Properties

Label 3240.2.q.a.1081.1
Level $3240$
Weight $2$
Character 3240.1081
Analytic conductor $25.872$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3240.1081
Dual form 3240.2.q.a.2161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-2.00000 - 3.46410i) q^{7} +(3.00000 - 5.19615i) q^{13} +2.00000 q^{17} +4.00000 q^{19} +(-4.00000 + 6.92820i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-3.00000 - 5.19615i) q^{29} +4.00000 q^{35} -6.00000 q^{37} +(5.00000 - 8.66025i) q^{41} +(2.00000 + 3.46410i) q^{43} +(4.00000 + 6.92820i) q^{47} +(-4.50000 + 7.79423i) q^{49} -10.0000 q^{53} +(-3.00000 - 5.19615i) q^{61} +(3.00000 + 5.19615i) q^{65} +(2.00000 - 3.46410i) q^{67} -14.0000 q^{73} +(-8.00000 - 13.8564i) q^{79} +(6.00000 + 10.3923i) q^{83} +(-1.00000 + 1.73205i) q^{85} -2.00000 q^{89} -24.0000 q^{91} +(-2.00000 + 3.46410i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} - 4 q^{7} + 6 q^{13} + 4 q^{17} + 8 q^{19} - 8 q^{23} - q^{25} - 6 q^{29} + 8 q^{35} - 12 q^{37} + 10 q^{41} + 4 q^{43} + 8 q^{47} - 9 q^{49} - 20 q^{53} - 6 q^{61} + 6 q^{65} + 4 q^{67} - 28 q^{73}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −2.00000 3.46410i −0.755929 1.30931i −0.944911 0.327327i \(-0.893852\pi\)
0.188982 0.981981i \(-0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 3.00000 5.19615i 0.832050 1.44115i −0.0643593 0.997927i \(-0.520500\pi\)
0.896410 0.443227i \(-0.146166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 + 6.92820i −0.834058 + 1.44463i 0.0607377 + 0.998154i \(0.480655\pi\)
−0.894795 + 0.446476i \(0.852679\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 8.66025i 0.780869 1.35250i −0.150567 0.988600i \(-0.548110\pi\)
0.931436 0.363905i \(-0.118557\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 + 6.92820i 0.583460 + 1.01058i 0.995066 + 0.0992202i \(0.0316348\pi\)
−0.411606 + 0.911362i \(0.635032\pi\)
\(48\) 0 0
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −3.00000 5.19615i −0.384111 0.665299i 0.607535 0.794293i \(-0.292159\pi\)
−0.991645 + 0.128994i \(0.958825\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) −24.0000 −2.51588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.00000 + 3.46410i −0.205196 + 0.355409i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.00000 12.1244i −0.696526 1.20642i −0.969664 0.244443i \(-0.921395\pi\)
0.273138 0.961975i \(-0.411939\pi\)
\(102\) 0 0
\(103\) −2.00000 + 3.46410i −0.197066 + 0.341328i −0.947576 0.319531i \(-0.896475\pi\)
0.750510 + 0.660859i \(0.229808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) −4.00000 6.92820i −0.373002 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 6.92820i −0.366679 0.635107i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 13.8564i 0.698963 1.21064i −0.269863 0.962899i \(-0.586978\pi\)
0.968826 0.247741i \(-0.0796882\pi\)
\(132\) 0 0
\(133\) −8.00000 13.8564i −0.693688 1.20150i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) 6.00000 10.3923i 0.508913 0.881464i −0.491033 0.871141i \(-0.663381\pi\)
0.999947 0.0103230i \(-0.00328598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.00000 + 8.66025i −0.399043 + 0.691164i −0.993608 0.112884i \(-0.963991\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.00000 + 6.92820i −0.309529 + 0.536120i −0.978259 0.207385i \(-0.933505\pi\)
0.668730 + 0.743505i \(0.266838\pi\)
\(168\) 0 0
\(169\) −11.5000 19.9186i −0.884615 1.53220i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.00000 −0.597948 −0.298974 0.954261i \(-0.596644\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 0 0
