gp: [N,k,chi] = [464,2,Mod(191,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.191");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [20]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 19 1,\beta_1,\ldots,\beta_{19} 1 , β 1 , … , β 1 9 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 20 − 6 x 17 − 6 x 16 − 2 x 15 + 18 x 14 + 42 x 13 + 9 x 12 − 30 x 11 − 142 x 10 + ⋯ + 1024 x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 x 2 0 − 6 x 1 7 − 6 x 1 6 − 2 x 1 5 + 1 8 x 1 4 + 4 2 x 1 3 + 9 x 1 2 − 3 0 x 1 1 − 1 4 2 x 1 0 + ⋯ + 1 0 2 4
x^20 - 6*x^17 - 6*x^16 - 2*x^15 + 18*x^14 + 42*x^13 + 9*x^12 - 30*x^11 - 142*x^10 - 60*x^9 + 36*x^8 + 336*x^7 + 288*x^6 - 64*x^5 - 384*x^4 - 768*x^3 + 1024
:
β 1 \beta_{1} β 1 = = =
( − ν 18 + 6 ν 15 + 6 ν 14 + 2 ν 13 − 18 ν 12 − 42 ν 11 − 9 ν 10 + ⋯ + 768 ν ) / 256 ( - \nu^{18} + 6 \nu^{15} + 6 \nu^{14} + 2 \nu^{13} - 18 \nu^{12} - 42 \nu^{11} - 9 \nu^{10} + \cdots + 768 \nu ) / 256 ( − ν 1 8 + 6 ν 1 5 + 6 ν 1 4 + 2 ν 1 3 − 1 8 ν 1 2 − 4 2 ν 1 1 − 9 ν 1 0 + ⋯ + 7 6 8 ν ) / 2 5 6
(-v^18 + 6*v^15 + 6*v^14 + 2*v^13 - 18*v^12 - 42*v^11 - 9*v^10 + 30*v^9 + 142*v^8 + 60*v^7 - 36*v^6 - 336*v^5 - 288*v^4 + 64*v^3 + 128*v^2 + 768*v) / 256
β 2 \beta_{2} β 2 = = =
( − 33 ν 19 − 4 ν 18 + 124 ν 17 + 310 ν 16 + 78 ν 15 − 782 ν 14 − 1682 ν 13 + ⋯ − 32768 ) / 3072 ( - 33 \nu^{19} - 4 \nu^{18} + 124 \nu^{17} + 310 \nu^{16} + 78 \nu^{15} - 782 \nu^{14} - 1682 \nu^{13} + \cdots - 32768 ) / 3072 ( − 3 3 ν 1 9 − 4 ν 1 8 + 1 2 4 ν 1 7 + 3 1 0 ν 1 6 + 7 8 ν 1 5 − 7 8 2 ν 1 4 − 1 6 8 2 ν 1 3 + ⋯ − 3 2 7 6 8 ) / 3 0 7 2
(-33*v^19 - 4*v^18 + 124*v^17 + 310*v^16 + 78*v^15 - 782*v^14 - 1682*v^13 - 1002*v^12 + 2407*v^11 + 6290*v^10 + 4322*v^9 - 6596*v^8 - 16172*v^7 - 12336*v^6 + 10480*v^5 + 33152*v^4 + 31296*v^3 - 7168*v^2 - 38144*v - 32768) / 3072
β 3 \beta_{3} β 3 = = =
( − 5 ν 19 − 62 ν 18 − 48 ν 17 + 70 ν 16 + 386 ν 15 + 510 ν 14 − 110 ν 13 + ⋯ − 6656 ) / 1536 ( - 5 \nu^{19} - 62 \nu^{18} - 48 \nu^{17} + 70 \nu^{16} + 386 \nu^{15} + 510 \nu^{14} - 110 \nu^{13} + \cdots - 6656 ) / 1536 ( − 5 ν 1 9 − 6 2 ν 1 8 − 4 8 ν 1 7 + 7 0 ν 1 6 + 3 8 6 ν 1 5 + 5 1 0 ν 1 4 − 1 1 0 ν 1 3 + ⋯ − 6 6 5 6 ) / 1 5 3 6
(-5*v^19 - 62*v^18 - 48*v^17 + 70*v^16 + 386*v^15 + 510*v^14 - 110*v^13 - 1246*v^12 - 2281*v^11 - 72*v^10 + 3466*v^9 + 6456*v^8 + 1396*v^7 - 7288*v^6 - 13888*v^5 - 8800*v^4 + 9280*v^3 + 15232*v^2 + 14592*v - 6656) / 1536
β 4 \beta_{4} β 4 = = =
( − 129 ν 19 − 50 ν 18 − 52 ν 17 + 782 ν 16 + 1506 ν 15 + 2054 ν 14 + ⋯ + 184832 ) / 3072 ( - 129 \nu^{19} - 50 \nu^{18} - 52 \nu^{17} + 782 \nu^{16} + 1506 \nu^{15} + 2054 \nu^{14} + \cdots + 184832 ) / 3072 ( − 1 2 9 ν 1 9 − 5 0 ν 1 8 − 5 2 ν 1 7 + 7 8 2 ν 1 6 + 1 5 0 6 ν 1 5 + 2 0 5 4 ν 1 4 + ⋯ + 1 8 4 8 3 2 ) / 3 0 7 2
(-129*v^19 - 50*v^18 - 52*v^17 + 782*v^16 + 1506*v^15 + 2054*v^14 + 26*v^13 - 5910*v^12 - 8533*v^11 - 8252*v^10 + 11398*v^9 + 24056*v^8 + 30572*v^7 - 17688*v^6 - 74128*v^5 - 90656*v^4 - 47424*v^3 + 98176*v^2 + 142592*v + 184832) / 3072
β 5 \beta_{5} β 5 = = =
( 18 ν 19 + 29 ν 18 + 32 ν 17 − 72 ν 16 − 234 ν 15 − 354 ν 14 − 78 ν 13 + ⋯ − 14592 ) / 512 ( 18 \nu^{19} + 29 \nu^{18} + 32 \nu^{17} - 72 \nu^{16} - 234 \nu^{15} - 354 \nu^{14} - 78 \nu^{13} + \cdots - 14592 ) / 512 ( 1 8 ν 1 9 + 2 9 ν 1 8 + 3 2 ν 1 7 − 7 2 ν 1 6 − 2 3 4 ν 1 5 − 3 5 4 ν 1 4 − 7 8 ν 1 3 + ⋯ − 1 4 5 9 2 ) / 5 1 2
