Properties

Label 464.2.k.c
Level $464$
Weight $2$
Character orbit 464.k
Analytic conductor $3.705$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(191,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{13} q^{3} + \beta_{18} q^{5} + \beta_{9} q^{7} + ( - \beta_{8} + \beta_1) q^{9} - \beta_{2} q^{11} + (\beta_{15} - \beta_{12} + \cdots + \beta_1) q^{13} + ( - 2 \beta_{19} + \beta_{17} + \cdots - \beta_{3}) q^{15}+ \cdots + (\beta_{19} + \beta_{17} + \cdots - \beta_{9}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{17} - 16 q^{21} - 28 q^{25} - 4 q^{29} - 20 q^{37} - 4 q^{41} - 40 q^{45} + 28 q^{49} + 48 q^{53} + 4 q^{61} + 40 q^{65} - 24 q^{69} - 20 q^{73} - 16 q^{77} + 108 q^{81} + 16 q^{85} + 36 q^{89}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - \nu^{18} + 6 \nu^{15} + 6 \nu^{14} + 2 \nu^{13} - 18 \nu^{12} - 42 \nu^{11} - 9 \nu^{10} + \cdots + 768 \nu ) / 256 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 33 \nu^{19} - 4 \nu^{18} + 124 \nu^{17} + 310 \nu^{16} + 78 \nu^{15} - 782 \nu^{14} - 1682 \nu^{13} + \cdots - 32768 ) / 3072 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 5 \nu^{19} - 62 \nu^{18} - 48 \nu^{17} + 70 \nu^{16} + 386 \nu^{15} + 510 \nu^{14} - 110 \nu^{13} + \cdots - 6656 ) / 1536 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 129 \nu^{19} - 50 \nu^{18} - 52 \nu^{17} + 782 \nu^{16} + 1506 \nu^{15} + 2054 \nu^{14} + \cdots + 184832 ) / 3072 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 18 \nu^{19} + 29 \nu^{18} + 32 \nu^{17} - 72 \nu^{16} - 234 \nu^{15} - 354 \nu^{14} - 78 \nu^{13} + \cdots - 14592 ) / 512 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 37 \nu^{19} - 82 \nu^{18} - 124 \nu^{17} + 134 \nu^{16} + 666 \nu^{15} + 1150 \nu^{14} + \cdots + 35328 ) / 1024 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 53 \nu^{19} - 62 \nu^{18} + 4 \nu^{17} + 342 \nu^{16} + 674 \nu^{15} + 486 \nu^{14} - 678 \nu^{13} + \cdots + 24064 ) / 1024 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 36 \nu^{19} - 51 \nu^{18} - 84 \nu^{17} + 84 \nu^{16} + 346 \nu^{15} + 642 \nu^{14} + 366 \nu^{13} + \cdots + 26368 ) / 512 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 106 \nu^{19} - 173 \nu^{18} - 272 \nu^{17} + 264 \nu^{16} + 1114 \nu^{15} + 2002 \nu^{14} + \cdots + 71424 ) / 1536 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 135 \nu^{19} - 169 \nu^{18} - 248 \nu^{17} + 478 \nu^{16} + 1536 \nu^{15} + 2500 \nu^{14} + \cdots + 124672 ) / 1536 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 103 \nu^{19} + 144 \nu^{18} + 204 \nu^{17} - 282 \nu^{16} - 954 \nu^{15} - 1590 \nu^{14} + \cdots - 67584 ) / 1024 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 103 \nu^{19} - 150 \nu^{18} - 236 \nu^{17} + 258 \nu^{16} + 990 \nu^{15} + 1786 \nu^{14} + \cdots + 72192 ) / 1024 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 25 \nu^{19} - 42 \nu^{18} - 66 \nu^{17} + 62 \nu^{16} + 282 \nu^{15} + 506 \nu^{14} + 270 \nu^{13} + \cdots + 18432 ) / 256 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 185 \nu^{19} + 245 \nu^{18} + 288 \nu^{17} - 778 \nu^{16} - 2132 \nu^{15} - 2976 \nu^{14} + \cdots - 133888 ) / 1536 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 137 \nu^{19} - 166 \nu^{18} - 252 \nu^{17} + 446 \nu^{16} + 1354 \nu^{15} + 2302 \nu^{14} + \cdots + 115200 ) / 1024 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 143 \nu^{19} + 194 \nu^{18} + 244 \nu^{17} - 578 \nu^{16} - 1686 \nu^{15} - 2498 \nu^{14} + \cdots - 112128 ) / 1024 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 242 \nu^{19} - 297 \nu^{18} - 380 \nu^{17} + 968 \nu^{16} + 2642 \nu^{15} + 3922 \nu^{14} + \cdots + 196352 ) / 1536 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 207 \nu^{19} - 316 \nu^{18} - 468 \nu^{17} + 554 \nu^{16} + 2130 \nu^{15} + 3646 \nu^{14} + \cdots + 141312 ) / 1024 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 853 \nu^{19} - 1114 \nu^{18} - 1428 \nu^{17} + 3158 \nu^{16} + 9034 \nu^{15} + 13278 \nu^{14} + \cdots + 599552 ) / 3072 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{18} - 2\beta_{11} + \beta_{6} + \beta_{5} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{19} - 2\beta_{17} - \beta_{13} - \beta_{11} + \beta_{4} + \beta_{3} - \beta_{2} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{18} - 2\beta_{15} - 2\beta_{13} - 2\beta_{10} + 4\beta_{8} + \beta_{6} - \beta_{5} + 2\beta_{4} - \beta _1 + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{19} + 2 \beta_{16} + 2 \beta_{15} + \beta_{13} - \beta_{11} + 2 \beta_{7} + 2 \beta_{6} + \cdots + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2 \beta_{19} - 3 \beta_{18} - 2 \beta_{17} + 2 \beta_{14} - 4 \beta_{11} + 2 \beta_{9} - 2 \beta_{8} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 7 \beta_{19} - 4 \beta_{18} - 6 \beta_{17} - 2 \beta_{15} + 6 \beta_{14} - \beta_{13} + 4 \beta_{12} + \cdots + 2 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7 \beta_{18} - 2 \beta_{17} + 6 \beta_{16} - 2 \beta_{15} - 6 \beta_{13} + 6 \beta_{12} + 2 \beta_{10} + \cdots - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 3 \beta_{19} + 6 \beta_{16} + 4 \beta_{15} + 4 \beta_{14} - 9 \beta_{13} + 9 \beta_{11} + 4 \beta_{10} + \cdots + 32 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 10 \beta_{19} - 13 \beta_{18} - 10 \beta_{16} + 30 \beta_{14} + 10 \beta_{12} - 16 \beta_{11} + \cdots + 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 11 \beta_{19} - 12 \beta_{18} - 34 \beta_{17} - 10 \beta_{14} - 7 \beta_{13} + 36 \beta_{12} + \cdots + 6 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 13 \beta_{18} + 24 \beta_{17} + 16 \beta_{16} - 34 \beta_{15} - 58 \beta_{13} + 16 \beta_{12} + \cdots + 20 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - \beta_{19} - 6 \beta_{16} + 10 \beta_{15} + 44 \beta_{14} - 7 \beta_{13} + 7 \beta_{11} + 44 \beta_{10} + \cdots + 140 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 38 \beta_{19} - 39 \beta_{18} - 34 \beta_{17} - 48 \beta_{16} - 30 \beta_{14} + 48 \beta_{12} + \cdots + 42 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 27 \beta_{19} - 100 \beta_{18} - 6 \beta_{17} - 42 \beta_{15} + 30 \beta_{14} - 53 \beta_{13} + \cdots - 86 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 27 \beta_{18} - 18 \beta_{17} + 54 \beta_{16} - 162 \beta_{15} + 18 \beta_{13} + 54 \beta_{12} + \cdots + 80 ) / 4 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 81 \beta_{19} + 54 \beta_{16} + 84 \beta_{15} - 60 \beta_{14} - 53 \beta_{13} + 53 \beta_{11} + \cdots + 96 ) / 4 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 38 \beta_{19} - 129 \beta_{18} + 56 \beta_{17} - 138 \beta_{16} + 390 \beta_{14} + 138 \beta_{12} + \cdots - 102 ) / 4 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( 223 \beta_{19} - 476 \beta_{18} - 402 \beta_{17} - 160 \beta_{15} - 2 \beta_{14} + 269 \beta_{13} + \cdots + 14 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 169 \beta_{18} + 384 \beta_{17} + 472 \beta_{16} - 322 \beta_{15} - 146 \beta_{13} + 472 \beta_{12} + \cdots - 916 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(\beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
1.22758 0.702175i
1.40931 0.117628i
0.0669512 1.41263i
1.41029 + 0.105218i
−0.879308 1.10762i
−1.10762 0.879308i
0.105218 + 1.41029i
−1.41263 + 0.0669512i
−0.117628 + 1.40931i
−0.702175 + 1.22758i
1.22758 + 0.702175i
1.40931 + 0.117628i
0.0669512 + 1.41263i
1.41029 0.105218i
−0.879308 + 1.10762i
−1.10762 + 0.879308i
0.105218 1.41029i
−1.41263 0.0669512i
−0.117628 1.40931i
−0.702175 1.22758i
0 −1.92975 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
