i 0.400671 0.916222i \(-0.368777\pi\)
−0.916222 + 0.400671i \(0.868777\pi\)
\(434\) 0 0
\(435\) 8.24264 + 19.8995i 0.395204 + 0.954108i
\(436\) 0 0
\(437\) 7.65685 18.4853i 0.366277 0.884271i
\(438\) 0 0
\(439\) −10.0711 4.17157i −0.480666 0.199098i 0.129176 0.991622i \(-0.458767\pi\)
−0.609841 + 0.792523i \(0.708767\pi\)
\(440\) 0 0
\(441\) 22.3137 1.06256
\(442\) 0 0
\(443\) −15.7990 −0.750633 −0.375316 0.926897i \(-0.622466\pi\)
−0.375316 + 0.926897i \(0.622466\pi\)
\(444\) 0 0
\(445\) −16.0711 6.65685i −0.761842 0.315565i
\(446\) 0 0
\(447\) −16.9706 + 40.9706i −0.802680 + 1.93784i
\(448\) 0 0
\(449\) −7.19239 17.3640i −0.339430 0.819456i −0.997771 0.0667361i \(-0.978741\pi\)
0.658341 0.752720i \(-0.271259\pi\)
\(450\) 0 0
\(451\) −6.24264 6.24264i −0.293954 0.293954i
\(452\) 0 0
\(453\) 30.9706 12.8284i 1.45512 0.602732i
\(454\) 0 0
\(455\) 2.82843i 0.132599i
\(456\) 0 0
\(457\) −13.3137 + 13.3137i −0.622789 + 0.622789i −0.946244 0.323455i \(-0.895156\pi\)
0.323455 + 0.946244i \(0.395156\pi\)
\(458\) 0 0
\(459\) −8.34315 3.17157i −0.389425 0.148036i
\(460\) 0 0
\(461\) 17.0000 17.0000i 0.791769 0.791769i −0.190013 0.981782i \(-0.560853\pi\)
0.981782 + 0.190013i \(0.0608529\pi\)
\(462\) 0 0
\(463\) 30.6274i 1.42338i −0.702495 0.711688i \(-0.747931\pi\)
0.702495 0.711688i \(-0.252069\pi\)
\(464\) 0 0
\(465\) 14.4853 6.00000i 0.671739 0.278243i
\(466\) 0 0
\(467\) −8.92893 8.92893i −0.413182 0.413182i 0.469664 0.882845i \(-0.344375\pi\)
−0.882845 + 0.469664i \(0.844375\pi\)
\(468\) 0 0
\(469\) 2.82843 + 6.82843i 0.130605 + 0.315307i
\(470\) 0 0
\(471\) 1.65685 4.00000i 0.0763438 0.184310i
\(472\) 0 0
\(473\) 4.82843 + 2.00000i 0.222011 + 0.0919601i
\(474\) 0 0
\(475\) −7.65685 −0.351321
\(476\) 0 0
\(477\) −5.41421 −0.247900
\(478\) 0 0
\(479\) 31.9706 + 13.2426i 1.46077 + 0.605072i 0.964733 0.263229i \(-0.0847874\pi\)
0.496039 + 0.868300i \(0.334787\pi\)
\(480\) 0 0
\(481\) −2.07107 + 5.00000i −0.0944326 + 0.227980i
\(482\) 0 0
\(483\) 4.48528 + 10.8284i 0.204087 + 0.492710i
\(484\) 0 0
\(485\) −8.41421 8.41421i −0.382070 0.382070i
\(486\) 0 0
\(487\) 4.07107 1.68629i 0.184478 0.0764132i −0.288533 0.957470i \(-0.593167\pi\)
0.473010 + 0.881057i \(0.343167\pi\)
\(488\) 0 0
\(489\) 14.8284i 0.670565i
\(490\) 0 0
\(491\) −17.7574 + 17.7574i −0.801378 + 0.801378i −0.983311 0.181933i \(-0.941765\pi\)
0.181933 + 0.983311i \(0.441765\pi\)
\(492\) 0 0
\(493\) −7.53553 16.7782i −0.339383 0.755651i
\(494\) 0 0
\(495\) 5.41421 5.41421i 0.243351 0.243351i
\(496\) 0 0
\(497\) 14.1421i 0.634361i
\(498\) 0 0
\(499\) −34.2132 + 14.1716i −1.53159 + 0.634407i −0.979873 0.199622i \(-0.936028\pi\)
−0.551720 + 0.834029i \(0.686028\pi\)
\(500\) 0 0
\(501\) −18.4853 18.4853i −0.825861 0.825861i
\(502\) 0 0
\(503\) −5.72792 13.8284i −0.255395 0.616579i 0.743228 0.669039i \(-0.233294\pi\)
−0.998623 + 0.0524595i \(0.983294\pi\)
\(504\) 0 0
\(505\) −9.48528 + 22.8995i −0.422089 + 1.01901i
\(506\) 0 0
\(507\) 26.5563 + 11.0000i 1.17941 + 0.488527i
\(508\) 0 0
\(509\) −3.02944 −0.134277 −0.0671387 0.997744i \(-0.521387\pi\)
