L(s) = 1 | + i·3-s + 4i·7-s − 9-s + 6i·13-s + 2i·17-s − 4·19-s − 4·21-s + 8i·23-s − i·27-s − 6·29-s − 6i·37-s − 6·39-s + 10·41-s − 4i·43-s + 8i·47-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 1.51i·7-s − 0.333·9-s + 1.66i·13-s + 0.485i·17-s − 0.917·19-s − 0.872·21-s + 1.66i·23-s − 0.192i·27-s − 1.11·29-s − 0.986i·37-s − 0.960·39-s + 1.56·41-s − 0.609i·43-s + 1.16i·47-s + ⋯ |
Λ(s)=(=(4800s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(4800s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4800
= 26⋅3⋅52
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
38.3281 |
Root analytic conductor: |
6.19097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4800, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.113481484 |
L(21) |
≈ |
1.113481484 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1 |
good | 7 | 1−4iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−6iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−8iT−23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+14iT−73T2 |
| 79 | 1−16T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+2T+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.027889241861959885587486173493, −8.095145369001344704414318416768, −7.28500933842082239871001488842, −6.28633067041956117914708403611, −5.81690269783928820787763513248, −5.06493257573387129424754687241, −4.18252272051402475855765849818, −3.52216754910067126398048397586, −2.33005479422131672625401914617, −1.79099712360027512581802621209,
0.32704372559597997359209553918, 1.05011336400021207754614972501, 2.36712647095184738611668133738, 3.20983558407158514714468589104, 4.12770966459033456279726101144, 4.83230405348179457841508999607, 5.82105543763721700221125087307, 6.51288879626561545254674699794, 7.23130589566269958221591522735, 7.81612587206599255781830128993