(18*v^19 + 29*v^18 + 32*v^17 - 72*v^16 - 234*v^15 - 354*v^14 - 78*v^13 + 774*v^12 + 1308*v^11 + 945*v^10 - 1626*v^9 - 3722*v^8 - 3756*v^7 + 2124*v^6 + 8928*v^5 + 10512*v^4 + 4480*v^3 - 8896*v^2 - 13056*v - 14592) / 512
β 6 \beta_{6} β 6 = = =
( − 37 ν 19 − 82 ν 18 − 124 ν 17 + 134 ν 16 + 666 ν 15 + 1150 ν 14 + ⋯ + 35328 ) / 1024 ( - 37 \nu^{19} - 82 \nu^{18} - 124 \nu^{17} + 134 \nu^{16} + 666 \nu^{15} + 1150 \nu^{14} + \cdots + 35328 ) / 1024 ( − 3 7 ν 1 9 − 8 2 ν 1 8 − 1 2 4 ν 1 7 + 1 3 4 ν 1 6 + 6 6 6 ν 1 5 + 1 1 5 0 ν 1 4 + ⋯ + 3 5 3 2 8 ) / 1 0 2 4
(-37*v^19 - 82*v^18 - 124*v^17 + 134*v^16 + 666*v^15 + 1150*v^14 + 450*v^13 - 2094*v^12 - 4329*v^11 - 3444*v^10 + 4534*v^9 + 12280*v^8 + 12204*v^7 - 6072*v^6 - 27888*v^5 - 33056*v^4 - 11456*v^3 + 29312*v^2 + 42240*v + 35328) / 1024
β 7 \beta_{7} β 7 = = =
( − 53 ν 19 − 62 ν 18 + 4 ν 17 + 342 ν 16 + 674 ν 15 + 486 ν 14 − 678 ν 13 + ⋯ + 24064 ) / 1024 ( - 53 \nu^{19} - 62 \nu^{18} + 4 \nu^{17} + 342 \nu^{16} + 674 \nu^{15} + 486 \nu^{14} - 678 \nu^{13} + \cdots + 24064 ) / 1024 ( − 5 3 ν 1 9 − 6 2 ν 1 8 + 4 ν 1 7 + 3 4 2 ν 1 6 + 6 7 4 ν 1 5 + 4 8 6 ν 1 4 − 6 7 8 ν 1 3 + ⋯ + 2 4 0 6 4 ) / 1 0 2 4
(-53*v^19 - 62*v^18 + 4*v^17 + 342*v^16 + 674*v^15 + 486*v^14 - 678*v^13 - 2758*v^12 - 2385*v^11 + 576*v^10 + 6878*v^9 + 7504*v^8 + 1084*v^7 - 13320*v^6 - 22704*v^5 - 11488*v^4 + 5568*v^3 + 29568*v^2 + 23296*v + 24064) / 1024
β 8 \beta_{8} β 8 = = =
( − 36 ν 19 − 51 ν 18 − 84 ν 17 + 84 ν 16 + 346 ν 15 + 642 ν 14 + 366 ν 13 + ⋯ + 26368 ) / 512 ( - 36 \nu^{19} - 51 \nu^{18} - 84 \nu^{17} + 84 \nu^{16} + 346 \nu^{15} + 642 \nu^{14} + 366 \nu^{13} + \cdots + 26368 ) / 512 ( − 3 6 ν 1 9 − 5 1 ν 1 8 − 8 4 ν 1 7 + 8 4 ν 1 6 + 3 4 6 ν 1 5 + 6 4 2 ν 1 4 + 3 6 6 ν 1 3 + ⋯ + 2 6 3 6 8 ) / 5 1 2
(-36*v^19 - 51*v^18 - 84*v^17 + 84*v^16 + 346*v^15 + 642*v^14 + 366*v^13 - 990*v^12 - 1986*v^11 - 2211*v^10 + 1878*v^9 + 5550*v^8 + 7908*v^7 - 468*v^6 - 12432*v^5 - 18192*v^4 - 13824*v^3 + 9408*v^2 + 16896*v + 26368) / 512
β 9 \beta_{9} β 9 = = =
( − 106 ν 19 − 173 ν 18 − 272 ν 17 + 264 ν 16 + 1114 ν 15 + 2002 ν 14 + ⋯ + 71424 ) / 1536 ( - 106 \nu^{19} - 173 \nu^{18} - 272 \nu^{17} + 264 \nu^{16} + 1114 \nu^{15} + 2002 \nu^{14} + \cdots + 71424 ) / 1536 ( − 1 0 6 ν 1 9 − 1 7 3 ν 1 8 − 2 7 2 ν 1 7 + 2 6 4 ν 1 6 + 1 1 1 4 ν 1 5 + 2 0 0 2 ν 1 4 + ⋯ + 7 1 4 2 4 ) / 1 5 3 6
(-106*v^19 - 173*v^18 - 272*v^17 + 264*v^16 + 1114*v^15 + 2002*v^14 + 1086*v^13 - 3158*v^12 - 6292*v^11 - 6385*v^10 + 6394*v^9 + 17626*v^8 + 23052*v^7 - 2732*v^6 - 38368*v^5 - 54096*v^4 - 38272*v^3 + 28864*v^2 + 47872*v + 71424) / 1536
β 10 \beta_{10} β 1 0 = = =
( − 135 ν 19 − 169 ν 18 − 248 ν 17 + 478 ν 16 + 1536 ν 15 + 2500 ν 14 + ⋯ + 124672 ) / 1536 ( - 135 \nu^{19} - 169 \nu^{18} - 248 \nu^{17} + 478 \nu^{16} + 1536 \nu^{15} + 2500 \nu^{14} + \cdots + 124672 ) / 1536 ( − 1 3 5 ν 1 9 − 1 6 9 ν 1 8 − 2 4 8 ν 1 7 + 4 7 8 ν 1 6 + 1 5 3 6 ν 1 5 + 2 5 0 0 ν 1 4 + ⋯ + 1 2 4 6 7 2 ) / 1 5 3 6
(-135*v^19 - 169*v^18 - 248*v^17 + 478*v^16 + 1536*v^15 + 2500*v^14 + 940*v^13 - 4944*v^12 - 8753*v^11 - 8455*v^10 + 9824*v^9 + 24934*v^8 + 30808*v^7 - 9852*v^6 - 62048*v^5 - 79984*v^4 - 48576*v^3 + 63296*v^2 + 97024*v + 124672) / 1536
β 11 \beta_{11} β 1 1 = = =