−0.0671387 + 0.997744i \(0.521387\pi\)
\(510\) 0 0
\(511\) 5.79899 0.256532
\(512\) 0 0
\(513\) −9.65685 4.00000i −0.426361 0.176604i
\(514\) 0 0
\(515\) 3.17157 7.65685i 0.139756 0.337401i
\(516\) 0 0
\(517\) −4.48528 10.8284i −0.197262 0.476234i
\(518\) 0 0
\(519\) −6.24264 6.24264i −0.274022 0.274022i
\(520\) 0 0
\(521\) 2.87868 1.19239i 0.126117 0.0522395i −0.318732 0.947845i \(-0.603257\pi\)
0.444850 + 0.895605i \(0.353257\pi\)
\(522\) 0 0
\(523\) 6.82843i 0.298586i −0.988793 0.149293i \(-0.952300\pi\)
0.988793 0.149293i \(-0.0476998\pi\)
\(524\) 0 0
\(525\) 3.17157 3.17157i 0.138419 0.138419i
\(526\) 0 0
\(527\) −12.2132 + 5.48528i −0.532015 + 0.238943i
\(528\) 0 0
\(529\) −4.12132 + 4.12132i −0.179188 + 0.179188i
\(530\) 0 0
\(531\) 22.9706i 0.996838i
\(532\) 0 0
\(533\) −10.6569 + 4.41421i −0.461600 + 0.191201i
\(534\) 0 0
\(535\) −8.24264 8.24264i −0.356360 0.356360i
\(536\) 0 0
\(537\) −6.00000 14.4853i −0.258919 0.625086i
\(538\) 0 0
\(539\) 2.41421 5.82843i 0.103988 0.251048i
\(540\) 0 0
\(541\) −16.9497 7.02082i −0.728727 0.301848i −0.0126980 0.999919i \(-0.504042\pi\)
−0.716029 + 0.698071i \(0.754042\pi\)
\(542\) 0 0
\(543\) −32.6274 −1.40018
\(544\) 0 0
\(545\) 7.89949 0.338377
\(546\) 0 0
\(547\) −22.8995 9.48528i −0.979112 0.405561i −0.165015 0.986291i \(-0.552767\pi\)
−0.814096 + 0.580730i \(0.802767\pi\)
\(548\) 0 0
\(549\) −13.5355 + 32.6777i −0.577683 + 1.39465i
\(550\) 0 0
\(551\) −8.24264 19.8995i −0.351148 0.847747i
\(552\) 0 0
\(553\) −3.17157 3.17157i −0.134869 0.134869i
\(554\) 0 0
\(555\) −17.0711 + 7.07107i −0.724626 + 0.300150i
\(556\) 0 0
\(557\) 28.2426i 1.19668i −0.801243 0.598340i \(-0.795827\pi\)
0.801243 0.598340i \(-0.204173\pi\)
\(558\) 0 0
\(559\) 4.82843 4.82843i 0.204221 0.204221i
\(560\) 0 0
\(561\) −8.00000 + 8.48528i −0.337760 + 0.358249i
\(562\) 0 0
\(563\) −27.4142 + 27.4142i −1.15537 + 1.15537i −0.169912 + 0.985459i \(0.554348\pi\)
−0.985459 + 0.169912i \(0.945652\pi\)
\(564\) 0 0
\(565\) 29.8995i 1.25788i
\(566\) 0 0
\(567\) −5.82843 + 2.41421i −0.244771 + 0.101387i
\(568\) 0 0
\(569\) 25.4853 + 25.4853i 1.06840 + 1.06840i 0.997482 + 0.0709163i \(0.0225923\pi\)
0.0709163 + 0.997482i \(0.477408\pi\)
\(570\) 0 0
\(571\) 18.0711 + 43.6274i 0.756251 + 1.82575i 0.520295 + 0.853987i \(0.325822\pi\)
0.235956 + 0.971764i \(0.424178\pi\)
\(572\) 0 0
\(573\) −20.0000 + 48.2843i −0.835512 + 2.01710i
\(574\) 0 0
\(575\) −6.07107 2.51472i −0.253181 0.104871i
\(576\) 0 0
\(577\) −12.9289 −0.538238 −0.269119 0.963107i \(-0.586733\pi\)
−0.269119 + 0.963107i \(0.586733\pi\)
\(578\) 0 0
\(579\) 14.4853 0.601988
\(580\) 0 0
\(581\) −0.343146 0.142136i −0.0142361 0.00589678i
\(582\) 0 0
\(583\) −0.585786 + 1.41421i −0.0242608 + 0.0585707i
\(584\) 0 0
\(585\) −3.82843 9.24264i −0.158286 0.382136i
\(586\) 0 0
\(587\) 16.0416 + 16.0416i 0.662109 + 0.662109i 0.955877 0.293768i \(-0.0949093\pi\)
−0.293768 + 0.955877i \(0.594909\pi\)
\(588\) 0 0
\(589\) −14.4853 + 6.00000i −0.596856 + 0.247226i
\(590\) 0 0
\(591\) 38.9706i 1.60303i