191.2 0 −1.52694 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
191.3 0 −1.47958 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
191.4 0 −1.30508 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
191.5 0 −0.228309 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
191.6 0 0.228309 + 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
191.7 0 1.30508 + 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
191.8 0 1.47958 + 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
191.9 0 1.52694 + 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
191.10 0 1.92975 + 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
447.1 0 −1.92975 + 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
447.2 0 −1.52694 + 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
447.3 0 −1.47958 + 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
447.4 0 −1.30508 + 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
447.5 0 −0.228309 + 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
447.6 0 0.228309 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
447.7 0 1.30508 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
447.8 0 1.47958 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
447.9 0 1.52694 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
447.10 0 1.92975 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
29.c odd 4 1 inner
116.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.k.c 20
4.b odd 2 1 inner 464.2.k.c 20
29.c odd 4 1 inner 464.2.k.c 20
116.e even 4 1 inner 464.2.k.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
464.2.k.c 20 1.a even 1 1 trivial
464.2.k.c 20 4.b odd 2 1 inner
464.2.k.c 20 29.c odd 4 1 inner
464.2.k.c 20 116.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} + 108T_{3}^{16} + 3806T_{3}^{12} + 54336T_{3}^{8} + 268897T_{3}^{4} + 2916 \) acting on \(S_{2}^{\mathrm{new}}(464, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + 108 T^{16} + \cdots + 2916 \) Copy content Toggle raw display
$5$ \( (T^{10} + 32 T^{8} + \cdots + 16)^{2} \) Copy content Toggle raw display
$7$ \( (T^{10} + 28 T^{8} + \cdots + 192)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} + 1116 T^{16} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( (T^{10} + 84 T^{8} + \cdots + 104976)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} + 2 T^{9} + \cdots + 288)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + 2172 T^{16} + \cdots + 9216 \) Copy content Toggle raw display
$23$ \( (T^{10} + 112 T^{8} + \cdots + 3195072)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 2 T^{9} + \cdots + 20511149)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 372790840356 \) Copy content Toggle raw display
$37$ \( (T^{10} + 10 T^{9} + \cdots + 41472)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + 2 T^{9} + \cdots + 16450848)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 652077796642596 \) Copy content Toggle raw display
$53$ \( (T^{5} - 12 T^{4} + \cdots + 9302)^{4} \) Copy content Toggle raw display
$59$ \( (T^{10} + 304 T^{8} + \cdots + 46287552)^{2} \) Copy content Toggle raw display
$61$ \( (T^{10} - 2 T^{9} + \cdots + 1316050208)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} - 488 T^{8} + \cdots - 875999232)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} - 356 T^{8} + \cdots - 1625088)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + 10 T^{9} + \cdots + 2580992)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 18\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( (T^{10} + 272 T^{8} + \cdots + 1728)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 18 T^{9} + \cdots + 40443955232)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + 18 T^{9} + \cdots + 2562848)^{2} \) Copy content Toggle raw display
show more
show less