Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4800,2,Mod(3649,4800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4800.3649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(38.3281929702\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 120) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4800.3649 |
Dual form | 4800.2.f.n.3649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1601\) | \(4351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000i | 1.51186i | 0.654654 | + | 0.755929i | \(0.272814\pi\) | ||||
−0.654654 | + | 0.755929i | \(0.727186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 6.00000i | 1.66410i | 0.554700 | + | 0.832050i | \(0.312833\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.00000i | 0.485071i | 0.970143 | + | 0.242536i | \(0.0779791\pi\) | ||||
−0.970143 | + | 0.242536i | \(0.922021\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −4.00000 | −0.917663 | −0.458831 | − | 0.888523i | \(-0.651732\pi\) | ||||
−0.458831 | + | 0.888523i | \(0.651732\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −4.00000 | −0.872872 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000i | 1.66812i | 0.551677 | + | 0.834058i | \(0.313988\pi\) | ||||
−0.551677 | + | 0.834058i | \(0.686012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 1.00000i | − 0.192450i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.00000i | − 0.986394i | −0.869918 | − | 0.493197i | \(-0.835828\pi\) | ||||
0.869918 | − | 0.493197i | \(-0.164172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −6.00000 | −0.960769 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 10.0000 | 1.56174 | 0.780869 | − | 0.624695i | \(-0.214777\pi\) | ||||
0.780869 | + | 0.624695i | \(0.214777\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 4.00000i | − 0.609994i | −0.952353 | − | 0.304997i | \(-0.901344\pi\) | ||||
0.952353 | − | 0.304997i | \(-0.0986555\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.00000i | 1.16692i | 0.812142 | + | 0.583460i | \(0.198301\pi\) | ||||
−0.812142 | + | 0.583460i | \(0.801699\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −9.00000 | −1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −2.00000 | −0.280056 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 10.0000i | − 1.37361i | −0.726844 | − | 0.686803i | \(-0.759014\pi\) | ||||
0.726844 | − | 0.686803i | \(-0.240986\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 4.00000i | − 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.00000 | −0.768221 | −0.384111 | − | 0.923287i | \(-0.625492\pi\) | ||||
−0.384111 | + | 0.923287i | \(0.625492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | − 4.00000i | − 0.503953i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000i | 0.488678i | 0.969690 | + | 0.244339i | \(0.0785709\pi\) | ||||
−0.969690 | + | 0.244339i | \(0.921429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −8.00000 | −0.963087 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 14.0000i | − 1.63858i | −0.573382 | − | 0.819288i | \(-0.694369\pi\) | ||||
0.573382 | − | 0.819288i | \(-0.305631\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 16.0000 | 1.80014 | 0.900070 | − | 0.435745i | \(-0.143515\pi\) | ||||
0.900070 | + | 0.435745i | \(0.143515\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000i | 1.31717i | 0.752506 | + | 0.658586i | \(0.228845\pi\) | ||||
−0.752506 | + | 0.658586i | \(0.771155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 6.00000i | − 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −2.00000 | −0.212000 | −0.106000 | − | 0.994366i | \(-0.533804\pi\) | ||||
−0.106000 | + | 0.994366i | \(0.533804\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −24.0000 | −2.51588 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 14.0000 | 1.39305 | 0.696526 | − | 0.717532i | \(-0.254728\pi\) | ||||
0.696526 | + | 0.717532i | \(0.254728\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 4.00000i | − 0.394132i | −0.980390 | − | 0.197066i | \(-0.936859\pi\) | ||||
0.980390 | − | 0.197066i | \(-0.0631413\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 4.00000i | − 0.386695i | −0.981130 | − | 0.193347i | \(-0.938066\pi\) | ||||
0.981130 | − | 0.193347i | \(-0.0619344\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 6.00000 | 0.569495 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000i | 0.564433i | 0.959351 | + | 0.282216i | \(0.0910696\pi\) | ||||