( 103 ν 19 + 144 ν 18 + 204 ν 17 − 282 ν 16 − 954 ν 15 − 1590 ν 14 + ⋯ − 67584 ) / 1024 ( 103 \nu^{19} + 144 \nu^{18} + 204 \nu^{17} - 282 \nu^{16} - 954 \nu^{15} - 1590 \nu^{14} + \cdots - 67584 ) / 1024 ( 1 0 3 ν 1 9 + 1 4 4 ν 1 8 + 2 0 4 ν 1 7 − 2 8 2 ν 1 6 − 9 5 4 ν 1 5 − 1 5 9 0 ν 1 4 + ⋯ − 6 7 5 8 4 ) / 1 0 2 4
(103*v^19 + 144*v^18 + 204*v^17 - 282*v^16 - 954*v^15 - 1590*v^14 - 714*v^13 + 2862*v^12 + 4887*v^11 + 4854*v^10 - 5782*v^9 - 13692*v^8 - 18492*v^7 + 2976*v^6 + 31536*v^5 + 43136*v^4 + 33216*v^3 - 23808*v^2 - 38656*v - 67584) / 1024
β 12 \beta_{12} β 1 2 = = =
( − 103 ν 19 − 150 ν 18 − 236 ν 17 + 258 ν 16 + 990 ν 15 + 1786 ν 14 + ⋯ + 72192 ) / 1024 ( - 103 \nu^{19} - 150 \nu^{18} - 236 \nu^{17} + 258 \nu^{16} + 990 \nu^{15} + 1786 \nu^{14} + \cdots + 72192 ) / 1024 ( − 1 0 3 ν 1 9 − 1 5 0 ν 1 8 − 2 3 6 ν 1 7 + 2 5 8 ν 1 6 + 9 9 0 ν 1 5 + 1 7 8 6 ν 1 4 + ⋯ + 7 2 1 9 2 ) / 1 0 2 4
(-103*v^19 - 150*v^18 - 236*v^17 + 258*v^16 + 990*v^15 + 1786*v^14 + 934*v^13 - 2890*v^12 - 5475*v^11 - 5724*v^10 + 5754*v^9 + 15224*v^8 + 21236*v^7 - 2248*v^6 - 34224*v^5 - 48736*v^4 - 36928*v^3 + 24960*v^2 + 42240*v + 72192) / 1024
β 13 \beta_{13} β 1 3 = = =
( − 25 ν 19 − 42 ν 18 − 66 ν 17 + 62 ν 16 + 282 ν 15 + 506 ν 14 + 270 ν 13 + ⋯ + 18432 ) / 256 ( - 25 \nu^{19} - 42 \nu^{18} - 66 \nu^{17} + 62 \nu^{16} + 282 \nu^{15} + 506 \nu^{14} + 270 \nu^{13} + \cdots + 18432 ) / 256 ( − 2 5 ν 1 9 − 4 2 ν 1 8 − 6 6 ν 1 7 + 6 2 ν 1 6 + 2 8 2 ν 1 5 + 5 0 6 ν 1 4 + 2 7 0 ν 1 3 + ⋯ + 1 8 4 3 2 ) / 2 5 6
(-25*v^19 - 42*v^18 - 66*v^17 + 62*v^16 + 282*v^15 + 506*v^14 + 270*v^13 - 810*v^12 - 1641*v^11 - 1632*v^10 + 1624*v^9 + 4572*v^8 + 5832*v^7 - 864*v^6 - 10104*v^5 - 13856*v^4 - 9312*v^3 + 8064*v^2 + 13184*v + 18432) / 256
β 14 \beta_{14} β 1 4 = = =
( 185 ν 19 + 245 ν 18 + 288 ν 17 − 778 ν 16 − 2132 ν 15 − 2976 ν 14 + ⋯ − 133888 ) / 1536 ( 185 \nu^{19} + 245 \nu^{18} + 288 \nu^{17} - 778 \nu^{16} - 2132 \nu^{15} - 2976 \nu^{14} + \cdots - 133888 ) / 1536 ( 1 8 5 ν 1 9 + 2 4 5 ν 1 8 + 2 8 8 ν 1 7 − 7 7 8 ν 1 6 − 2 1 3 2 ν 1 5 − 2 9 7 6 ν 1 4 + ⋯ − 1 3 3 8 8 8 ) / 1 5 3 6
(185*v^19 + 245*v^18 + 288*v^17 - 778*v^16 - 2132*v^15 - 2976*v^14 - 304*v^13 + 7372*v^12 + 10747*v^11 + 7335*v^10 - 16348*v^9 - 30774*v^8 - 30256*v^7 + 22252*v^6 + 78400*v^5 + 84976*v^4 + 38720*v^3 - 83008*v^2 - 103680*v - 133888) / 1536
β 15 \beta_{15} β 1 5 = = =
( − 137 ν 19 − 166 ν 18 − 252 ν 17 + 446 ν 16 + 1354 ν 15 + 2302 ν 14 + ⋯ + 115200 ) / 1024 ( - 137 \nu^{19} - 166 \nu^{18} - 252 \nu^{17} + 446 \nu^{16} + 1354 \nu^{15} + 2302 \nu^{14} + \cdots + 115200 ) / 1024 ( − 1 3 7 ν 1 9 − 1 6 6 ν 1 8 − 2 5 2 ν 1 7 + 4 4 6 ν 1 6 + 1 3 5 4 ν 1 5 + 2 3 0 2 ν 1 4 + ⋯ + 1 1 5 2 0 0 ) / 1 0 2 4
(-137*v^19 - 166*v^18 - 252*v^17 + 446*v^16 + 1354*v^15 + 2302*v^14 + 930*v^13 - 4350*v^12 - 7605*v^11 - 7728*v^10 + 8582*v^9 + 21280*v^8 + 28652*v^7 - 6792*v^6 - 52080*v^5 - 70432*v^4 - 48192*v^3 + 49024*v^2 + 76544*v + 115200) / 1024
β 16 \beta_{16} β 1 6 = = =
( 143 ν 19 + 194 ν 18 + 244 ν 17 − 578 ν 16 − 1686 ν 15 − 2498 ν 14 + ⋯ − 112128 ) / 1024 ( 143 \nu^{19} + 194 \nu^{18} + 244 \nu^{17} - 578 \nu^{16} - 1686 \nu^{15} - 2498 \nu^{14} + \cdots - 112128 ) / 1024 ( 1 4 3 ν 1 9 + 1 9 4 ν 1 8 + 2 4 4 ν 1 7 − 5 7 8 ν 1 6 − 1 6 8 6 ν 1 5 − 2 4 9 8 ν 1 4 + ⋯ − 1 1 2 1 2 8 ) / 1 0 2 4