\(592\) 0 0
\(593\) −19.1421 + 19.1421i −0.786073 + 0.786073i −0.980848 0.194775i \(-0.937602\pi\)
0.194775 + 0.980848i \(0.437602\pi\)
\(594\) 0 0
\(595\) 5.65685 6.00000i 0.231908 0.245976i
\(596\) 0 0
\(597\) 3.17157 3.17157i 0.129804 0.129804i
\(598\) 0 0
\(599\) 34.6274i 1.41484i 0.706794 + 0.707419i \(0.250141\pi\)
−0.706794 + 0.707419i \(0.749859\pi\)
\(600\) 0 0
\(601\) −18.7782 + 7.77817i −0.765978 + 0.317278i −0.731242 0.682118i \(-0.761059\pi\)
−0.0347358 + 0.999397i \(0.511059\pi\)
\(602\) 0 0
\(603\) −18.4853 18.4853i −0.752779 0.752779i
\(604\) 0 0
\(605\) 6.94975 + 16.7782i 0.282547 + 0.682130i
\(606\) 0 0
\(607\) 13.1421 31.7279i 0.533423 1.28780i −0.395820 0.918328i \(-0.629540\pi\)
0.929243 0.369469i \(-0.120460\pi\)
\(608\) 0 0
\(609\) 11.6569 + 4.82843i 0.472360 + 0.195658i
\(610\) 0 0
\(611\) −15.3137 −0.619526
\(612\) 0 0
\(613\) −17.3137 −0.699294 −0.349647 0.936881i \(-0.613698\pi\)
−0.349647 + 0.936881i \(0.613698\pi\)
\(614\) 0 0
\(615\) −36.3848 15.0711i −1.46718 0.607724i
\(616\) 0 0
\(617\) −1.29289 + 3.12132i −0.0520499 + 0.125660i −0.947766 0.318968i \(-0.896664\pi\)
0.895716 + 0.444627i \(0.146664\pi\)
\(618\) 0 0
\(619\) −3.68629 8.89949i −0.148165 0.357701i 0.832320 0.554295i \(-0.187012\pi\)
−0.980485 + 0.196594i \(0.937012\pi\)
\(620\) 0 0
\(621\) −6.34315 6.34315i −0.254542 0.254542i
\(622\) 0 0
\(623\) −9.41421 + 3.89949i −0.377173 + 0.156230i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) −9.65685 + 9.65685i −0.385658 + 0.385658i
\(628\) 0 0
\(629\) 14.3934 6.46447i 0.573902 0.257755i
\(630\) 0 0
\(631\) −4.72792 + 4.72792i −0.188216 + 0.188216i −0.794924 0.606709i \(-0.792489\pi\)
0.606709 + 0.794924i \(0.292489\pi\)
\(632\) 0 0
\(633\) 39.1127i 1.55459i
\(634\) 0 0
\(635\) 29.5563 12.2426i 1.17291 0.485834i
\(636\) 0 0
\(637\) −5.82843 5.82843i −0.230931 0.230931i
\(638\) 0 0
\(639\) −19.1421 46.2132i −0.757251 1.82817i
\(640\) 0 0
\(641\) −5.73654 + 13.8492i −0.226580 + 0.547012i −0.995757 0.0920237i \(-0.970666\pi\)
0.769177 + 0.639036i \(0.220666\pi\)
\(642\) 0 0
\(643\) 37.0416 + 15.3431i 1.46078 + 0.605075i 0.964735 0.263223i \(-0.0847854\pi\)
0.496044 + 0.868297i \(0.334785\pi\)
\(644\) 0 0
\(645\) 23.3137 0.917976
\(646\) 0 0
\(647\) −2.82843 −0.111197 −0.0555985 0.998453i \(-0.517707\pi\)
−0.0555985 + 0.998453i \(0.517707\pi\)
\(648\) 0 0
\(649\) 6.00000 + 2.48528i 0.235521 + 0.0975558i
\(650\) 0 0
\(651\) 3.51472 8.48528i 0.137753 0.332564i
\(652\) 0 0
\(653\) −6.77817 16.3640i −0.265250 0.640371i 0.733997 0.679152i \(-0.237652\pi\)
−0.999248 + 0.0387812i \(0.987652\pi\)
\(654\) 0 0
\(655\) 0.242641 + 0.242641i 0.00948076 + 0.00948076i
\(656\) 0 0
\(657\) −18.9497 + 7.84924i −0.739300 + 0.306228i
\(658\) 0 0
\(659\) 8.48528i 0.330540i −0.986248 0.165270i \(-0.947151\pi\)
0.986248 0.165270i \(-0.0528495\pi\)
\(660\) 0 0
\(661\) 29.1421 29.1421i 1.13350 1.13350i 0.143906 0.989591i \(-0.454034\pi\)
0.989591 0.143906i \(-0.0459664\pi\)
\(662\) 0 0
\(663\) 6.24264 + 13.8995i 0.242444 + 0.539812i
\(664\) 0 0