−0.959351 | + | 0.282216i | \(0.908930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 6.00000i | − 0.554700i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −8.00000 | −0.733359 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 10.0000i | 0.901670i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 4.00000i | − 0.354943i | −0.984126 | − | 0.177471i | \(-0.943208\pi\) | ||||
0.984126 | − | 0.177471i | \(-0.0567917\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 4.00000 | 0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 16.0000 | 1.39793 | 0.698963 | − | 0.715158i | \(-0.253645\pi\) | ||||
0.698963 | + | 0.715158i | \(0.253645\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 16.0000i | − 1.38738i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 18.0000i | 1.53784i | 0.639343 | + | 0.768922i | \(0.279207\pi\) | ||||
−0.639343 | + | 0.768922i | \(0.720793\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −8.00000 | −0.673722 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 9.00000i | − 0.742307i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 2.00000i | − 0.161690i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 10.0000i | 0.798087i | 0.916932 | + | 0.399043i | \(0.130658\pi\) | ||||
−0.916932 | + | 0.399043i | \(0.869342\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 10.0000 | 0.793052 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −32.0000 | −2.52195 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 4.00000i | − 0.313304i | −0.987654 | − | 0.156652i | \(-0.949930\pi\) | ||||
0.987654 | − | 0.156652i | \(-0.0500701\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 8.00000i | − 0.619059i | −0.950890 | − | 0.309529i | \(-0.899829\pi\) | ||||
0.950890 | − | 0.309529i | \(-0.100171\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −23.0000 | −1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 4.00000 | 0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 18.0000i | − 1.36851i | −0.729241 | − | 0.684257i | \(-0.760127\pi\) | ||||
0.729241 | − | 0.684257i | \(-0.239873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −8.00000 | −0.597948 | −0.298974 | − | 0.954261i | \(-0.596644\pi\) | ||||
−0.298974 | + | 0.954261i | \(0.596644\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.0000 | −1.04061 | −0.520306 | − | 0.853980i | \(-0.674182\pi\) | ||||
−0.520306 | + | 0.853980i | \(0.674182\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | − 6.00000i | − 0.443533i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 4.00000 | 0.290957 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −8.00000 | −0.578860 | −0.289430 | − | 0.957199i | \(-0.593466\pi\) | ||||
−0.289430 | + | 0.957199i | \(0.593466\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 6.00000i | − 0.431889i | −0.976406 | − | 0.215945i | \(-0.930717\pi\) | ||||
0.976406 | − | 0.215945i | \(-0.0692831\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 10.0000i | 0.712470i | 0.934396 | + | 0.356235i | \(0.115940\pi\) | ||||
−0.934396 | + | 0.356235i | \(0.884060\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −4.00000 | −0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 24.0000i | − 1.68447i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 8.00000i | − 0.556038i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 12.0000 | 0.826114 | 0.413057 | − | 0.910705i | \(-0.364461\pi\) | ||||
0.413057 | + | 0.910705i | \(0.364461\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 14.0000 | 0.946032 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 12.0000i | − 0.803579i | −0.915732 | − | 0.401790i | \(-0.868388\pi\) | ||||
0.915732 | − | 0.401790i | \(-0.131612\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000i | 0.796468i | 0.917284 | + | 0.398234i | \(0.130377\pi\) | ||||
−0.917284 | + | 0.398234i | \(0.869623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.00000 | 0.396491 | 0.198246 | − | 0.980152i | \(-0.436476\pi\) | ||||
0.198246 | + | 0.980152i | \(0.436476\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 10.0000i | − 0.655122i | −0.944830 | − | 0.327561i | \(-0.893773\pi\) | ||||
0.944830 | − | 0.327561i | \(-0.106227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 16.0000i | 1.03931i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −24.0000 | −1.55243 | −0.776215 | − | 0.630468i | \(-0.782863\pi\) | ||||
−0.776215 | + | 0.630468i | \(0.782863\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000i | 0.0641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 24.0000i | − 1.52708i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −12.0000 | −0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −8.00000 | −0.504956 | −0.252478 | − | 0.967603i | \(-0.581245\pi\) | ||||
