Properties

Label 464.2.k.c
Level 464464
Weight 22
Character orbit 464.k
Analytic conductor 3.7053.705
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(191,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.191");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 464.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.705058653793.70505865379
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(i)\Q(i)
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x206x176x162x15+18x14+42x13+9x1230x11142x10++1024 x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 217 2^{17}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β13q3+β18q5+β9q7+(β8+β1)q9β2q11+(β15β12++β1)q13+(2β19+β17+β3)q15++(β19+β17+β9)q99+O(q100) q + \beta_{13} q^{3} + \beta_{18} q^{5} + \beta_{9} q^{7} + ( - \beta_{8} + \beta_1) q^{9} - \beta_{2} q^{11} + (\beta_{15} - \beta_{12} + \cdots + \beta_1) q^{13} + ( - 2 \beta_{19} + \beta_{17} + \cdots - \beta_{3}) q^{15}+ \cdots + (\beta_{19} + \beta_{17} + \cdots - \beta_{9}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q4q1716q2128q254q2920q374q4140q45+28q49+48q53+4q61+40q6524q6920q7316q77+108q81+16q85+36q89+36q97+O(q100) 20 q - 4 q^{17} - 16 q^{21} - 28 q^{25} - 4 q^{29} - 20 q^{37} - 4 q^{41} - 40 q^{45} + 28 q^{49} + 48 q^{53} + 4 q^{61} + 40 q^{65} - 24 q^{69} - 20 q^{73} - 16 q^{77} + 108 q^{81} + 16 q^{85} + 36 q^{89}+ \cdots - 36 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x206x176x162x15+18x14+42x13+9x1230x11142x10++1024 x^{20} - 6 x^{17} - 6 x^{16} - 2 x^{15} + 18 x^{14} + 42 x^{13} + 9 x^{12} - 30 x^{11} - 142 x^{10} + \cdots + 1024 : Copy content Toggle raw display

β1\beta_{1}== (ν18+6ν15+6ν14+2ν1318ν1242ν119ν10++768ν)/256 ( - \nu^{18} + 6 \nu^{15} + 6 \nu^{14} + 2 \nu^{13} - 18 \nu^{12} - 42 \nu^{11} - 9 \nu^{10} + \cdots + 768 \nu ) / 256 Copy content Toggle raw display
β2\beta_{2}== (33ν194ν18+124ν17+310ν16+78ν15782ν141682ν13+32768)/3072 ( - 33 \nu^{19} - 4 \nu^{18} + 124 \nu^{17} + 310 \nu^{16} + 78 \nu^{15} - 782 \nu^{14} - 1682 \nu^{13} + \cdots - 32768 ) / 3072 Copy content Toggle raw display
β3\beta_{3}== (5ν1962ν1848ν17+70ν16+386ν15+510ν14110ν13+6656)/1536 ( - 5 \nu^{19} - 62 \nu^{18} - 48 \nu^{17} + 70 \nu^{16} + 386 \nu^{15} + 510 \nu^{14} - 110 \nu^{13} + \cdots - 6656 ) / 1536 Copy content Toggle raw display
β4\beta_{4}== (129ν1950ν1852ν17+782ν16+1506ν15+2054ν14++184832)/3072 ( - 129 \nu^{19} - 50 \nu^{18} - 52 \nu^{17} + 782 \nu^{16} + 1506 \nu^{15} + 2054 \nu^{14} + \cdots + 184832 ) / 3072 Copy content Toggle raw display
β5\beta_{5}== (18ν19+29ν18+32ν1772ν16234ν15354ν1478ν13+14592)/512 ( 18 \nu^{19} + 29 \nu^{18} + 32 \nu^{17} - 72 \nu^{16} - 234 \nu^{15} - 354 \nu^{14} - 78 \nu^{13} + \cdots - 14592 ) / 512 Copy content Toggle raw display
β6\beta_{6}== (37ν1982ν18124ν17+134ν16+666ν15+1150ν14++35328)/1024 ( - 37 \nu^{19} - 82 \nu^{18} - 124 \nu^{17} + 134 \nu^{16} + 666 \nu^{15} + 1150 \nu^{14} + \cdots + 35328 ) / 1024 Copy content Toggle raw display