(143*v^19 + 194*v^18 + 244*v^17 - 578*v^16 - 1686*v^15 - 2498*v^14 - 510*v^13 + 5698*v^12 + 9011*v^11 + 6888*v^10 - 12458*v^9 - 25600*v^8 - 26868*v^7 + 15928*v^6 + 64464*v^5 + 74144*v^4 + 35392*v^3 - 67712*v^2 - 88832*v - 112128) / 1024
β 17 \beta_{17} β 1 7 = = =
( − 242 ν 19 − 297 ν 18 − 380 ν 17 + 968 ν 16 + 2642 ν 15 + 3922 ν 14 + ⋯ + 196352 ) / 1536 ( - 242 \nu^{19} - 297 \nu^{18} - 380 \nu^{17} + 968 \nu^{16} + 2642 \nu^{15} + 3922 \nu^{14} + \cdots + 196352 ) / 1536 ( − 2 4 2 ν 1 9 − 2 9 7 ν 1 8 − 3 8 0 ν 1 7 + 9 6 8 ν 1 6 + 2 6 4 2 ν 1 5 + 3 9 2 2 ν 1 4 + ⋯ + 1 9 6 3 5 2 ) / 1 5 3 6
(-242*v^19 - 297*v^18 - 380*v^17 + 968*v^16 + 2642*v^15 + 3922*v^14 + 782*v^13 - 8998*v^12 - 13740*v^11 - 11317*v^10 + 19206*v^9 + 39034*v^8 + 44132*v^7 - 23020*v^6 - 99984*v^5 - 118352*v^4 - 65792*v^3 + 103104*v^2 + 140800*v + 196352) / 1536
β 18 \beta_{18} β 1 8 = = =
( − 207 ν 19 − 316 ν 18 − 468 ν 17 + 554 ν 16 + 2130 ν 15 + 3646 ν 14 + ⋯ + 141312 ) / 1024 ( - 207 \nu^{19} - 316 \nu^{18} - 468 \nu^{17} + 554 \nu^{16} + 2130 \nu^{15} + 3646 \nu^{14} + \cdots + 141312 ) / 1024 ( − 2 0 7 ν 1 9 − 3 1 6 ν 1 8 − 4 6 8 ν 1 7 + 5 5 4 ν 1 6 + 2 1 3 0 ν 1 5 + 3 6 4 6 ν 1 4 + ⋯ + 1 4 1 3 1 2 ) / 1 0 2 4
(-207*v^19 - 316*v^18 - 468*v^17 + 554*v^16 + 2130*v^15 + 3646*v^14 + 1730*v^13 - 6342*v^12 - 11655*v^11 - 11298*v^10 + 12966*v^9 + 32788*v^8 + 41916*v^7 - 7920*v^6 - 74448*v^5 - 99456*v^4 - 68672*v^3 + 59648*v^2 + 92416*v + 141312) / 1024
β 19 \beta_{19} β 1 9 = = =
( − 853 ν 19 − 1114 ν 18 − 1428 ν 17 + 3158 ν 16 + 9034 ν 15 + 13278 ν 14 + ⋯ + 599552 ) / 3072 ( - 853 \nu^{19} - 1114 \nu^{18} - 1428 \nu^{17} + 3158 \nu^{16} + 9034 \nu^{15} + 13278 \nu^{14} + \cdots + 599552 ) / 3072 ( − 8 5 3 ν 1 9 − 1 1 1 4 ν 1 8 − 1 4 2 8 ν 1 7 + 3 1 5 8 ν 1 6 + 9 0 3 4 ν 1 5 + 1 3 2 7 8 ν 1 4 + ⋯ + 5 9 9 5 5 2 ) / 3 0 7 2
(-853*v^19 - 1114*v^18 - 1428*v^17 + 3158*v^16 + 9034*v^15 + 13278*v^14 + 2786*v^13 - 30158*v^12 - 45497*v^11 - 35820*v^10 + 65678*v^9 + 129768*v^8 + 142940*v^7 - 74456*v^6 - 322256*v^5 - 375776*v^4 - 213568*v^3 + 317312*v^2 + 413952*v + 599552) / 3072
ν \nu ν = = =
( − β 18 − 2 β 11 + β 6 + β 5 + β 1 ) / 4 ( -\beta_{18} - 2\beta_{11} + \beta_{6} + \beta_{5} + \beta_1 ) / 4 ( − β 1 8 − 2 β 1 1 + β 6 + β 5 + β 1 ) / 4
(-b18 - 2*b11 + b6 + b5 + b1) / 4
ν 2 \nu^{2} ν 2 = = =
( β 19 − 2 β 17 − β 13 − β 11 + β 4 + β 3 − β 2 − 2 β 1 ) / 4 ( \beta_{19} - 2\beta_{17} - \beta_{13} - \beta_{11} + \beta_{4} + \beta_{3} - \beta_{2} - 2\beta_1 ) / 4 ( β 1 9 − 2 β 1 7 − β 1 3 − β 1 1 + β 4 + β 3 − β 2 − 2 β 1 ) / 4
(b19 - 2*b17 - b13 - b11 + b4 + b3 - b2 - 2*b1) / 4
ν 3 \nu^{3} ν 3 = = =
( β 18 − 2 β 15 − 2 β 13 − 2 β 10 + 4 β 8 + β 6 − β 5 + 2 β 4 − β 1 + 4 ) / 4 ( \beta_{18} - 2\beta_{15} - 2\beta_{13} - 2\beta_{10} + 4\beta_{8} + \beta_{6} - \beta_{5} + 2\beta_{4} - \beta _1 + 4 ) / 4 ( β 1 8 − 2 β 1 5 − 2 β 1 3 − 2 β 1 0 + 4 β 8 + β 6 − β 5 + 2 β 4 − β 1 + 4 ) / 4
(b18 - 2*b15 - 2*b13 - 2*b10 + 4*b8 + b6 - b5 + 2*b4 - b1 + 4) / 4
ν 4 \nu^{4} ν 4 = = =
( − β 19 + 2 β 16 + 2 β 15 + β 13 − β 11 + 2 β 7 + 2 β 6 + ⋯ + 4 ) / 4 ( - \beta_{19} + 2 \beta_{16} + 2 \beta_{15} + \beta_{13} - \beta_{11} + 2 \beta_{7} + 2 \beta_{6} + \cdots + 4 ) / 4 ( − β 1 9 + 2 β 1 6 + 2 β 1 5 + β 1 3 − β 1 1 + 2 β 7 + 2 β 6 + ⋯ + 4 ) / 4
(-b19 + 2*b16 + 2*b15 + b13 - b11 + 2*b7 + 2*b6 + 4*b5 + b4 + b3 + b2 + 4) / 4
ν 5 \nu^{5} ν 5 = = =
