L(s) = 1 | + (1.30 − 1.30i)3-s + 3.62i·5-s + 1.31i·7-s − 0.406i·9-s + (−0.158 + 0.158i)11-s + 4.10i·13-s + (4.73 + 4.73i)15-s + (−1.97 − 1.97i)17-s + (0.759 − 0.759i)19-s + (1.72 + 1.72i)21-s + 3.15i·23-s − 8.13·25-s + (3.38 + 3.38i)27-s + (−0.639 − 5.34i)29-s + (6.58 − 6.58i)31-s + ⋯ |
L(s) = 1 | + (0.753 − 0.753i)3-s + 1.62i·5-s + 0.498i·7-s − 0.135i·9-s + (−0.0478 + 0.0478i)11-s + 1.13i·13-s + (1.22 + 1.22i)15-s + (−0.479 − 0.479i)17-s + (0.174 − 0.174i)19-s + (0.375 + 0.375i)21-s + 0.658i·23-s − 1.62·25-s + (0.651 + 0.651i)27-s + (−0.118 − 0.992i)29-s + (1.18 − 1.18i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.672−0.739i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(0.672−0.739i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.672−0.739i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(447,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), 0.672−0.739i)
|
Particular Values
L(1) |
≈ |
1.57195+0.695221i |
L(21) |
≈ |
1.57195+0.695221i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(0.639+5.34i)T |
good | 3 | 1+(−1.30+1.30i)T−3iT2 |
| 5 | 1−3.62iT−5T2 |
| 7 | 1−1.31iT−7T2 |
| 11 | 1+(0.158−0.158i)T−11iT2 |
| 13 | 1−4.10iT−13T2 |
| 17 | 1+(1.97+1.97i)T+17iT2 |
| 19 | 1+(−0.759+0.759i)T−19iT2 |
| 23 | 1−3.15iT−23T2 |
| 31 | 1+(−6.58+6.58i)T−31iT2 |
| 37 | 1+(−0.338+0.338i)T−37iT2 |
| 41 | 1+(−0.459+0.459i)T−41iT2 |
| 43 | 1+(−7.46+7.46i)T−43iT2 |
| 47 | 1+(4.11+4.11i)T+47iT2 |
| 53 | 1−7.59T+53T2 |
| 59 | 1+10.0iT−59T2 |
| 61 | 1+(−3.51−3.51i)T+61iT2 |
| 67 | 1−2.87T+67T2 |
| 71 | 1+14.3T+71T2 |
| 73 | 1+(8.40−8.40i)T−73iT2 |
| 79 | 1+(8.03−8.03i)T−79iT2 |
| 83 | 1−15.0iT−83T2 |
| 89 | 1+(7.68+7.68i)T+89iT2 |
| 97 | 1+(−3.15+3.15i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36770113396214843013146996959, −10.23878328291670734549092328227, −9.339869889250908775918466375284, −8.328985661609584039141049891103, −7.30390404255031212831566829916, −6.86466373433249160767371552828, −5.79023292749647554447685493735, −4.09840716860821675139893128836, −2.73806783289357424014306938547, −2.15843232149626265135839141059,
1.05365900026746372178944733465, 3.00808785884679229381246769654, 4.20702246067143134687363386681, 4.87182821043673754257108892945, 6.05213061868118060292366966498, 7.58878730106798418212474650062, 8.610123205406055368307273129566, 8.862435256468515798365169927673, 9.994826664867995722067383689536, 10.58811376381884648640130280528