β7\beta_{7}== (53ν1962ν18+4ν17+342ν16+674ν15+486ν14678ν13++24064)/1024 ( - 53 \nu^{19} - 62 \nu^{18} + 4 \nu^{17} + 342 \nu^{16} + 674 \nu^{15} + 486 \nu^{14} - 678 \nu^{13} + \cdots + 24064 ) / 1024 Copy content Toggle raw display
β8\beta_{8}== (36ν1951ν1884ν17+84ν16+346ν15+642ν14+366ν13++26368)/512 ( - 36 \nu^{19} - 51 \nu^{18} - 84 \nu^{17} + 84 \nu^{16} + 346 \nu^{15} + 642 \nu^{14} + 366 \nu^{13} + \cdots + 26368 ) / 512 Copy content Toggle raw display
β9\beta_{9}== (106ν19173ν18272ν17+264ν16+1114ν15+2002ν14++71424)/1536 ( - 106 \nu^{19} - 173 \nu^{18} - 272 \nu^{17} + 264 \nu^{16} + 1114 \nu^{15} + 2002 \nu^{14} + \cdots + 71424 ) / 1536 Copy content Toggle raw display
β10\beta_{10}== (135ν19169ν18248ν17+478ν16+1536ν15+2500ν14++124672)/1536 ( - 135 \nu^{19} - 169 \nu^{18} - 248 \nu^{17} + 478 \nu^{16} + 1536 \nu^{15} + 2500 \nu^{14} + \cdots + 124672 ) / 1536 Copy content Toggle raw display
β11\beta_{11}== (103ν19+144ν18+204ν17282ν16954ν151590ν14+67584)/1024 ( 103 \nu^{19} + 144 \nu^{18} + 204 \nu^{17} - 282 \nu^{16} - 954 \nu^{15} - 1590 \nu^{14} + \cdots - 67584 ) / 1024 Copy content Toggle raw display
β12\beta_{12}== (103ν19150ν18236ν17+258ν16+990ν15+1786ν14++72192)/1024 ( - 103 \nu^{19} - 150 \nu^{18} - 236 \nu^{17} + 258 \nu^{16} + 990 \nu^{15} + 1786 \nu^{14} + \cdots + 72192 ) / 1024 Copy content Toggle raw display
β13\beta_{13}== (25ν1942ν1866ν17+62ν16+282ν15+506ν14+270ν13++18432)/256 ( - 25 \nu^{19} - 42 \nu^{18} - 66 \nu^{17} + 62 \nu^{16} + 282 \nu^{15} + 506 \nu^{14} + 270 \nu^{13} + \cdots + 18432 ) / 256 Copy content Toggle raw display
β14\beta_{14}== (185ν19+245ν18+288ν17778ν162132ν152976ν14+133888)/1536 ( 185 \nu^{19} + 245 \nu^{18} + 288 \nu^{17} - 778 \nu^{16} - 2132 \nu^{15} - 2976 \nu^{14} + \cdots - 133888 ) / 1536 Copy content Toggle raw display
β15\beta_{15}== (137ν19166ν18252ν17+446ν16+1354ν15+2302ν14++115200)/1024 ( - 137 \nu^{19} - 166 \nu^{18} - 252 \nu^{17} + 446 \nu^{16} + 1354 \nu^{15} + 2302 \nu^{14} + \cdots + 115200 ) / 1024 Copy content Toggle raw display
β16\beta_{16}== (143ν19+194ν18+244ν17578ν161686ν152498ν14+112128)/1024 ( 143 \nu^{19} + 194 \nu^{18} + 244 \nu^{17} - 578 \nu^{16} - 1686 \nu^{15} - 2498 \nu^{14} + \cdots - 112128 ) / 1024 Copy content Toggle raw display
β17\beta_{17}== (242ν19297ν18380ν17+968ν16+2642ν15+3922ν14++196352)/1536 ( - 242 \nu^{19} - 297 \nu^{18} - 380 \nu^{17} + 968 \nu^{16} + 2642 \nu^{15} + 3922 \nu^{14} + \cdots + 196352 ) / 1536 Copy content Toggle raw display
β18\beta_{18}== (207ν19316ν18468ν17+554ν16+2130ν15+3646ν14++141312)/1024 ( - 207 \nu^{19} - 316 \nu^{18} - 468 \nu^{17} + 554 \nu^{16} + 2130 \nu^{15} + 3646 \nu^{14} + \cdots + 141312 ) / 1024 Copy content Toggle raw display
β19\beta_{19}== (853ν191114ν181428ν17+3158ν16+9034ν15+13278ν14++599552)/3072 ( - 853 \nu^{19} - 1114 \nu^{18} - 1428 \nu^{17} + 3158 \nu^{16} + 9034 \nu^{15} + 13278 \nu^{14} + \cdots + 599552 ) / 3072 Copy content Toggle raw display