( 2 β 19 − 3 β 18 − 2 β 17 + 2 β 14 − 4 β 11 + 2 β 9 − 2 β 8 + ⋯ + 2 ) / 4 ( 2 \beta_{19} - 3 \beta_{18} - 2 \beta_{17} + 2 \beta_{14} - 4 \beta_{11} + 2 \beta_{9} - 2 \beta_{8} + \cdots + 2 ) / 4 ( 2 β 1 9 − 3 β 1 8 − 2 β 1 7 + 2 β 1 4 − 4 β 1 1 + 2 β 9 − 2 β 8 + ⋯ + 2 ) / 4
(2*b19 - 3*b18 - 2*b17 + 2*b14 - 4*b11 + 2*b9 - 2*b8 + 3*b6 - 3*b5 - 2*b3 - 3*b1 + 2) / 4
ν 6 \nu^{6} ν 6 = = =
( 7 β 19 − 4 β 18 − 6 β 17 − 2 β 15 + 6 β 14 − β 13 + 4 β 12 + ⋯ + 2 β 1 ) / 4 ( 7 \beta_{19} - 4 \beta_{18} - 6 \beta_{17} - 2 \beta_{15} + 6 \beta_{14} - \beta_{13} + 4 \beta_{12} + \cdots + 2 \beta_1 ) / 4 ( 7 β 1 9 − 4 β 1 8 − 6 β 1 7 − 2 β 1 5 + 6 β 1 4 − β 1 3 + 4 β 1 2 + ⋯ + 2 β 1 ) / 4
(7*b19 - 4*b18 - 6*b17 - 2*b15 + 6*b14 - b13 + 4*b12 - b11 - 6*b10 + 8*b8 + 2*b7 + 7*b4 + 5*b3 - 5*b2 + 2*b1) / 4
ν 7 \nu^{7} ν 7 = = =
( 7 β 18 − 2 β 17 + 6 β 16 − 2 β 15 − 6 β 13 + 6 β 12 + 2 β 10 + ⋯ − 8 ) / 4 ( 7 \beta_{18} - 2 \beta_{17} + 6 \beta_{16} - 2 \beta_{15} - 6 \beta_{13} + 6 \beta_{12} + 2 \beta_{10} + \cdots - 8 ) / 4 ( 7 β 1 8 − 2 β 1 7 + 6 β 1 6 − 2 β 1 5 − 6 β 1 3 + 6 β 1 2 + 2 β 1 0 + ⋯ − 8 ) / 4
(7*b18 - 2*b17 + 6*b16 - 2*b15 - 6*b13 + 6*b12 + 2*b10 - 2*b9 - 8*b8 + 7*b6 + b5 + 6*b4 + 4*b2 - 3*b1 - 8) / 4
ν 8 \nu^{8} ν 8 = = =
( 3 β 19 + 6 β 16 + 4 β 15 + 4 β 14 − 9 β 13 + 9 β 11 + 4 β 10 + ⋯ + 32 ) / 4 ( 3 \beta_{19} + 6 \beta_{16} + 4 \beta_{15} + 4 \beta_{14} - 9 \beta_{13} + 9 \beta_{11} + 4 \beta_{10} + \cdots + 32 ) / 4 ( 3 β 1 9 + 6 β 1 6 + 4 β 1 5 + 4 β 1 4 − 9 β 1 3 + 9 β 1 1 + 4 β 1 0 + ⋯ + 3 2 ) / 4
(3*b19 + 6*b16 + 4*b15 + 4*b14 - 9*b13 + 9*b11 + 4*b10 + 16*b9 + 4*b7 + 2*b6 - 4*b5 - 3*b4 - b3 - b2 + 32) / 4
ν 9 \nu^{9} ν 9 = = =
( 10 β 19 − 13 β 18 − 10 β 16 + 30 β 14 + 10 β 12 − 16 β 11 + ⋯ + 10 ) / 4 ( 10 \beta_{19} - 13 \beta_{18} - 10 \beta_{16} + 30 \beta_{14} + 10 \beta_{12} - 16 \beta_{11} + \cdots + 10 ) / 4 ( 1 0 β 1 9 − 1 3 β 1 8 − 1 0 β 1 6 + 3 0 β 1 4 + 1 0 β 1 2 − 1 6 β 1 1 + ⋯ + 1 0 ) / 4
(10*b19 - 13*b18 - 10*b16 + 30*b14 + 10*b12 - 16*b11 - 10*b8 + 4*b7 + 13*b6 + 15*b5 + 2*b3 + 11*b1 + 10) / 4
ν 10 \nu^{10} ν 1 0 = = =
( 11 β 19 − 12 β 18 − 34 β 17 − 10 β 14 − 7 β 13 + 36 β 12 + ⋯ + 6 β 1 ) / 4 ( 11 \beta_{19} - 12 \beta_{18} - 34 \beta_{17} - 10 \beta_{14} - 7 \beta_{13} + 36 \beta_{12} + \cdots + 6 \beta_1 ) / 4 ( 1 1 β 1 9 − 1 2 β 1 8 − 3 4 β 1 7 − 1 0 β 1 4 − 7 β 1 3 + 3 6 β 1 2 + ⋯ + 6 β 1 ) / 4
(11*b19 - 12*b18 - 34*b17 - 10*b14 - 7*b13 + 36*b12 - 7*b11 + 10*b10 - 20*b8 + 11*b4 + 7*b3 - 7*b2 + 6*b1) / 4
ν 11 \nu^{11} ν 1 1 = = =
( 13 β 18 + 24 β 17 + 16 β 16 − 34 β 15 − 58 β 13 + 16 β 12 + ⋯ + 20 ) / 4 ( 13 \beta_{18} + 24 \beta_{17} + 16 \beta_{16} - 34 \beta_{15} - 58 \beta_{13} + 16 \beta_{12} + \cdots + 20 ) / 4 ( 1 3 β 1 8 + 2 4 β 1 7 + 1 6 β 1 6 − 3 4 β 1 5 − 5 8 β 1 3 + 1 6 β 1 2 + ⋯ + 2 0 ) / 4
(13*b18 + 24*b17 + 16*b16 - 34*b15 - 58*b13 + 16*b12 + 6*b10 + 24*b9 + 20*b8 + 13*b6 - 13*b5 + 2*b4 - 16*b2 - 21*b1 + 20) / 4
ν 12 \nu^{12} ν 1 2 = = =
( − β 19 − 6 β 16 + 10 β 15 + 44 β 14 − 7 β 13 + 7 β 11 + 44 β 10 + ⋯ + 140 ) / 4 ( - \beta_{19} - 6 \beta_{16} + 10 \beta_{15} + 44 \beta_{14} - 7 \beta_{13} + 7 \beta_{11} + 44 \beta_{10} + \cdots + 140 ) / 4 ( − β 1 9 − 6 β 1 6 + 1 0 β 1 5 + 4 4 β 1 4 − 7 β 1 3 + 7 β 1 1 + 4 4 β 1 0 + ⋯ + 1 4 0 ) / 4
(-b19 - 6*b16 + 10*b15 + 44*b14 - 7*b13 + 7*b11 + 44*b10 + 24*b9 + 10*b7 + 2*b6 + 52*b5 + b4 + 33*b3 + 33*b2 + 140) / 4
ν 13 \nu^{13} ν 1 3 = = =