−0.252478 | + | 0.967603i | \(0.581245\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 6.00000i | − 0.374270i | −0.982334 | − | 0.187135i | \(-0.940080\pi\) | ||||
0.982334 | − | 0.187135i | \(-0.0599201\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 24.0000 | 1.49129 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 24.0000i | 1.47990i | 0.672660 | + | 0.739952i | \(0.265152\pi\) | ||||
−0.672660 | + | 0.739952i | \(0.734848\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 2.00000i | − 0.122398i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −8.00000 | −0.485965 | −0.242983 | − | 0.970031i | \(-0.578126\pi\) | ||||
−0.242983 | + | 0.970031i | \(0.578126\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | − 24.0000i | − 1.45255i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000i | 0.600842i | 0.953807 | + | 0.300421i | \(0.0971271\pi\) | ||||
−0.953807 | + | 0.300421i | \(0.902873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 2.00000 | 0.119310 | 0.0596550 | − | 0.998219i | \(-0.481000\pi\) | ||||
0.0596550 | + | 0.998219i | \(0.481000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000i | 0.237775i | 0.992908 | + | 0.118888i | \(0.0379328\pi\) | ||||
−0.992908 | + | 0.118888i | \(0.962067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 40.0000i | 2.36113i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 13.0000 | 0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 2.00000 | 0.117242 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 10.0000i | − 0.584206i | −0.956387 | − | 0.292103i | \(-0.905645\pi\) | ||||
0.956387 | − | 0.292103i | \(-0.0943550\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −48.0000 | −2.77591 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 16.0000 | 0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 14.0000i | 0.804279i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 4.00000i | − 0.228292i | −0.993464 | − | 0.114146i | \(-0.963587\pi\) | ||||
0.993464 | − | 0.114146i | \(-0.0364132\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 4.00000 | 0.227552 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 14.0000i | − 0.791327i | −0.918396 | − | 0.395663i | \(-0.870515\pi\) | ||||
0.918396 | − | 0.395663i | \(-0.129485\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 2.00000i | 0.112331i | 0.998421 | + | 0.0561656i | \(0.0178875\pi\) | ||||
−0.998421 | + | 0.0561656i | \(0.982113\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 4.00000 | 0.223258 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 8.00000i | − 0.445132i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 10.0000i | − 0.553001i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −32.0000 | −1.76422 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 28.0000 | 1.53902 | 0.769510 | − | 0.638635i | \(-0.220501\pi\) | ||||
0.769510 | + | 0.638635i | \(0.220501\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 6.00000i | 0.328798i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 10.0000i | − 0.544735i | −0.962193 | − | 0.272367i | \(-0.912193\pi\) | ||||
0.962193 | − | 0.272367i | \(-0.0878066\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −6.00000 | −0.325875 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 8.00000i | − 0.431959i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 36.0000i | 1.93258i | 0.257454 | + | 0.966291i | \(0.417117\pi\) | ||||
−0.257454 | + | 0.966291i | \(0.582883\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −26.0000 | −1.39175 | −0.695874 | − | 0.718164i | \(-0.744983\pi\) | ||||
−0.695874 | + | 0.718164i | \(0.744983\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 6.00000 | 0.320256 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 18.0000i | − 0.958043i | −0.877803 | − | 0.479022i | \(-0.840992\pi\) | ||||
0.877803 | − | 0.479022i | \(-0.159008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 8.00000i | − 0.423405i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 8.00000 | 0.422224 | 0.211112 | − | 0.977462i | \(-0.432292\pi\) | ||||
0.211112 | + | 0.977462i | \(0.432292\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 11.0000i | − 0.577350i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 28.0000i | 1.46159i | 0.682598 | + | 0.730794i | \(0.260850\pi\) | ||||
−0.682598 | + | 0.730794i | \(0.739150\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −10.0000 | −0.520579 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 40.0000 | 2.07670 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 2.00000i | − 0.103556i | −0.998659 | − | 0.0517780i | \(-0.983511\pi\) | ||||