\(665\) 6.82843 6.82843i 0.264795 0.264795i
\(666\) 0 0
\(667\) 18.4853i 0.715753i
\(668\) 0 0
\(669\) −2.00000 + 0.828427i −0.0773245 + 0.0320288i
\(670\) 0 0
\(671\) 7.07107 + 7.07107i 0.272976 + 0.272976i
\(672\) 0 0
\(673\) −0.121320 0.292893i −0.00467656 0.0112902i 0.921524 0.388321i \(-0.126945\pi\)
−0.926201 + 0.377031i \(0.876945\pi\)
\(674\) 0 0
\(675\) −1.31371 + 3.17157i −0.0505647 + 0.122074i
\(676\) 0 0
\(677\) 40.5772 + 16.8076i 1.55951 + 0.645969i 0.985004 0.172533i \(-0.0551952\pi\)
0.574503 + 0.818502i \(0.305195\pi\)
\(678\) 0 0
\(679\) −6.97056 −0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) 0 0
\(683\) 28.8995 + 11.9706i 1.10581 + 0.458041i 0.859492 0.511149i \(-0.170780\pi\)
0.246316 + 0.969190i \(0.420780\pi\)
\(684\) 0 0
\(685\) 6.17157 14.8995i 0.235804 0.569280i
\(686\) 0 0
\(687\) 22.8284 + 55.1127i 0.870959 + 2.10268i
\(688\) 0 0
\(689\) 1.41421 + 1.41421i 0.0538772 + 0.0538772i
\(690\) 0 0
\(691\) −37.6274 + 15.5858i −1.43141 + 0.592911i −0.957700 0.287767i \(-0.907087\pi\)
−0.473714 + 0.880679i \(0.657087\pi\)
\(692\) 0 0
\(693\) 4.48528i 0.170382i
\(694\) 0 0
\(695\) 19.5563 19.5563i 0.741815 0.741815i
\(696\) 0 0
\(697\) 31.4350 + 11.9497i 1.19069 + 0.452629i
\(698\) 0 0
\(699\) 18.7279 18.7279i 0.708355 0.708355i
\(700\) 0 0
\(701\) 21.6985i 0.819540i 0.912189 + 0.409770i \(0.134391\pi\)
−0.912189 + 0.409770i \(0.865609\pi\)
\(702\) 0 0
\(703\) 17.0711 7.07107i 0.643848 0.266690i
\(704\) 0 0
\(705\) −36.9706 36.9706i −1.39239 1.39239i
\(706\) 0 0
\(707\) 5.55635 + 13.4142i 0.208968 + 0.504493i
\(708\) 0 0
\(709\) −4.43503 + 10.7071i −0.166561 + 0.402114i −0.985017 0.172455i \(-0.944830\pi\)
0.818456 + 0.574569i \(0.194830\pi\)
\(710\) 0 0
\(711\) 14.6569 + 6.07107i 0.549675 + 0.227683i
\(712\) 0 0
\(713\) −13.4558 −0.503925
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) 0 0
\(717\) −22.1421 9.17157i −0.826913 0.342519i
\(718\) 0 0
\(719\) −5.38478 + 13.0000i −0.200818 + 0.484818i −0.991920 0.126867i \(-0.959508\pi\)
0.791102 + 0.611685i \(0.209508\pi\)
\(720\) 0 0
\(721\) −1.85786 4.48528i −0.0691905 0.167041i
\(722\) 0 0
\(723\) 22.7279 + 22.7279i 0.845261 + 0.845261i
\(724\) 0 0
\(725\) −6.53553 + 2.70711i −0.242724 + 0.100539i
\(726\) 0 0
\(727\) 19.1127i 0.708851i −0.935084 0.354425i \(-0.884676\pi\)
0.935084 0.354425i \(-0.115324\pi\)
\(728\) 0 0
\(729\) 27.7782 27.7782i 1.02882 1.02882i
\(730\) 0 0
\(731\) −19.8995 + 0.585786i −0.736009 + 0.0216661i
\(732\) 0 0
\(733\) −8.51472 + 8.51472i −0.314498 + 0.314498i −0.846649 0.532151i \(-0.821384\pi\)
0.532151 + 0.846649i \(0.321384\pi\)
\(734\) 0 0
\(735\) 28.1421i 1.03804i
\(736\) 0 0
\(737\) −6.82843 + 2.82843i −0.251528 + 0.104186i
\(738\) 0 0
\(739\) −24.2426 24.2426i −0.891780 0.891780i 0.102911 0.994691i \(-0.467184\pi\)
−0.994691 + 0.102911i \(0.967184\pi\)
\(740\) 0 0
\(741\) 6.82843 + 16.4853i 0.250849 + 0.605602i
\(742\) 0 0
\(743\) −18.8579 + 45.5269i −0.691828 + 1.67022i 0.0492371 + 0.998787i \(0.484321\pi\)
−0.741065 + 0.671433i \(0.765679\pi\)
\(744\) 0 0