\(193\) 3.00000 5.19615i 0.215945 0.374027i −0.737620 0.675216i \(-0.764050\pi\)
0.953564 + 0.301189i \(0.0973836\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 + 20.7846i −0.842235 + 1.45879i
\(204\) 0 0
\(205\) 5.00000 + 8.66025i 0.349215 + 0.604858i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.00000 + 10.3923i −0.413057 + 0.715436i −0.995222 0.0976347i \(-0.968872\pi\)
0.582165 + 0.813070i \(0.302206\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) −6.00000 10.3923i −0.401790 0.695920i 0.592152 0.805826i \(-0.298278\pi\)
−0.993942 + 0.109906i \(0.964945\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) 0 0
\(229\) −3.00000 + 5.19615i −0.198246 + 0.343371i −0.947960 0.318390i \(-0.896858\pi\)
0.749714 + 0.661762i \(0.230191\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 + 20.7846i −0.776215 + 1.34444i 0.157893 + 0.987456i \(0.449530\pi\)
−0.934109 + 0.356988i \(0.883804\pi\)
\(240\) 0 0
\(241\) −1.00000 1.73205i −0.0644157 0.111571i 0.832019 0.554747i \(-0.187185\pi\)
−0.896435 + 0.443176i \(0.853852\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.50000 7.79423i −0.287494 0.497955i
\(246\) 0 0
\(247\) 12.0000 20.7846i 0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 5.19615i 0.187135 0.324127i −0.757159 0.653231i \(-0.773413\pi\)
0.944294 + 0.329104i \(0.106747\pi\)
\(258\) 0 0
\(259\) 12.0000 + 20.7846i 0.745644 + 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) 5.00000 8.66025i 0.307148 0.531995i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.00000 + 1.73205i 0.0596550 + 0.103325i 0.894311 0.447447i \(-0.147667\pi\)
−0.834656 + 0.550772i \(0.814333\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −40.0000 −2.36113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.00000 8.66025i 0.292103 0.505937i −0.682204 0.731162i \(-0.738978\pi\)
0.974307 + 0.225225i \(0.0723116\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000 + 41.5692i 1.38796 + 2.40401i
\(300\) 0 0
\(301\) 8.00000 13.8564i 0.461112 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 13.8564i 0.453638 0.785725i −0.544970 0.838455i \(-0.683459\pi\)
0.998609 + 0.0527306i \(0.0167924\pi\)
\(312\) 0 0
\(313\) 7.00000 + 12.1244i 0.395663 + 0.685309i 0.993186 0.116543i \(-0.0371814\pi\)
−0.597522 + 0.801852i \(0.703848\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 + 1.73205i 0.0561656 + 0.0972817i 0.892741 0.450570i \(-0.148779\pi\)
−0.836576 + 0.547852i \(0.815446\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.0000 27.7128i 0.882109 1.52786i
\(330\) 0 0
\(331\) −14.0000 24.2487i −0.769510 1.33283i −0.937829 0.347097i \(-0.887167\pi\)
0.168320 0.985732i \(-0.446166\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.00000 + 3.46410i 0.109272 + 0.189264i
\(336\) 0 0
\(337\) −5.00000 + 8.66025i −0.272367 + 0.471754i −0.969468 0.245220i \(-0.921140\pi\)
0.697100 + 0.716974i \(0.254473\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 + 31.1769i −0.966291 + 1.67366i −0.260184 + 0.965559i \(0.583783\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(348\) 0 0
\(349\) 13.0000 + 22.5167i 0.695874 + 1.20529i 0.969885 + 0.243563i \(0.0783162\pi\)
−0.274011 + 0.961727i \(0.588351\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 15.5885i −0.479022 0.829690i 0.520689 0.853746i \(-0.325675\pi\)
−0.999711 + 0.0240566i \(0.992342\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 12.1244i 0.366397 0.634618i
\(366\) 0 0
\(367\) −14.0000 24.2487i −0.730794 1.26577i −0.956544 0.291587i \(-0.905817\pi\)
0.225750 0.974185i \(-0.427517\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 20.0000 + 34.6410i 1.03835 + 1.79847i