0.998659 | − | 0.0517780i | \(-0.0164888\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 36.0000i | − 1.85409i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −4.00000 | −0.205466 | −0.102733 | − | 0.994709i | \(-0.532759\pi\) | ||||
−0.102733 | + | 0.994709i | \(0.532759\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 4.00000 | 0.204926 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 8.00000i | − 0.408781i | −0.978889 | − | 0.204390i | \(-0.934479\pi\) | ||||
0.978889 | − | 0.204390i | \(-0.0655212\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 4.00000i | 0.203331i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 16.0000i | 0.807093i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 2.00000i | 0.100377i | 0.998740 | + | 0.0501886i | \(0.0159822\pi\) | ||||
−0.998740 | + | 0.0501886i | \(0.984018\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 16.0000 | 0.801002 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −6.00000 | −0.299626 | −0.149813 | − | 0.988714i | \(-0.547867\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 38.0000 | 1.87898 | 0.939490 | − | 0.342578i | \(-0.111300\pi\) | ||||
0.939490 | + | 0.342578i | \(0.111300\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −18.0000 | −0.887875 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 12.0000i | 0.587643i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 16.0000 | 0.781651 | 0.390826 | − | 0.920465i | \(-0.372190\pi\) | ||||
0.390826 | + | 0.920465i | \(0.372190\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.00000 | −0.292422 | −0.146211 | − | 0.989253i | \(-0.546708\pi\) | ||||
−0.146211 | + | 0.989253i | \(0.546708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 8.00000i | − 0.388973i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 24.0000i | − 1.16144i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 32.0000 | 1.54139 | 0.770693 | − | 0.637207i | \(-0.219910\pi\) | ||||
0.770693 | + | 0.637207i | \(0.219910\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 10.0000i | 0.480569i | 0.970702 | + | 0.240285i | \(0.0772408\pi\) | ||||
−0.970702 | + | 0.240285i | \(0.922759\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 32.0000i | − 1.53077i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −32.0000 | −1.52728 | −0.763638 | − | 0.645644i | \(-0.776589\pi\) | ||||
−0.763638 | + | 0.645644i | \(0.776589\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000i | 0.570137i | 0.958507 | + | 0.285069i | \(0.0920164\pi\) | ||||
−0.958507 | + | 0.285069i | \(0.907984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 6.00000i | − 0.283790i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −26.0000 | −1.22702 | −0.613508 | − | 0.789689i | \(-0.710242\pi\) | ||||
−0.613508 | + | 0.789689i | \(0.710242\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 38.0000i | 1.77757i | 0.458329 | + | 0.888783i | \(0.348448\pi\) | ||||
−0.458329 | + | 0.888783i | \(0.651552\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 2.00000 | 0.0933520 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −2.00000 | −0.0931493 | −0.0465746 | − | 0.998915i | \(-0.514831\pi\) | ||||
−0.0465746 | + | 0.998915i | \(0.514831\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 4.00000i | − 0.185896i | −0.995671 | − | 0.0929479i | \(-0.970371\pi\) | ||||
0.995671 | − | 0.0929479i | \(-0.0296290\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 20.0000i | 0.925490i | 0.886492 | + | 0.462745i | \(0.153135\pi\) | ||||
−0.886492 | + | 0.462745i | \(0.846865\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −16.0000 | −0.738811 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −10.0000 | −0.460776 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 10.0000i | 0.457869i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −24.0000 | −1.09659 | −0.548294 | − | 0.836286i | \(-0.684723\pi\) | ||||
−0.548294 | + | 0.836286i | \(0.684723\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 36.0000 | 1.64146 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | − 32.0000i | − 1.45605i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 36.0000i | − 1.63132i | −0.578535 | − | 0.815658i | \(-0.696375\pi\) | ||||
0.578535 | − | 0.815658i | \(-0.303625\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 4.00000 | 0.180886 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −40.0000 | −1.80517 | −0.902587 | − | 0.430507i | \(-0.858335\pi\) | ||||