\(745\) 28.9706 + 12.0000i 1.06140 + 0.439646i
\(746\) 0 0
\(747\) 1.31371 0.0480661
\(748\) 0 0
\(749\) −6.82843 −0.249505
\(750\) 0 0
\(751\) 24.2132 + 10.0294i 0.883552 + 0.365979i 0.777873 0.628421i \(-0.216298\pi\)
0.105679 + 0.994400i \(0.466298\pi\)
\(752\) 0 0
\(753\) 3.51472 8.48528i 0.128083 0.309221i
\(754\) 0 0
\(755\) −9.07107 21.8995i −0.330130 0.797004i
\(756\) 0 0
\(757\) 37.7990 + 37.7990i 1.37383 + 1.37383i 0.854692 + 0.519136i \(0.173746\pi\)
0.519136 + 0.854692i \(0.326254\pi\)
\(758\) 0 0
\(759\) −10.8284 + 4.48528i −0.393047 + 0.162805i
\(760\) 0 0
\(761\) 21.6985i 0.786569i −0.919417 0.393285i \(-0.871339\pi\)
0.919417 0.393285i \(-0.128661\pi\)
\(762\) 0 0
\(763\) 3.27208 3.27208i 0.118457 0.118457i
\(764\) 0 0
\(765\) −10.3640 + 27.2635i −0.374710 + 0.985712i
\(766\) 0 0
\(767\) 6.00000 6.00000i 0.216647 0.216647i
\(768\) 0 0
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 0 0
\(771\) −53.4558 + 22.1421i −1.92517 + 0.797430i
\(772\) 0 0
\(773\) −3.41421 3.41421i −0.122801 0.122801i 0.643036 0.765836i \(-0.277675\pi\)
−0.765836 + 0.643036i \(0.777675\pi\)
\(774\) 0 0
\(775\) 1.97056 + 4.75736i 0.0707847 + 0.170889i
\(776\) 0 0
\(777\) −4.14214 + 10.0000i −0.148598 + 0.358748i
\(778\) 0 0
\(779\) 36.3848 + 15.0711i 1.30362 + 0.539977i
\(780\) 0 0
\(781\) −14.1421 −0.506045
\(782\) 0 0
\(783\) −9.65685 −0.345108
\(784\) 0 0
\(785\) −2.82843 1.17157i −0.100951 0.0418152i
\(786\) 0 0
\(787\) 19.0000 45.8701i 0.677277 1.63509i −0.0916786 0.995789i \(-0.529223\pi\)
0.768955 0.639302i \(-0.220777\pi\)
\(788\) 0 0
\(789\) 6.48528 + 15.6569i 0.230882 + 0.557399i
\(790\) 0 0
\(791\) −12.3848 12.3848i −0.440352 0.440352i
\(792\) 0 0
\(793\) 12.0711 5.00000i 0.428656 0.177555i
\(794\) 0 0
\(795\) 6.82843i 0.242179i
\(796\) 0 0
\(797\) −12.1716 + 12.1716i −0.431139 + 0.431139i −0.889016 0.457877i \(-0.848610\pi\)
0.457877 + 0.889016i \(0.348610\pi\)
\(798\) 0 0
\(799\) 32.4853 + 30.6274i 1.14925 + 1.08352i
\(800\) 0 0
\(801\) 25.4853 25.4853i 0.900478 0.900478i
\(802\) 0 0
\(803\) 5.79899i 0.204642i
\(804\) 0 0
\(805\) 7.65685 3.17157i 0.269869 0.111783i
\(806\) 0 0
\(807\) 11.7574 + 11.7574i 0.413879 + 0.413879i
\(808\) 0 0
\(809\) −11.3934 27.5061i −0.400571 0.967063i −0.987528 0.157445i \(-0.949674\pi\)
0.586957 0.809618i \(-0.300326\pi\)
\(810\) 0 0
\(811\) −16.9411 + 40.8995i −0.594883 + 1.43618i 0.283853 + 0.958868i \(0.408387\pi\)
−0.878736 + 0.477308i \(0.841613\pi\)
\(812\) 0 0
\(813\) 14.8284 + 6.14214i 0.520056 + 0.215414i
\(814\) 0 0
\(815\) 10.4853 0.367283
\(816\) 0 0
\(817\) −23.3137 −0.815643
\(818\) 0 0
\(819\) −5.41421 2.24264i −0.189188 0.0783642i
\(820\) 0 0
\(821\) −5.50610 + 13.2929i −0.192164 + 0.463925i −0.990368 0.138463i \(-0.955784\pi\)
0.798204 + 0.602388i \(0.205784\pi\)
\(822\) 0 0
\(823\) −9.00000 21.7279i −0.313720 0.757388i −0.999561 0.0296358i \(-0.990565\pi\)
0.685840 0.727752i \(-0.259435\pi\)
\(824\) 0 0
\(825\) 3.17157 + 3.17157i 0.110420 + 0.110420i
\(826\) 0 0
\(827\) 32.0711 13.2843i 1.11522 0.461939i 0.252488 0.967600i \(-0.418751\pi\)
