L(s) = 1 | − 4·2-s − 22·4-s + 140·8-s + 70·9-s − 14·13-s + 195·16-s + 35·17-s − 280·18-s + 14·19-s + 56·26-s − 2.77e3·32-s − 140·34-s − 1.54e3·36-s − 56·38-s + 592·43-s + 896·47-s + 341·49-s + 308·52-s + 630·53-s + 1.00e3·59-s + 1.04e3·64-s − 2.08e3·67-s − 770·68-s + 9.80e3·72-s − 308·76-s + 2.21e3·81-s − 2.14e3·83-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 2.75·4-s + 6.18·8-s + 2.59·9-s − 0.298·13-s + 3.04·16-s + 0.499·17-s − 3.66·18-s + 0.169·19-s + 0.422·26-s − 15.3·32-s − 0.706·34-s − 7.12·36-s − 0.239·38-s + 2.09·43-s + 2.78·47-s + 0.994·49-s + 0.821·52-s + 1.63·53-s + 2.22·59-s + 2.03·64-s − 3.79·67-s − 1.37·68-s + 16.0·72-s − 0.464·76-s + 3.04·81-s − 2.83·83-s + ⋯ |
Λ(s)=(=((58⋅174)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((58⋅174)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
58⋅174
|
Sign: |
1
|
Analytic conductor: |
395384. |
Root analytic conductor: |
5.00757 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 58⋅174, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.5377157475 |
L(21) |
≈ |
0.5377157475 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 17 | C22 | 1−35T+280pT2−35p3T3+p6T4 |
good | 2 | C2 | (1+T+p3T2)4 |
| 3 | C22 | (1−35T2+p6T4)2 |
| 7 | D4×C2 | 1−341T2+1128T4−341p6T6+p12T8 |
| 11 | D4×C2 | 1−4293T2+7887344T4−4293p6T6+p12T8 |
| 13 | D4 | (1+7T−966T2+7p3T3+p6T4)2 |
| 19 | D4 | (1−7T+8358T2−7p3T3+p6T4)2 |
| 23 | D4×C2 | 1−5028T2+32833958T4−5028p6T6+p12T8 |
| 29 | C22 | (1−1058pT2+p6T4)2 |
| 31 | D4×C2 | 1−32165T2+390771768T4−32165p6T6+p12T8 |
| 37 | D4×C2 | 1−91016T2+5345007678T4−91016p6T6+p12T8 |
| 41 | D4×C2 | 1−169305T2+14486361728T4−169305p6T6+p12T8 |
| 43 | C2 | (1−148T+p3T2)4 |
| 47 | C2 | (1−224T+p3T2)4 |
| 53 | D4 | (1−315T+59320T2−315p3T3+p6T4)2 |
| 59 | D4 | (1−504T+130438T2−504p3T3+p6T4)2 |
| 61 | D4×C2 | 1+91480T2+103275473118T4+91480p6T6+p12T8 |
| 67 | D4 | (1+1041T+609206T2+1041p3T3+p6T4)2 |
| 71 | D4×C2 | 1−3103pT2+267650334444T4−3103p7T6+p12T8 |
| 73 | D4×C2 | 1−922873T2+419875572048T4−922873p6T6+p12T8 |
| 79 | D4×C2 | 1−1820261T2+1309129438200T4−1820261p6T6+p12T8 |
| 83 | D4 | (1+1071T+1424962T2+1071p3T3+p6T4)2 |
| 89 | D4 | (1−931T+1363388T2−931p3T3+p6T4)2 |
| 97 | D4×C2 | 1−2397332T2+2743625522598T4−2397332p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74281463466507980020438681541, −7.53280393488377820557947793233, −7.27131531805841697546062577595, −7.20791524297240793063666619916, −7.10542716812910151827950761916, −6.43592451714184319122213817662, −6.03733315647856846933151364470, −5.71993980255115565301646189438, −5.45206549910803858362535763924, −5.34127891848696507657038678410, −5.09232922850948785225852099744, −4.59725512627940550887162010613, −4.35360548567310295969794848037, −4.23904899194757325590043955363, −4.13974817229449330424588825595, −3.95794426081707943776524239940, −3.55511012498425988048020094737, −3.19401927856690496618639427293, −2.48305447237743809422276769437, −2.17728085808049780806942296527, −1.37019278287858476303060001564, −1.28827338895280955198509093465, −1.05088804339446745709676109229, −0.73024154617894875944534371062, −0.22749992464298863856864381722,
0.22749992464298863856864381722, 0.73024154617894875944534371062, 1.05088804339446745709676109229, 1.28827338895280955198509093465, 1.37019278287858476303060001564, 2.17728085808049780806942296527, 2.48305447237743809422276769437, 3.19401927856690496618639427293, 3.55511012498425988048020094737, 3.95794426081707943776524239940, 4.13974817229449330424588825595, 4.23904899194757325590043955363, 4.35360548567310295969794848037, 4.59725512627940550887162010613, 5.09232922850948785225852099744, 5.34127891848696507657038678410, 5.45206549910803858362535763924, 5.71993980255115565301646189438, 6.03733315647856846933151364470, 6.43592451714184319122213817662, 7.10542716812910151827950761916, 7.20791524297240793063666619916, 7.27131531805841697546062577595, 7.53280393488377820557947793233, 7.74281463466507980020438681541