−0.902587 | + | 0.430507i | \(0.858335\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 12.0000i | − 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 8.00000 | 0.357414 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 23.0000i | − 1.02147i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 56.0000 | 2.47729 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 4.00000i | 0.176604i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 18.0000 | 0.790112 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −14.0000 | −0.613351 | −0.306676 | − | 0.951814i | \(-0.599217\pi\) | ||||
−0.306676 | + | 0.951814i | \(0.599217\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 36.0000i | 1.57417i | 0.616844 | + | 0.787085i | \(0.288411\pi\) | ||||
−0.616844 | + | 0.787085i | \(0.711589\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −41.0000 | −1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 60.0000i | 2.59889i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 8.00000i | − 0.345225i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 10.0000 | 0.429934 | 0.214967 | − | 0.976621i | \(-0.431036\pi\) | ||||
0.214967 | + | 0.976621i | \(0.431036\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 14.0000i | − 0.600798i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 4.00000i | − 0.171028i | −0.996337 | − | 0.0855138i | \(-0.972747\pi\) | ||||
0.996337 | − | 0.0855138i | \(-0.0272532\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 6.00000 | 0.256074 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 24.0000 | 1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 64.0000i | 2.72156i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 14.0000i | − 0.593199i | −0.955002 | − | 0.296600i | \(-0.904147\pi\) | ||||
0.955002 | − | 0.296600i | \(-0.0958526\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 24.0000 | 1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000i | 1.51722i | 0.651546 | + | 0.758610i | \(0.274121\pi\) | ||||
−0.651546 | + | 0.758610i | \(0.725879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 4.00000i | 0.167984i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 14.0000 | 0.586911 | 0.293455 | − | 0.955973i | \(-0.405195\pi\) | ||||
0.293455 | + | 0.955973i | \(0.405195\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −20.0000 | −0.836974 | −0.418487 | − | 0.908223i | \(-0.637439\pi\) | ||||
−0.418487 | + | 0.908223i | \(0.637439\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 8.00000i | − 0.334205i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 34.0000i | − 1.41544i | −0.706494 | − | 0.707719i | \(-0.749724\pi\) | ||||
0.706494 | − | 0.707719i | \(-0.250276\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 6.00000 | 0.249351 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −48.0000 | −1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 36.0000i | − 1.48588i | −0.669359 | − | 0.742940i | \(-0.733431\pi\) | ||||
0.669359 | − | 0.742940i | \(-0.266569\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −10.0000 | −0.411345 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 22.0000i | 0.903432i | 0.892162 | + | 0.451716i | \(0.149188\pi\) | ||||
−0.892162 | + | 0.451716i | \(0.850812\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 8.00000 | 0.326871 | 0.163436 | − | 0.986554i | \(-0.447742\pi\) | ||||
0.163436 | + | 0.986554i | \(0.447742\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −22.0000 | −0.897399 | −0.448699 | − | 0.893683i | \(-0.648113\pi\) | ||||
−0.448699 | + | 0.893683i | \(0.648113\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 4.00000i | − 0.162893i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 12.0000i | − 0.487065i | −0.969893 | − | 0.243532i | \(-0.921694\pi\) | ||||
0.969893 | − | 0.243532i | \(-0.0783062\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 24.0000 | 0.972529 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −48.0000 | −1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 26.0000i | − 1.05013i | −0.851062 | − | 0.525065i | \(-0.824041\pi\) | ||||
0.851062 | − | 0.525065i | \(-0.175959\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 26.0000i | 1.04672i | 0.852111 | + | 0.523360i | \(0.175322\pi\) | ||||
−0.852111 | + | 0.523360i | \(0.824678\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 28.0000 | 1.12542 | 0.562708 | − | 0.826656i | \(-0.309760\pi\) | ||||
0.562708 | + | 0.826656i | \(0.309760\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 8.00000 | 0.321029 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 8.00000i | − 0.320513i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000 | 0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −40.0000 | −1.59237 | −0.796187 | − | 0.605050i | \(-0.793153\pi\) | ||||