( − 38 β 19 − 39 β 18 − 34 β 17 − 48 β 16 − 30 β 14 + 48 β 12 + ⋯ + 42 ) / 4 ( - 38 \beta_{19} - 39 \beta_{18} - 34 \beta_{17} - 48 \beta_{16} - 30 \beta_{14} + 48 \beta_{12} + \cdots + 42 ) / 4 ( − 3 8 β 1 9 − 3 9 β 1 8 − 3 4 β 1 7 − 4 8 β 1 6 − 3 0 β 1 4 + 4 8 β 1 2 + ⋯ + 4 2 ) / 4
(-38*b19 - 39*b18 - 34*b17 - 48*b16 - 30*b14 + 48*b12 - 76*b11 + 34*b9 - 42*b8 + 24*b7 + 39*b6 + 25*b5 - 50*b3 + b1 + 42) / 4
ν 14 \nu^{14} ν 1 4 = = =
( 27 β 19 − 100 β 18 − 6 β 17 − 42 β 15 + 30 β 14 − 53 β 13 + ⋯ − 86 β 1 ) / 4 ( 27 \beta_{19} - 100 \beta_{18} - 6 \beta_{17} - 42 \beta_{15} + 30 \beta_{14} - 53 \beta_{13} + \cdots - 86 \beta_1 ) / 4 ( 2 7 β 1 9 − 1 0 0 β 1 8 − 6 β 1 7 − 4 2 β 1 5 + 3 0 β 1 4 − 5 3 β 1 3 + ⋯ − 8 6 β 1 ) / 4
(27*b19 - 100*b18 - 6*b17 - 42*b15 + 30*b14 - 53*b13 + 108*b12 - 53*b11 - 30*b10 + 168*b8 + 42*b7 + 27*b4 + 81*b3 - 81*b2 - 86*b1) / 4
ν 15 \nu^{15} ν 1 5 = = =
( 27 β 18 − 18 β 17 + 54 β 16 − 162 β 15 + 18 β 13 + 54 β 12 + ⋯ + 80 ) / 4 ( 27 \beta_{18} - 18 \beta_{17} + 54 \beta_{16} - 162 \beta_{15} + 18 \beta_{13} + 54 \beta_{12} + \cdots + 80 ) / 4 ( 2 7 β 1 8 − 1 8 β 1 7 + 5 4 β 1 6 − 1 6 2 β 1 5 + 1 8 β 1 3 + 5 4 β 1 2 + ⋯ + 8 0 ) / 4
(27*b18 - 18*b17 + 54*b16 - 162*b15 + 18*b13 + 54*b12 + 90*b10 - 18*b9 + 80*b8 + 27*b6 - 27*b5 + 102*b4 + 84*b2 - 135*b1 + 80) / 4
ν 16 \nu^{16} ν 1 6 = = =
( − 81 β 19 + 54 β 16 + 84 β 15 − 60 β 14 − 53 β 13 + 53 β 11 + ⋯ + 96 ) / 4 ( - 81 \beta_{19} + 54 \beta_{16} + 84 \beta_{15} - 60 \beta_{14} - 53 \beta_{13} + 53 \beta_{11} + \cdots + 96 ) / 4 ( − 8 1 β 1 9 + 5 4 β 1 6 + 8 4 β 1 5 − 6 0 β 1 4 − 5 3 β 1 3 + 5 3 β 1 1 + ⋯ + 9 6 ) / 4
(-81*b19 + 54*b16 + 84*b15 - 60*b14 - 53*b13 + 53*b11 - 60*b10 + 312*b9 + 84*b7 + 10*b6 + 76*b5 + 81*b4 + 27*b3 + 27*b2 + 96) / 4
ν 17 \nu^{17} ν 1 7 = = =
( − 38 β 19 − 129 β 18 + 56 β 17 − 138 β 16 + 390 β 14 + 138 β 12 + ⋯ − 102 ) / 4 ( - 38 \beta_{19} - 129 \beta_{18} + 56 \beta_{17} - 138 \beta_{16} + 390 \beta_{14} + 138 \beta_{12} + \cdots - 102 ) / 4 ( − 3 8 β 1 9 − 1 2 9 β 1 8 + 5 6 β 1 7 − 1 3 8 β 1 6 + 3 9 0 β 1 4 + 1 3 8 β 1 2 + ⋯ − 1 0 2 ) / 4
(-38*b19 - 129*b18 + 56*b17 - 138*b16 + 390*b14 + 138*b12 - 208*b11 - 56*b9 + 102*b8 + 204*b7 + 129*b6 - 61*b5 + 10*b3 - 265*b1 - 102) / 4
ν 18 \nu^{18} ν 1 8 = = =
( 223 β 19 − 476 β 18 − 402 β 17 − 160 β 15 − 2 β 14 + 269 β 13 + ⋯ + 14 β 1 ) / 4 ( 223 \beta_{19} - 476 \beta_{18} - 402 \beta_{17} - 160 \beta_{15} - 2 \beta_{14} + 269 \beta_{13} + \cdots + 14 \beta_1 ) / 4 ( 2 2 3 β 1 9 − 4 7 6 β 1 8 − 4 0 2 β 1 7 − 1 6 0 β 1 5 − 2 β 1 4 + 2 6 9 β 1 3 + ⋯ + 1 4 β 1 ) / 4
(223*b19 - 476*b18 - 402*b17 - 160*b15 - 2*b14 + 269*b13 + 588*b12 + 269*b11 + 2*b10 + 604*b8 + 160*b7 + 223*b4 - 21*b3 + 21*b2 + 14*b1) / 4
ν 19 \nu^{19} ν 1 9 = = =
( 169 β 18 + 384 β 17 + 472 β 16 − 322 β 15 − 146 β 13 + 472 β 12 + ⋯ − 916 ) / 4 ( 169 \beta_{18} + 384 \beta_{17} + 472 \beta_{16} - 322 \beta_{15} - 146 \beta_{13} + 472 \beta_{12} + \cdots - 916 ) / 4 ( 1 6 9 β 1 8 + 3 8 4 β 1 7 + 4 7 2 β 1 6 − 3 2 2 β 1 5 − 1 4 6 β 1 3 + 4 7 2 β 1 2 + ⋯ − 9 1 6 ) / 4
(169*b18 + 384*b17 + 472*b16 - 322*b15 - 146*b13 + 472*b12 - 66*b10 + 384*b9 - 916*b8 + 169*b6 - 145*b5 + 274*b4 - 176*b2 - 177*b1 - 916) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 464 Z ) × \left(\mathbb{Z}/464\mathbb{Z}\right)^\times ( Z / 4 6 4 Z ) × .