\(372\) 0 0
\(373\) −1.00000 + 1.73205i −0.0517780 + 0.0896822i −0.890753 0.454488i \(-0.849822\pi\)
0.838975 + 0.544170i \(0.183156\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000 6.92820i 0.204390 0.354015i −0.745548 0.666452i \(-0.767812\pi\)
0.949938 + 0.312437i \(0.101145\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.00000 5.19615i −0.152106 0.263455i 0.779895 0.625910i \(-0.215272\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(390\) 0 0
\(391\) −8.00000 + 13.8564i −0.404577 + 0.700749i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 19.0000 32.9090i 0.939490 1.62724i 0.173064 0.984911i \(-0.444633\pi\)
0.766426 0.642333i \(-0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.00000 + 13.8564i −0.390826 + 0.676930i −0.992559 0.121768i \(-0.961144\pi\)
0.601733 + 0.798697i \(0.294477\pi\)
\(420\) 0 0
\(421\) −3.00000 5.19615i −0.146211 0.253245i 0.783613 0.621249i \(-0.213375\pi\)
−0.929824 + 0.368004i \(0.880041\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) −12.0000 + 20.7846i −0.580721 + 1.00584i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.0000 + 27.7128i −0.765384 + 1.32568i
\(438\) 0 0
\(439\) 16.0000 + 27.7128i 0.763638 + 1.32266i 0.940963 + 0.338508i \(0.109922\pi\)
−0.177325 + 0.984152i \(0.556744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000 + 10.3923i 0.285069 + 0.493753i 0.972626 0.232377i \(-0.0746503\pi\)
−0.687557 + 0.726130i \(0.741317\pi\)
\(444\) 0 0
\(445\) 1.00000 1.73205i 0.0474045 0.0821071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 20.7846i 0.562569 0.974398i
\(456\) 0 0
\(457\) 19.0000 + 32.9090i 0.888783 + 1.53942i 0.841316 + 0.540544i \(0.181781\pi\)
0.0474665 + 0.998873i \(0.484885\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.00000 + 1.73205i 0.0465746 + 0.0806696i 0.888373 0.459123i \(-0.151836\pi\)
−0.841798 + 0.539792i \(0.818503\pi\)
\(462\) 0 0
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −2.00000 3.46410i −0.0917663 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 0 0
\(481\) −18.0000 + 31.1769i −0.820729 + 1.42154i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −36.0000 −1.63132 −0.815658 0.578535i \(-0.803625\pi\)
−0.815658 + 0.578535i \(0.803625\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.0000 + 34.6410i −0.902587 + 1.56333i −0.0784639 + 0.996917i \(0.525002\pi\)
−0.824123 + 0.566410i \(0.808332\pi\)
\(492\) 0 0
\(493\) −6.00000 10.3923i −0.270226 0.468046i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −10.0000 + 17.3205i −0.447661 + 0.775372i −0.998233 0.0594153i \(-0.981076\pi\)
0.550572 + 0.834788i \(0.314410\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 0 0
\(511\) 28.0000 + 48.4974i 1.23865 + 2.14540i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.00000 3.46410i −0.0881305 0.152647i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −30.0000 51.9615i −1.29944 2.25070i
\(534\) 0 0
\(535\) 2.00000 3.46410i 0.0864675 0.149766i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.00000 8.66025i 0.214176 0.370965i
\(546\) 0 0
\(547\) −2.00000 3.46410i −0.0855138 0.148114i 0.820096 0.572226i \(-0.193920\pi\)
−0.905610 + 0.424111i \(0.860587\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 20.7846i −0.511217 0.885454i
\(552\) 0 0
\(553\) −32.0000 + 55.4256i −1.36078 + 2.35694i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) 0 0
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.00000 12.1244i −0.293455 0.508279i 0.681169 0.732126i \(-0.261472\pi\)
−0.974624 + 0.223847i \(0.928139\pi\)
\(570\) 0 0