−0.796187 | + | 0.605050i | \(0.793153\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 12.0000i | 0.476957i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 54.0000i | − 2.13956i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 18.0000 | 0.710957 | 0.355479 | − | 0.934684i | \(-0.384318\pi\) | ||||
0.355479 | + | 0.934684i | \(0.384318\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 36.0000i | − 1.41970i | −0.704352 | − | 0.709851i | \(-0.748762\pi\) | ||||
0.704352 | − | 0.709851i | \(-0.251238\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 48.0000i | 1.88707i | 0.331266 | + | 0.943537i | \(0.392524\pi\) | ||||
−0.331266 | + | 0.943537i | \(0.607476\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 18.0000i | − 0.704394i | −0.935926 | − | 0.352197i | \(-0.885435\pi\) | ||||
0.935926 | − | 0.352197i | \(-0.114565\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 14.0000i | 0.546192i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 16.0000 | 0.623272 | 0.311636 | − | 0.950202i | \(-0.399123\pi\) | ||||
0.311636 | + | 0.950202i | \(0.399123\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 2.00000 | 0.0777910 | 0.0388955 | − | 0.999243i | \(-0.487616\pi\) | ||||
0.0388955 | + | 0.999243i | \(0.487616\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 12.0000i | − 0.466041i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 48.0000i | − 1.85857i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 12.0000 | 0.463947 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 22.0000i | − 0.848038i | −0.905653 | − | 0.424019i | \(-0.860619\pi\) | ||||
0.905653 | − | 0.424019i | \(-0.139381\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 6.00000i | − 0.230599i | −0.993331 | − | 0.115299i | \(-0.963217\pi\) | ||||
0.993331 | − | 0.115299i | \(-0.0367827\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 8.00000 | 0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −12.0000 | −0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 36.0000i | 1.37750i | 0.724998 | + | 0.688751i | \(0.241841\pi\) | ||||
−0.724998 | + | 0.688751i | \(0.758159\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 6.00000i | 0.228914i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 60.0000 | 2.28582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 4.00000 | 0.152167 | 0.0760836 | − | 0.997101i | \(-0.475758\pi\) | ||||
0.0760836 | + | 0.997101i | \(0.475758\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 20.0000i | 0.757554i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 10.0000 | 0.378235 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 38.0000 | 1.43524 | 0.717620 | − | 0.696435i | \(-0.245231\pi\) | ||||
0.717620 | + | 0.696435i | \(0.245231\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 24.0000i | 0.905177i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 56.0000i | 2.10610i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 22.0000 | 0.826227 | 0.413114 | − | 0.910679i | \(-0.364441\pi\) | ||||
0.413114 | + | 0.910679i | \(0.364441\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −16.0000 | −0.600047 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 24.0000i | − 0.896296i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 48.0000 | 1.79010 | 0.895049 | − | 0.445968i | \(-0.147140\pi\) | ||||
0.895049 | + | 0.445968i | \(0.147140\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 16.0000 | 0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 2.00000i | 0.0743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 4.00000i | − 0.148352i | −0.997245 | − | 0.0741759i | \(-0.976367\pi\) | ||||
0.997245 | − | 0.0741759i | \(-0.0236326\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −1.00000 | −0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 8.00000 | 0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 46.0000i | 1.69905i | 0.527549 | + | 0.849524i | \(0.323111\pi\) | ||||
−0.527549 | + | 0.849524i | \(0.676889\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −4.00000 | −0.147142 | −0.0735712 | − | 0.997290i | \(-0.523440\pi\) | ||||
−0.0735712 | + | 0.997290i | \(0.523440\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 24.0000 | 0.881662 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 12.0000i | − 0.439057i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 16.0000 | 0.584627 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 48.0000 | 1.75154 | 0.875772 | − | 0.482724i | \(-0.160353\pi\) | ||||