ν\nu== (β182β11+β6+β5+β1)/4 ( -\beta_{18} - 2\beta_{11} + \beta_{6} + \beta_{5} + \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β192β17β13β11+β4+β3β22β1)/4 ( \beta_{19} - 2\beta_{17} - \beta_{13} - \beta_{11} + \beta_{4} + \beta_{3} - \beta_{2} - 2\beta_1 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β182β152β132β10+4β8+β6β5+2β4β1+4)/4 ( \beta_{18} - 2\beta_{15} - 2\beta_{13} - 2\beta_{10} + 4\beta_{8} + \beta_{6} - \beta_{5} + 2\beta_{4} - \beta _1 + 4 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (β19+2β16+2β15+β13β11+2β7+2β6++4)/4 ( - \beta_{19} + 2 \beta_{16} + 2 \beta_{15} + \beta_{13} - \beta_{11} + 2 \beta_{7} + 2 \beta_{6} + \cdots + 4 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (2β193β182β17+2β144β11+2β92β8++2)/4 ( 2 \beta_{19} - 3 \beta_{18} - 2 \beta_{17} + 2 \beta_{14} - 4 \beta_{11} + 2 \beta_{9} - 2 \beta_{8} + \cdots + 2 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (7β194β186β172β15+6β14β13+4β12++2β1)/4 ( 7 \beta_{19} - 4 \beta_{18} - 6 \beta_{17} - 2 \beta_{15} + 6 \beta_{14} - \beta_{13} + 4 \beta_{12} + \cdots + 2 \beta_1 ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (7β182β17+6β162β156β13+6β12+2β10+8)/4 ( 7 \beta_{18} - 2 \beta_{17} + 6 \beta_{16} - 2 \beta_{15} - 6 \beta_{13} + 6 \beta_{12} + 2 \beta_{10} + \cdots - 8 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== (3β19+6β16+4β15+4β149β13+9β11+4β10++32)/4 ( 3 \beta_{19} + 6 \beta_{16} + 4 \beta_{15} + 4 \beta_{14} - 9 \beta_{13} + 9 \beta_{11} + 4 \beta_{10} + \cdots + 32 ) / 4 Copy content Toggle raw display
ν9\nu^{9}== (10β1913β1810β16+30β14+10β1216β11++10)/4 ( 10 \beta_{19} - 13 \beta_{18} - 10 \beta_{16} + 30 \beta_{14} + 10 \beta_{12} - 16 \beta_{11} + \cdots + 10 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (11β1912β1834β1710β147β13+36β12++6β1)/4 ( 11 \beta_{19} - 12 \beta_{18} - 34 \beta_{17} - 10 \beta_{14} - 7 \beta_{13} + 36 \beta_{12} + \cdots + 6 \beta_1 ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (13β18+24β17+16β1634β1558β13+16β12++20)/4 ( 13 \beta_{18} + 24 \beta_{17} + 16 \beta_{16} - 34 \beta_{15} - 58 \beta_{13} + 16 \beta_{12} + \cdots + 20 ) / 4 Copy content Toggle raw display
ν12\nu^{12}== (β196β16+10β15+44β147β13+7β11+44β10++140)/4 ( - \beta_{19} - 6 \beta_{16} + 10 \beta_{15} + 44 \beta_{14} - 7 \beta_{13} + 7 \beta_{11} + 44 \beta_{10} + \cdots + 140 ) / 4 Copy content Toggle raw display
ν13\nu^{13}== (38β1939β1834β1748β1630β14+48β12++42)/4 ( - 38 \beta_{19} - 39 \beta_{18} - 34 \beta_{17} - 48 \beta_{16} - 30 \beta_{14} + 48 \beta_{12} + \cdots + 42 ) / 4 Copy content Toggle raw display
ν14\nu^{14}== (27β19100β186β1742β15+30β1453β13+86β1)/4 ( 27 \beta_{19} - 100 \beta_{18} - 6 \beta_{17} - 42 \beta_{15} + 30 \beta_{14} - 53 \beta_{13} + \cdots - 86 \beta_1 ) / 4 Copy content Toggle raw display