\(571\) 10.0000 17.3205i 0.418487 0.724841i −0.577301 0.816532i \(-0.695894\pi\)
0.995788 + 0.0916910i \(0.0292272\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 + 31.1769i 0.742940 + 1.28681i 0.951151 + 0.308725i \(0.0999023\pi\)
−0.208212 + 0.978084i \(0.566764\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.00000 6.92820i 0.163436 0.283079i −0.772663 0.634816i \(-0.781076\pi\)
0.936099 + 0.351738i \(0.114409\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.50000 + 9.52628i 0.223607 + 0.387298i
\(606\) 0 0
\(607\) 6.00000 10.3923i 0.243532 0.421811i −0.718186 0.695852i \(-0.755027\pi\)
0.961718 + 0.274041i \(0.0883604\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.0000 + 22.5167i −0.523360 + 0.906487i 0.476270 + 0.879299i \(0.341988\pi\)
−0.999630 + 0.0271876i \(0.991345\pi\)
\(618\) 0 0
\(619\) 14.0000 + 24.2487i 0.562708 + 0.974638i 0.997259 + 0.0739910i \(0.0235736\pi\)
−0.434551 + 0.900647i \(0.643093\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 + 6.92820i 0.160257 + 0.277573i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.00000 3.46410i 0.0793676 0.137469i
\(636\) 0 0
\(637\) 27.0000 + 46.7654i 1.06978 + 1.85291i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 0 0
\(643\) 18.0000 31.1769i 0.709851 1.22950i −0.255062 0.966925i \(-0.582096\pi\)
0.964912 0.262573i \(-0.0845709\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 15.5885i 0.352197 0.610023i −0.634437 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521013\pi\)
\(654\) 0 0
\(655\) 8.00000 + 13.8564i 0.312586 + 0.541415i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.00000 13.8564i −0.311636 0.539769i 0.667081 0.744985i \(-0.267544\pi\)
−0.978717 + 0.205216i \(0.934210\pi\)
\(660\) 0 0
\(661\) 1.00000 1.73205i 0.0388955 0.0673690i −0.845922 0.533306i \(-0.820949\pi\)
0.884818 + 0.465937i \(0.154283\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 48.0000 1.85857
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 11.0000 + 19.0526i 0.424019 + 0.734422i 0.996328 0.0856156i \(-0.0272857\pi\)
−0.572309 + 0.820038i \(0.693952\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.00000 5.19615i −0.115299 0.199704i 0.802600 0.596518i \(-0.203449\pi\)
−0.917899 + 0.396813i \(0.870116\pi\)
\(678\) 0 0
\(679\) −4.00000 + 6.92820i −0.153506 + 0.265880i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −30.0000 + 51.9615i −1.14291 + 1.97958i
\(690\) 0 0
\(691\) −2.00000 3.46410i −0.0760836 0.131781i 0.825473 0.564441i \(-0.190908\pi\)
−0.901557 + 0.432660i \(0.857575\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 + 10.3923i 0.227593 + 0.394203i
\(696\) 0 0
\(697\) 10.0000 17.3205i 0.378777 0.656061i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.0000 + 48.4974i −1.05305 + 1.82393i
\(708\) 0 0
\(709\) −11.0000 19.0526i −0.413114 0.715534i 0.582115 0.813107i \(-0.302225\pi\)
−0.995228 + 0.0975728i \(0.968892\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 0 0
\(727\) 2.00000 + 3.46410i 0.0741759 + 0.128476i 0.900728 0.434384i \(-0.143034\pi\)
−0.826552 + 0.562861i \(0.809701\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) 0 0
\(733\) 23.0000 39.8372i 0.849524 1.47142i −0.0321090 0.999484i \(-0.510222\pi\)
0.881633 0.471935i \(-0.156444\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) −3.00000 5.19615i −0.109911 0.190372i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 + 13.8564i 0.292314 + 0.506302i
\(750\) 0 0
\(751\) 24.0000 41.5692i 0.875772 1.51688i 0.0198348 0.999803i \(-0.493686\pi\)