0.862732 + 0.505661i \(0.168751\pi\)
\(828\) 0 0
\(829\) 13.9411i 0.484195i −0.970252 0.242098i \(-0.922165\pi\)
0.970252 0.242098i \(-0.0778354\pi\)
\(830\) 0 0
\(831\) 40.7279 40.7279i 1.41284 1.41284i
\(832\) 0 0
\(833\) 0.707107 + 24.0208i 0.0244998 + 0.832272i
\(834\) 0 0
\(835\) −13.0711 + 13.0711i −0.452343 + 0.452343i
\(836\) 0 0
\(837\) 7.02944i 0.242973i
\(838\) 0 0
\(839\) 3.58579 1.48528i 0.123795 0.0512776i −0.319926 0.947443i \(-0.603658\pi\)
0.443721 + 0.896165i \(0.353658\pi\)
\(840\) 0 0
\(841\) 6.43503 + 6.43503i 0.221898 + 0.221898i
\(842\) 0 0
\(843\) −17.8995 43.2132i −0.616491 1.48834i
\(844\) 0 0
\(845\) 7.77817 18.7782i 0.267577 0.645989i
\(846\) 0 0
\(847\) 9.82843 + 4.07107i 0.337709 + 0.139884i
\(848\) 0 0
\(849\) −59.7990 −2.05230
\(850\) 0 0
\(851\) 15.8579 0.543601
\(852\) 0 0
\(853\) 39.3345 + 16.2929i 1.34679 + 0.557858i 0.935397 0.353601i \(-0.115043\pi\)
0.411392 + 0.911459i \(0.365043\pi\)
\(854\) 0 0
\(855\) −13.0711 + 31.5563i −0.447021 + 1.07920i
\(856\) 0 0
\(857\) −1.46447 3.53553i −0.0500252 0.120772i 0.896891 0.442251i \(-0.145820\pi\)
−0.946917 + 0.321479i \(0.895820\pi\)
\(858\) 0 0
\(859\) 0.727922 + 0.727922i 0.0248364 + 0.0248364i 0.719416 0.694580i \(-0.244410\pi\)
−0.694580 + 0.719416i \(0.744410\pi\)
\(860\) 0 0
\(861\) −21.3137 + 8.82843i −0.726369 + 0.300872i
\(862\) 0 0
\(863\) 34.6274i 1.17873i −0.807867 0.589365i \(-0.799378\pi\)
0.807867 0.589365i \(-0.200622\pi\)
\(864\) 0 0
\(865\) −4.41421 + 4.41421i −0.150088 + 0.150088i
\(866\) 0 0
\(867\) 14.5563 41.9706i 0.494360 1.42540i
\(868\) 0 0
\(869\) 3.17157 3.17157i 0.107588 0.107588i
\(870\) 0 0
\(871\) 9.65685i 0.327210i
\(872\) 0 0
\(873\) 22.7782 9.43503i 0.770924 0.319327i
\(874\) 0 0
\(875\) −9.31371 9.31371i −0.314861 0.314861i
\(876\) 0 0
\(877\) −14.4056 34.7782i −0.486442 1.17438i −0.956498 0.291739i \(-0.905766\pi\)
0.470056 0.882637i \(-0.344234\pi\)
\(878\) 0 0
\(879\) −23.6569 + 57.1127i −0.797926 + 1.92636i
\(880\) 0 0
\(881\) 17.1213 + 7.09188i 0.576832 + 0.238932i 0.651974 0.758241i \(-0.273941\pi\)
−0.0751422 + 0.997173i \(0.523941\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 28.9706 0.973835
\(886\) 0 0
\(887\) −45.1421 18.6985i −1.51572 0.627834i −0.538995 0.842309i \(-0.681196\pi\)
−0.976729 + 0.214475i \(0.931196\pi\)
\(888\) 0 0
\(889\) 7.17157 17.3137i 0.240527 0.580683i
\(890\) 0 0
\(891\) −2.41421 5.82843i −0.0808792 0.195260i
\(892\) 0 0
\(893\) 36.9706 + 36.9706i 1.23717 + 1.23717i
\(894\) 0 0
\(895\) −10.2426 + 4.24264i −0.342374 + 0.141816i
\(896\) 0 0
\(897\) 15.3137i 0.511310i
\(898\) 0 0
\(899\) −10.2426 + 10.2426i −0.341611 + 0.341611i
\(900\) 0 0
\(901\) −0.171573 5.82843i −0.00571592 0.194173i
\(902\) 0 0
\(903\) 9.65685 9.65685i 0.321360 0.321360i
\(904\) 0 0
\(905\) 23.0711i 0.766908i
\(906\) 0 0
\(907\) 23.1421 9.58579i 0.768422 0.318291i 0.0361889 0.999345i \(-0.488478\pi\)
0.732233 + 0.681054i \(0.238478\pi\)
\(908\) 0 0
\(909\) −36.3137 36.3137i −1.20445 1.20445i
\(910\) 0 0