ν15\nu^{15}== (27β1818β17+54β16162β15+18β13+54β12++80)/4 ( 27 \beta_{18} - 18 \beta_{17} + 54 \beta_{16} - 162 \beta_{15} + 18 \beta_{13} + 54 \beta_{12} + \cdots + 80 ) / 4 Copy content Toggle raw display
ν16\nu^{16}== (81β19+54β16+84β1560β1453β13+53β11++96)/4 ( - 81 \beta_{19} + 54 \beta_{16} + 84 \beta_{15} - 60 \beta_{14} - 53 \beta_{13} + 53 \beta_{11} + \cdots + 96 ) / 4 Copy content Toggle raw display
ν17\nu^{17}== (38β19129β18+56β17138β16+390β14+138β12+102)/4 ( - 38 \beta_{19} - 129 \beta_{18} + 56 \beta_{17} - 138 \beta_{16} + 390 \beta_{14} + 138 \beta_{12} + \cdots - 102 ) / 4 Copy content Toggle raw display
ν18\nu^{18}== (223β19476β18402β17160β152β14+269β13++14β1)/4 ( 223 \beta_{19} - 476 \beta_{18} - 402 \beta_{17} - 160 \beta_{15} - 2 \beta_{14} + 269 \beta_{13} + \cdots + 14 \beta_1 ) / 4 Copy content Toggle raw display
ν19\nu^{19}== (169β18+384β17+472β16322β15146β13+472β12+916)/4 ( 169 \beta_{18} + 384 \beta_{17} + 472 \beta_{16} - 322 \beta_{15} - 146 \beta_{13} + 472 \beta_{12} + \cdots - 916 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 1-1 β8\beta_{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
191.1
1.22758 0.702175i
1.40931 0.117628i
0.0669512 1.41263i
1.41029 + 0.105218i
−0.879308 1.10762i
−1.10762 0.879308i
0.105218 + 1.41029i
−1.41263 + 0.0669512i
−0.117628 + 1.40931i
−0.702175 + 1.22758i
1.22758 + 0.702175i
1.40931 + 0.117628i
0.0669512 + 1.41263i
1.41029 0.105218i
−0.879308 + 1.10762i
−1.10762 + 0.879308i
0.105218 1.41029i
−1.41263 0.0669512i
−0.117628 1.40931i
−0.702175 1.22758i
0 −1.92975 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
191.2 0 −1.52694 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
191.3 0 −1.47958 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
191.4 0 −1.30508 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
191.5 0 −0.228309 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
191.6 0 0.228309 + 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
191.7 0 1.30508 + 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
191.8 0 1.47958 + 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
191.9 0 1.52694 + 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
191.10 0 1.92975 + 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
447.1 0 −1.92975 + 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
447.2 0 −1.52694 + 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
447.3 0 −1.47958 + 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
447.4 0 −1.30508 + 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
447.5 0 −0.228309 + 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
447.6 0 0.228309 0.228309i 0 0.0781024i 0 3.21315i 0 2.89575i 0
447.7 0 1.30508 1.30508i 0 3.62458i 0 1.31987i 0 0.406445i 0
447.8 0 1.47958 1.47958i 0 3.06966i 0 0.851201i 0 1.37831i 0
447.9 0 1.52694 1.52694i 0 1.92027i 0 3.76421i 0 1.66310i 0
447.10 0 1.92975 1.92975i 0 2.39709i 0 1.01973i 0 4.44790i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
29.c odd 4 1 inner