n n n
117 117 1 1 7
175 175 1 7 5
321 321 3 2 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
β 8 \beta_{8} β 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 20 + 108 T 3 16 + 3806 T 3 12 + 54336 T 3 8 + 268897 T 3 4 + 2916 T_{3}^{20} + 108T_{3}^{16} + 3806T_{3}^{12} + 54336T_{3}^{8} + 268897T_{3}^{4} + 2916 T 3 2 0 + 1 0 8 T 3 1 6 + 3 8 0 6 T 3 1 2 + 5 4 3 3 6 T 3 8 + 2 6 8 8 9 7 T 3 4 + 2 9 1 6
T3^20 + 108*T3^16 + 3806*T3^12 + 54336*T3^8 + 268897*T3^4 + 2916
acting on S 2 n e w ( 464 , [ χ ] ) S_{2}^{\mathrm{new}}(464, [\chi]) S 2 n e w ( 4 6 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 20 T^{20} T 2 0
T^20
3 3 3
T 20 + 108 T 16 + ⋯ + 2916 T^{20} + 108 T^{16} + \cdots + 2916 T 2 0 + 1 0 8 T 1 6 + ⋯ + 2 9 1 6
T^20 + 108*T^16 + 3806*T^12 + 54336*T^8 + 268897*T^4 + 2916
5 5 5
( T 10 + 32 T 8 + ⋯ + 16 ) 2 (T^{10} + 32 T^{8} + \cdots + 16)^{2} ( T 1 0 + 3 2 T 8 + ⋯ + 1 6 ) 2
(T^10 + 32*T^8 + 358*T^6 + 1648*T^4 + 2633*T^2 + 16)^2
7 7 7
( T 10 + 28 T 8 + ⋯ + 192 ) 2 (T^{10} + 28 T^{8} + \cdots + 192)^{2} ( T 1 0 + 2 8 T 8 + ⋯ + 1 9 2 ) 2
(T^10 + 28*T^8 + 236*T^6 + 608*T^4 + 592*T^2 + 192)^2
11 11 1 1
T 20 + 1116 T 16 + ⋯ + 36 T^{20} + 1116 T^{16} + \cdots + 36 T 2 0 + 1 1 1 6 T 1 6 + ⋯ + 3 6
T^20 + 1116*T^16 + 251438*T^12 + 12845136*T^8 + 46801*T^4 + 36
13 13 1 3
( T 10 + 84 T 8 + ⋯ + 104976 ) 2 (T^{10} + 84 T^{8} + \cdots + 104976)^{2} ( T 1 0 + 8 4 T 8 + ⋯ + 1 0 4 9 7 6 ) 2
(T^10 + 84*T^8 + 2390*T^6 + 26820*T^4 + 100801*T^2 + 104976)^2
17 17 1 7
( T 10 + 2 T 9 + ⋯ + 288 ) 2 (T^{10} + 2 T^{9} + \cdots + 288)^{2} ( T 1 0 + 2 T 9 + ⋯ + 2 8 8 ) 2
(T^10 + 2*T^9 + 2*T^8 + 8*T^7 + 748*T^6 + 1864*T^5 + 2264*T^4 - 4448*T^3 + 5776*T^2 + 1824*T + 288)^2
19 19 1 9
T 20 + 2172 T 16 + ⋯ + 9216 T^{20} + 2172 T^{16} + \cdots + 9216 T 2 0 + 2 1 7 2 T 1 6 + ⋯ + 9 2 1 6
T^20 + 2172*T^16 + 1173776*T^12 + 79402560*T^8 + 103798528*T^4 + 9216
23 23 2 3
( T 10 + 112 T 8 + ⋯ + 3195072 ) 2 (T^{10} + 112 T^{8} + \cdots + 3195072)^{2} ( T 1 0 + 1 1 2 T 8 + ⋯ + 3 1 9 5 0 7 2 ) 2
(T^10 + 112*T^8 + 4700*T^6 + 93584*T^4 + 887440*T^2 + 3195072)^2
29 29 2 9
( T 10 + 2 T 9 + ⋯ + 20511149 ) 2 (T^{10} + 2 T^{9} + \cdots + 20511149)^{2} ( T 1 0 + 2 T 9 + ⋯ + 2 0 5 1 1 1 4 9 ) 2
(T^10 + 2*T^9 - 11*T^8 - 80*T^7 - 122*T^6 - 1380*T^5 - 3538*T^4 - 67280*T^3 - 268279*T^2 + 1414562*T + 20511149)^2
31 31 3 1
T 20 + ⋯ + 372790840356 T^{20} + \cdots + 372790840356 T 2 0 + ⋯ + 3 7 2 7 9 0 8 4 0 3 5 6
T^20 + 8028*T^16 + 4030430*T^12 + 601252368*T^8 + 27061813153*T^4 + 372790840356
37 37 3 7
( T 10 + 10 T 9 + ⋯ + 41472 ) 2 (T^{10} + 10 T^{9} + \cdots + 41472)^{2} ( T 1 0 + 1 0 T 9 + ⋯ + 4 1 4 7 2 ) 2
(T^10 + 10*T^9 + 50*T^8 + 24*T^7 + 1872*T^6 + 16416*T^5 + 70848*T^4 + 120960*T^3 + 82944*T^2 - 82944*T + 41472)^2
41 41 4 1
