Properties

Label 2-4800-5.4-c1-0-8
Degree $2$
Conductor $4800$
Sign $-0.894 + 0.447i$
Analytic cond. $38.3281$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 4i·7-s − 9-s + 6i·13-s + 2i·17-s − 4·19-s − 4·21-s + 8i·23-s i·27-s − 6·29-s − 6i·37-s − 6·39-s + 10·41-s − 4i·43-s + 8i·47-s + ⋯
L(s)  = 1  + 0.577i·3-s + 1.51i·7-s − 0.333·9-s + 1.66i·13-s + 0.485i·17-s − 0.917·19-s − 0.872·21-s + 1.66i·23-s − 0.192i·27-s − 1.11·29-s − 0.986i·37-s − 0.960·39-s + 1.56·41-s − 0.609i·43-s + 1.16i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4800\)    =    \(2^{6} \cdot 3 \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(38.3281\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4800,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.113481484\)
\(L(\frac12)\) \(\approx\) \(1.113481484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 \)
good7 \( 1 - 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 6iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 10iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 14iT - 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.027889241861959885587486173493, −8.095145369001344704414318416768, −7.28500933842082239871001488842, −6.28633067041956117914708403611, −5.81690269783928820787763513248, −5.06493257573387129424754687241, −4.18252272051402475855765849818, −3.52216754910067126398048397586, −2.33005479422131672625401914617, −1.79099712360027512581802621209, 0.32704372559597997359209553918, 1.05011336400021207754614972501, 2.36712647095184738611668133738, 3.20983558407158514714468589104, 4.12770966459033456279726101144, 4.83230405348179457841508999607, 5.82105543763721700221125087307, 6.51288879626561545254674699794, 7.23130589566269958221591522735, 7.81612587206599255781830128993

Graph of the $Z$-function along the critical line