116.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.k.c 20
4.b odd 2 1 inner 464.2.k.c 20
29.c odd 4 1 inner 464.2.k.c 20
116.e even 4 1 inner 464.2.k.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
464.2.k.c 20 1.a even 1 1 trivial
464.2.k.c 20 4.b odd 2 1 inner
464.2.k.c 20 29.c odd 4 1 inner
464.2.k.c 20 116.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+108T316+3806T312+54336T38+268897T34+2916 T_{3}^{20} + 108T_{3}^{16} + 3806T_{3}^{12} + 54336T_{3}^{8} + 268897T_{3}^{4} + 2916 acting on S2new(464,[χ])S_{2}^{\mathrm{new}}(464, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20+108T16++2916 T^{20} + 108 T^{16} + \cdots + 2916 Copy content Toggle raw display
55 (T10+32T8++16)2 (T^{10} + 32 T^{8} + \cdots + 16)^{2} Copy content Toggle raw display
77 (T10+28T8++192)2 (T^{10} + 28 T^{8} + \cdots + 192)^{2} Copy content Toggle raw display
1111 T20+1116T16++36 T^{20} + 1116 T^{16} + \cdots + 36 Copy content Toggle raw display
1313 (T10+84T8++104976)2 (T^{10} + 84 T^{8} + \cdots + 104976)^{2} Copy content Toggle raw display
1717 (T10+2T9++288)2 (T^{10} + 2 T^{9} + \cdots + 288)^{2} Copy content Toggle raw display
1919 T20+2172T16++9216 T^{20} + 2172 T^{16} + \cdots + 9216 Copy content Toggle raw display
2323 (T10+112T8++3195072)2 (T^{10} + 112 T^{8} + \cdots + 3195072)^{2} Copy content Toggle raw display
2929 (T10+2T9++20511149)2 (T^{10} + 2 T^{9} + \cdots + 20511149)^{2} Copy content Toggle raw display
3131 T20++372790840356 T^{20} + \cdots + 372790840356 Copy content Toggle raw display
3737 (T10+10T9++41472)2 (T^{10} + 10 T^{9} + \cdots + 41472)^{2} Copy content Toggle raw display
4141 (T10+2T9++16450848)2 (T^{10} + 2 T^{9} + \cdots + 16450848)^{2} Copy content Toggle raw display
4343 T20++19 ⁣ ⁣16 T^{20} + \cdots + 19\!\cdots\!16 Copy content Toggle raw display
4747 T20++652077796642596 T^{20} + \cdots + 652077796642596 Copy content Toggle raw display
5353 (T512T4++9302)4 (T^{5} - 12 T^{4} + \cdots + 9302)^{4} Copy content Toggle raw display
5959 (T10+304T8++46287552)2 (T^{10} + 304 T^{8} + \cdots + 46287552)^{2} Copy content Toggle raw display
6161 (T102T9++1316050208)2 (T^{10} - 2 T^{9} + \cdots + 1316050208)^{2} Copy content Toggle raw display
6767 (T10488T8+875999232)2 (T^{10} - 488 T^{8} + \cdots - 875999232)^{2} Copy content Toggle raw display
7171 (T10356T8+1625088)2 (T^{10} - 356 T^{8} + \cdots - 1625088)^{2} Copy content Toggle raw display
7373 (T10+10T9++2580992)2 (T^{10} + 10 T^{9} + \cdots + 2580992)^{2} Copy content Toggle raw display
7979 T20++18 ⁣ ⁣56 T^{20} + \cdots + 18\!\cdots\!56 Copy content Toggle raw display
8383 (T10+272T8++1728)2 (T^{10} + 272 T^{8} + \cdots + 1728)^{2} Copy content Toggle raw display
8989 (T1018T9++40443955232)2 (T^{10} - 18 T^{9} + \cdots + 40443955232)^{2} Copy content Toggle raw display
9797 (T10+18T9++2562848)2 (T^{10} + 18 T^{9} + \cdots + 2562848)^{2} Copy content Toggle raw display
show more
show less