( T 10 + 2 T 9 + ⋯ + 16450848 ) 2 (T^{10} + 2 T^{9} + \cdots + 16450848)^{2} ( T 1 0 + 2 T 9 + ⋯ + 1 6 4 5 0 8 4 8 ) 2
(T^10 + 2*T^9 + 2*T^8 - 96*T^7 + 20252*T^6 + 41640*T^5 + 47384*T^4 - 2768800*T^3 + 41422096*T^2 - 36916896*T + 16450848)^2
43 43 4 3
T 20 + ⋯ + 19 ⋯ 16 T^{20} + \cdots + 19\!\cdots\!16 T 2 0 + ⋯ + 1 9 ⋯ 1 6
T^20 + 30396*T^16 + 242774318*T^12 + 245736853872*T^8 + 42388535460433*T^4 + 1996717588145316
47 47 4 7
T 20 + ⋯ + 652077796642596 T^{20} + \cdots + 652077796642596 T 2 0 + ⋯ + 6 5 2 0 7 7 7 9 6 6 4 2 5 9 6
T^20 + 17820*T^16 + 49707614*T^12 + 50305190352*T^8 + 18032343122209*T^4 + 652077796642596
53 53 5 3
( T 5 − 12 T 4 + ⋯ + 9302 ) 4 (T^{5} - 12 T^{4} + \cdots + 9302)^{4} ( T 5 − 1 2 T 4 + ⋯ + 9 3 0 2 ) 4
(T^5 - 12*T^4 - 56*T^3 + 1362*T^2 - 6409*T + 9302)^4
59 59 5 9
( T 10 + 304 T 8 + ⋯ + 46287552 ) 2 (T^{10} + 304 T^{8} + \cdots + 46287552)^{2} ( T 1 0 + 3 0 4 T 8 + ⋯ + 4 6 2 8 7 5 5 2 ) 2
(T^10 + 304*T^8 + 30620*T^6 + 1170512*T^4 + 15424144*T^2 + 46287552)^2
61 61 6 1
( T 10 − 2 T 9 + ⋯ + 1316050208 ) 2 (T^{10} - 2 T^{9} + \cdots + 1316050208)^{2} ( T 1 0 − 2 T 9 + ⋯ + 1 3 1 6 0 5 0 2 0 8 ) 2
(T^10 - 2*T^9 + 2*T^8 + 56*T^7 + 32364*T^6 - 22712*T^5 - 17736*T^4 - 7392384*T^3 + 125350416*T^2 - 574399584*T + 1316050208)^2
67 67 6 7
( T 10 − 488 T 8 + ⋯ − 875999232 ) 2 (T^{10} - 488 T^{8} + \cdots - 875999232)^{2} ( T 1 0 − 4 8 8 T 8 + ⋯ − 8 7 5 9 9 9 2 3 2 ) 2
(T^10 - 488*T^8 + 81392*T^6 - 5633920*T^4 + 147198208*T^2 - 875999232)^2
71 71 7 1
( T 10 − 356 T 8 + ⋯ − 1625088 ) 2 (T^{10} - 356 T^{8} + \cdots - 1625088)^{2} ( T 1 0 − 3 5 6 T 8 + ⋯ − 1 6 2 5 0 8 8 ) 2
(T^10 - 356*T^8 + 32888*T^6 - 432976*T^4 + 1538704*T^2 - 1625088)^2
73 73 7 3
( T 10 + 10 T 9 + ⋯ + 2580992 ) 2 (T^{10} + 10 T^{9} + \cdots + 2580992)^{2} ( T 1 0 + 1 0 T 9 + ⋯ + 2 5 8 0 9 9 2 ) 2
(T^10 + 10*T^9 + 50*T^8 - 360*T^7 + 7760*T^6 + 45728*T^5 + 134080*T^4 + 11904*T^3 + 123904*T^2 + 799744*T + 2580992)^2
79 79 7 9
T 20 + ⋯ + 18 ⋯ 56 T^{20} + \cdots + 18\!\cdots\!56 T 2 0 + ⋯ + 1 8 ⋯ 5 6
T^20 + 91260*T^16 + 2651654270*T^12 + 31991004131952*T^8 + 153340346021722753*T^4 + 189816292413733489956
83 83 8 3
( T 10 + 272 T 8 + ⋯ + 1728 ) 2 (T^{10} + 272 T^{8} + \cdots + 1728)^{2} ( T 1 0 + 2 7 2 T 8 + ⋯ + 1 7 2 8 ) 2
(T^10 + 272*T^8 + 10604*T^6 + 27952*T^4 + 19600*T^2 + 1728)^2
89 89 8 9
( T 10 − 18 T 9 + ⋯ + 40443955232 ) 2 (T^{10} - 18 T^{9} + \cdots + 40443955232)^{2} ( T 1 0 − 1 8 T 9 + ⋯ + 4 0 4 4 3 9 5 5 2 3 2 ) 2
(T^10 - 18*T^9 + 162*T^8 + 32*T^7 + 32332*T^6 - 579096*T^5 + 5186456*T^4 + 818048*T^3 + 258952464*T^2 - 4576693536*T + 40443955232)^2
97 97 9 7
( T 10 + 18 T 9 + ⋯ + 2562848 ) 2 (T^{10} + 18 T^{9} + \cdots + 2562848)^{2} ( T 1 0 + 1 8 T 9 + ⋯ + 2 5 6 2 8 4 8 ) 2
(T^10 + 18*T^9 + 162*T^8 + 232*T^7 + 364*T^6 + 6024*T^5 + 76376*T^4 + 72352*T^3 + 7056*T^2 - 190176*T + 2562848)^2
show more
show less