0.875772 | + | 0.482724i | \(0.160353\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 8.00000i | − 0.291536i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 42.0000i | 1.52652i | 0.646094 | + | 0.763258i | \(0.276401\pi\) | ||||
−0.646094 | + | 0.763258i | \(0.723599\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 50.0000 | 1.81250 | 0.906249 | − | 0.422744i | \(-0.138933\pi\) | ||||
0.906249 | + | 0.422744i | \(0.138933\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 40.0000i | − 1.44810i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 30.0000 | 1.08183 | 0.540914 | − | 0.841078i | \(-0.318079\pi\) | ||||
0.540914 | + | 0.841078i | \(0.318079\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 6.00000 | 0.216085 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 38.0000i | 1.36677i | 0.730061 | + | 0.683383i | \(0.239492\pi\) | ||||
−0.730061 | + | 0.683383i | \(0.760508\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 24.0000i | 0.860995i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −40.0000 | −1.43315 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 6.00000i | 0.214423i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 12.0000i | − 0.427754i | −0.976861 | − | 0.213877i | \(-0.931391\pi\) | ||||
0.976861 | − | 0.213877i | \(-0.0686091\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −24.0000 | −0.854423 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −24.0000 | −0.853342 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 36.0000i | − 1.27840i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 34.0000i | 1.20434i | 0.798367 | + | 0.602171i | \(0.205697\pi\) | ||||
−0.798367 | + | 0.602171i | \(0.794303\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −16.0000 | −0.566039 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 2.00000 | 0.0706665 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 6.00000i | − 0.211210i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 6.00000 | 0.210949 | 0.105474 | − | 0.994422i | \(-0.466364\pi\) | ||||
0.105474 | + | 0.994422i | \(0.466364\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −12.0000 | −0.421377 | −0.210688 | − | 0.977553i | \(-0.567571\pi\) | ||||
−0.210688 | + | 0.977553i | \(0.567571\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 8.00000i | − 0.280572i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000i | 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 24.0000 | 0.838628 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −50.0000 | −1.74501 | −0.872506 | − | 0.488603i | \(-0.837507\pi\) | ||||
−0.872506 | + | 0.488603i | \(0.837507\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000i | 0.139431i | 0.997567 | + | 0.0697156i | \(0.0222092\pi\) | ||||
−0.997567 | + | 0.0697156i | \(0.977791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 20.0000i | 0.695468i | 0.937593 | + | 0.347734i | \(0.113049\pi\) | ||||
−0.937593 | + | 0.347734i | \(0.886951\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 38.0000 | 1.31979 | 0.659897 | − | 0.751356i | \(-0.270600\pi\) | ||||
0.659897 | + | 0.751356i | \(0.270600\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −10.0000 | −0.346896 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 18.0000i | − 0.623663i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −40.0000 | −1.38095 | −0.690477 | − | 0.723355i | \(-0.742599\pi\) | ||||
−0.690477 | + | 0.723355i | \(0.742599\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 2.00000i | 0.0688837i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 44.0000i | − 1.51186i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | −4.00000 | −0.137280 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000 | 1.64542 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 10.0000i | − 0.342393i | −0.985237 | − | 0.171197i | \(-0.945237\pi\) | ||||
0.985237 | − | 0.171197i | \(-0.0547634\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 38.0000i | − 1.29806i | −0.760765 | − | 0.649028i | \(-0.775176\pi\) | ||||
0.760765 | − | 0.649028i | \(-0.224824\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −36.0000 | −1.22830 | −0.614152 | − | 0.789188i | \(-0.710502\pi\) | ||||
−0.614152 | + | 0.789188i | \(0.710502\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −40.0000 | −1.36320 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 16.0000i | − 0.544646i | −0.962206 | − | 0.272323i | \(-0.912208\pi\) | ||||
0.962206 | − | 0.272323i | \(-0.0877920\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 13.0000i | 0.441503i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −24.0000 | −0.813209 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 2.00000i | 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 10.0000i | 0.337676i | 0.985644 | + | 0.168838i | \(0.0540015\pi\) | ||||