\(911\) 3.24264 + 7.82843i 0.107433 + 0.259367i 0.968449 0.249211i \(-0.0801712\pi\)
−0.861016 + 0.508578i \(0.830171\pi\)
\(912\) 0 0
\(913\) 0.142136 0.343146i 0.00470400 0.0113565i
\(914\) 0 0
\(915\) 41.2132 + 17.0711i 1.36247 + 0.564352i
\(916\) 0 0
\(917\) 0.201010 0.00663794
\(918\) 0 0
\(919\) 3.31371 0.109309 0.0546546 0.998505i \(-0.482594\pi\)
0.0546546 + 0.998505i \(0.482594\pi\)
\(920\) 0 0
\(921\) −5.17157 2.14214i −0.170409 0.0705858i
\(922\) 0 0
\(923\) −7.07107 + 17.0711i −0.232747 + 0.561901i
\(924\) 0 0
\(925\) −2.32233 5.60660i −0.0763578 0.184344i
\(926\) 0 0
\(927\) 12.1421 + 12.1421i 0.398800 + 0.398800i
\(928\) 0 0
\(929\) 19.3640 8.02082i 0.635311 0.263154i −0.0416968 0.999130i \(-0.513276\pi\)
0.677008 + 0.735976i \(0.263276\pi\)
\(930\) 0 0
\(931\) 28.1421i 0.922321i
\(932\) 0 0
\(933\) 8.34315 8.34315i 0.273142 0.273142i
\(934\) 0 0
\(935\) 6.00000 + 5.65685i 0.196221 + 0.184999i
\(936\) 0 0
\(937\) 2.51472 2.51472i 0.0821523 0.0821523i −0.664837 0.746989i \(-0.731499\pi\)
0.746989 + 0.664837i \(0.231499\pi\)
\(938\) 0 0
\(939\) 33.3137i 1.08715i
\(940\) 0 0
\(941\) 17.2635 7.15076i 0.562773 0.233108i −0.0831158 0.996540i \(-0.526487\pi\)
0.645888 + 0.763432i \(0.276487\pi\)
\(942\) 0 0
\(943\) 23.8995 + 23.8995i 0.778275 + 0.778275i
\(944\) 0 0
\(945\) −1.65685 4.00000i −0.0538975 0.130120i
\(946\) 0 0
\(947\) −5.68629 + 13.7279i −0.184780 + 0.446098i −0.988940 0.148315i \(-0.952615\pi\)
0.804161 + 0.594412i \(0.202615\pi\)
\(948\) 0 0
\(949\) 7.00000 + 2.89949i 0.227230 + 0.0941216i
\(950\) 0 0
\(951\) −15.1716 −0.491972
\(952\) 0 0
\(953\) −9.69848 −0.314165 −0.157082 0.987586i \(-0.550209\pi\)
−0.157082 + 0.987586i \(0.550209\pi\)
\(954\) 0 0
\(955\) 34.1421 + 14.1421i 1.10481 + 0.457629i
\(956\) 0 0
\(957\) −4.82843 + 11.6569i −0.156081 + 0.376813i
\(958\) 0 0
\(959\) −3.61522 8.72792i −0.116742 0.281839i
\(960\) 0 0
\(961\) −14.4645 14.4645i −0.466596 0.466596i
\(962\) 0 0
\(963\) 22.3137 9.24264i 0.719049 0.297840i
\(964\) 0 0
\(965\) 10.2426i 0.329722i
\(966\) 0 0
\(967\) −22.8701 + 22.8701i −0.735451 + 0.735451i −0.971694 0.236243i \(-0.924084\pi\)
0.236243 + 0.971694i \(0.424084\pi\)
\(968\) 0 0
\(969\) 18.4853 48.6274i 0.593833 1.56214i
\(970\) 0 0
\(971\) 39.4142 39.4142i 1.26486 1.26486i 0.316155 0.948708i \(-0.397608\pi\)
0.948708 0.316155i \(-0.102392\pi\)
\(972\) 0 0
\(973\) 16.2010i 0.519381i
\(974\) 0 0
\(975\) 5.41421 2.24264i 0.173394 0.0718220i
\(976\) 0 0
\(977\) 1.14214 + 1.14214i 0.0365402 + 0.0365402i 0.725141 0.688601i \(-0.241775\pi\)
−0.688601 + 0.725141i \(0.741775\pi\)
\(978\) 0 0
\(979\) −3.89949 9.41421i −0.124628 0.300880i
\(980\) 0 0
\(981\) −6.26346 + 15.1213i −0.199977 + 0.482787i
\(982\) 0 0
\(983\) 21.7279 + 9.00000i 0.693013 + 0.287055i 0.701255 0.712911i \(-0.252623\pi\)
−0.00824183 + 0.999966i \(0.502623\pi\)
\(984\) 0 0
\(985\) −27.5563 −0.878018
\(986\) 0 0
\(987\) −30.6274 −0.974881
\(988\) 0 0
\(989\) −18.4853 7.65685i −0.587798 0.243474i
\(990\) 0 0
\(991\) −12.2721 + 29.6274i −0.389835 + 0.941146i 0.600139 + 0.799896i \(0.295112\pi\)