−0.985644 | + | 0.168838i | \(0.945999\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 10.0000 | 0.337292 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 26.0000 | 0.875962 | 0.437981 | − | 0.898984i | \(-0.355694\pi\) | ||||
0.437981 | + | 0.898984i | \(0.355694\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 28.0000i | 0.942275i | 0.882060 | + | 0.471138i | \(0.156156\pi\) | ||||
−0.882060 | + | 0.471138i | \(0.843844\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 24.0000i | 0.805841i | 0.915235 | + | 0.402921i | \(0.132005\pi\) | ||||
−0.915235 | + | 0.402921i | \(0.867995\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 32.0000i | − 1.07084i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 48.0000i | − 1.60267i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 20.0000 | 0.666297 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 16.0000i | 0.532447i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 28.0000i | − 0.929725i | −0.885383 | − | 0.464862i | \(-0.846104\pi\) | ||||
0.885383 | − | 0.464862i | \(-0.153896\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −14.0000 | −0.464351 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 32.0000 | 1.06021 | 0.530104 | − | 0.847933i | \(-0.322153\pi\) | ||||
0.530104 | + | 0.847933i | \(0.322153\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 64.0000i | 2.11347i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 40.0000 | 1.31948 | 0.659739 | − | 0.751495i | \(-0.270667\pi\) | ||||
0.659739 | + | 0.751495i | \(0.270667\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 4.00000 | 0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 4.00000i | 0.131377i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 6.00000 | 0.196854 | 0.0984268 | − | 0.995144i | \(-0.468619\pi\) | ||||
0.0984268 | + | 0.995144i | \(0.468619\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 36.0000 | 1.17985 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | − 16.0000i | − 0.523816i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 26.0000i | − 0.849383i | −0.905338 | − | 0.424691i | \(-0.860383\pi\) | ||||
0.905338 | − | 0.424691i | \(-0.139617\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 14.0000 | 0.456873 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 14.0000 | 0.456387 | 0.228193 | − | 0.973616i | \(-0.426718\pi\) | ||||
0.228193 | + | 0.973616i | \(0.426718\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 80.0000i | 2.60516i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 44.0000i | 1.42981i | 0.699223 | + | 0.714904i | \(0.253530\pi\) | ||||
−0.699223 | + | 0.714904i | \(0.746470\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 84.0000 | 2.72676 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −2.00000 | −0.0648544 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 18.0000i | − 0.583077i | −0.956559 | − | 0.291539i | \(-0.905833\pi\) | ||||
0.956559 | − | 0.291539i | \(-0.0941672\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −72.0000 | −2.32500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 4.00000i | 0.128898i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 20.0000i | 0.643157i | 0.946883 | + | 0.321578i | \(0.104213\pi\) | ||||
−0.946883 | + | 0.321578i | \(0.895787\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 8.00000 | 0.256997 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −56.0000 | −1.79713 | −0.898563 | − | 0.438845i | \(-0.855388\pi\) | ||||
−0.898563 | + | 0.438845i | \(0.855388\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 48.0000i | 1.53881i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 50.0000i | 1.59964i | 0.600239 | + | 0.799821i | \(0.295072\pi\) | ||||
−0.600239 | + | 0.799821i | \(0.704928\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 10.0000 | 0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | − 32.0000i | − 1.01857i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000 | 1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −56.0000 | −1.77890 | −0.889449 | − | 0.457034i | \(-0.848912\pi\) | ||||
−0.889449 | + | 0.457034i | \(0.848912\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 28.0000i | 0.888553i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 30.0000i | − 0.950110i | −0.879956 | − | 0.475055i | \(-0.842428\pi\) | ||||
0.879956 | − | 0.475055i | \(-0.157572\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −6.00000 | −0.189832 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))