−0.989974 + 0.141250i \(0.954888\pi\)
\(992\) 0 0
\(993\) 17.7990 + 42.9706i 0.564834 + 1.36363i
\(994\) 0 0
\(995\) −2.24264 2.24264i −0.0710965 0.0710965i
\(996\) 0 0
\(997\) −7.12132 + 2.94975i −0.225534 + 0.0934194i −0.492589 0.870262i \(-0.663950\pi\)
0.267055 + 0.963681i \(0.413950\pi\)
\(998\) 0 0
\(999\) 8.28427i 0.262103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.v.d.145.1 4
4.3 odd 2 17.2.d.a.9.1 yes 4
12.11 even 2 153.2.l.c.145.1 4
17.2 even 8 inner 272.2.v.d.257.1 4
17.6 odd 16 4624.2.a.bp.1.4 4
17.11 odd 16 4624.2.a.bp.1.1 4
20.3 even 4 425.2.n.b.349.1 4
20.7 even 4 425.2.n.a.349.1 4
20.19 odd 2 425.2.m.a.26.1 4
28.3 even 6 833.2.v.a.128.1 8
28.11 odd 6 833.2.v.b.128.1 8
28.19 even 6 833.2.v.a.655.1 8
28.23 odd 6 833.2.v.b.655.1 8
28.27 even 2 833.2.l.a.638.1 4
68.3 even 16 289.2.c.c.251.3 8
68.7 even 16 289.2.b.b.288.4 4
68.11 even 16 289.2.a.f.1.2 4
68.15 odd 8 289.2.d.a.155.1 4
68.19 odd 8 17.2.d.a.2.1 4
68.23 even 16 289.2.a.f.1.1 4
68.27 even 16 289.2.b.b.288.3 4
68.31 even 16 289.2.c.c.251.4 8
68.39 even 16 289.2.c.c.38.2 8
68.43 odd 8 289.2.d.b.134.1 4
68.47 odd 4 289.2.d.c.110.1 4
68.55 odd 4 289.2.d.b.110.1 4
68.59 odd 8 289.2.d.c.134.1 4
68.63 even 16 289.2.c.c.38.1 8
68.67 odd 2 289.2.d.a.179.1 4
204.11 odd 16 2601.2.a.bb.1.3 4
204.23 odd 16 2601.2.a.bb.1.4 4
204.155 even 8 153.2.l.c.19.1 4
340.19 odd 8 425.2.m.a.376.1 4
340.79 even 16 7225.2.a.u.1.3 4
340.87 even 8 425.2.n.b.274.1 4
340.159 even 16 7225.2.a.u.1.4 4
340.223 even 8 425.2.n.a.274.1 4
476.19 even 24 833.2.v.a.410.1 8
476.87 even 24 833.2.v.a.716.1 8
476.223 even 8 833.2.l.a.393.1 4
476.291 odd 24 833.2.v.b.716.1 8
476.359 odd 24 833.2.v.b.410.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 68.19 odd 8
17.2.d.a.9.1 yes 4 4.3 odd 2
153.2.l.c.19.1 4 204.155 even 8
153.2.l.c.145.1 4 12.11 even 2
272.2.v.d.145.1 4 1.1 even 1 trivial
272.2.v.d.257.1 4 17.2 even 8 inner
289.2.a.f.1.1 4 68.23 even 16
289.2.a.f.1.2 4 68.11 even 16
289.2.b.b.288.3 4 68.27 even 16
289.2.b.b.288.4 4 68.7 even 16
289.2.c.c.38.1 8 68.63 even 16
289.2.c.c.38.2 8 68.39 even 16
289.2.c.c.251.3 8 68.3 even 16
289.2.c.c.251.4 8 68.31 even 16
289.2.d.a.155.1 4 68.15 odd 8
289.2.d.a.179.1 4 68.67 odd 2
289.2.d.b.110.1 4 68.55 odd 4
289.2.d.b.134.1 4 68.43 odd 8
289.2.d.c.110.1 4 68.47 odd 4
289.2.d.c.134.1 4 68.59 odd 8
425.2.m.a.26.1 4 20.19 odd 2
425.2.m.a.376.1 4 340.19 odd 8
425.2.n.a.274.1 4 340.223 even 8
425.2.n.a.349.1 4 20.7 even 4
425.2.n.b.274.1 4 340.87 even 8
425.2.n.b.349.1 4 20.3 even 4
833.2.l.a.393.1 4 476.223 even 8
833.2.l.a.638.1 4 28.27 even 2
833.2.v.a.128.1 8 28.3 even 6
833.2.v.a.410.1 8 476.19 even 24
833.2.v.a.655.1 8 28.19 even 6
833.2.v.a.716.1 8 476.87 even 24
833.2.v.b.128.1 8 28.11 odd 6
833.2.v.b.410.1 8 476.359 odd 24
833.2.v.b.655.1 8 28.23 odd 6
833.2.v.b.716.1 8 476.291 odd 24
2601.2.a.bb.1.3 4 204.11 odd 16
2601.2.a.bb.1.4 4 204.23 odd 16
4624.2.a.bp.1.1 4 17.11 odd 16
4624.2.a.bp.1.4 4 17.6 odd 16
7225.2.a.u.1.3 4 340.79 even 16
7225.2.a.u.1.4 4 340.159 even 16