0.855938 0.517079i \(-0.172981\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.0000 43.3013i 0.906249 1.56967i 0.0870179 0.996207i \(-0.472266\pi\)
0.819231 0.573463i \(-0.194400\pi\)
\(762\) 0 0
\(763\) 20.0000 + 34.6410i 0.724049 + 1.25409i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 15.0000 25.9808i 0.540914 0.936890i −0.457938 0.888984i \(-0.651412\pi\)
0.998852 0.0479061i \(-0.0152548\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.0000 34.6410i 0.716574 1.24114i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.00000 8.66025i −0.178458 0.309098i
\(786\) 0 0
\(787\) −6.00000 + 10.3923i −0.213877 + 0.370446i −0.952925 0.303207i \(-0.901942\pi\)
0.739048 + 0.673653i \(0.235276\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.0000 29.4449i 0.602171 1.04299i −0.390321 0.920679i \(-0.627636\pi\)
0.992492 0.122312i \(-0.0390308\pi\)
\(798\) 0 0
\(799\) 8.00000 + 13.8564i 0.283020 + 0.490204i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −16.0000 + 27.7128i −0.563926 + 0.976748i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.00000 3.46410i 0.0700569 0.121342i
\(816\) 0 0
\(817\) 8.00000 + 13.8564i 0.279885 + 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 + 43.3013i 0.872506 + 1.51122i 0.859396 + 0.511311i \(0.170840\pi\)
0.0131101 + 0.999914i \(0.495827\pi\)
\(822\) 0 0
\(823\) 2.00000 3.46410i 0.0697156 0.120751i −0.829060 0.559159i \(-0.811124\pi\)
0.898776 + 0.438408i \(0.144457\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.00000 + 15.5885i −0.311832 + 0.540108i
\(834\) 0 0
\(835\) −4.00000 6.92820i −0.138426 0.239760i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.0000 34.6410i −0.690477 1.19594i −0.971682 0.236293i \(-0.924067\pi\)
0.281205 0.959648i \(-0.409266\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) −44.0000 −1.51186
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 24.0000 41.5692i 0.822709 1.42497i
\(852\) 0 0
\(853\) −5.00000 8.66025i −0.171197 0.296521i 0.767642 0.640879i \(-0.221430\pi\)
−0.938839 + 0.344358i \(0.888097\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.0000 + 32.9090i 0.649028 + 1.12415i 0.983355 + 0.181692i \(0.0581574\pi\)
−0.334328 + 0.942457i \(0.608509\pi\)
\(858\) 0 0
\(859\) −18.0000 + 31.1769i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377169\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −12.0000 20.7846i −0.406604 0.704260i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.00000 3.46410i −0.0676123 0.117108i
\(876\) 0 0
\(877\) −5.00000 + 8.66025i −0.168838 + 0.292436i −0.938012 0.346604i \(-0.887335\pi\)
0.769174 + 0.639040i \(0.220668\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 20.7846i 0.402921 0.697879i −0.591156 0.806557i \(-0.701328\pi\)
0.994077 + 0.108678i \(0.0346618\pi\)
\(888\) 0 0
\(889\) 8.00000 + 13.8564i 0.268311 + 0.464729i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.0000 + 27.7128i 0.535420 + 0.927374i
\(894\) 0 0
\(895\) 4.00000 6.92820i 0.133705 0.231584i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.00000 + 12.1244i −0.232688 + 0.403027i
\(906\) 0 0
\(907\) −14.0000 24.2487i −0.464862 0.805165i 0.534333 0.845274i \(-0.320563\pi\)
−0.999195 + 0.0401089i \(0.987230\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0000 27.7128i −0.530104 0.918166i −0.999383 0.0351168i \(-0.988820\pi\)
0.469280 0.883050i \(-0.344514\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −64.0000 −2.11347
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) 0 0
\(931\) −18.0000 + 31.1769i −0.589926 + 1.02178i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.00000 + 12.1244i −0.228193 + 0.395243i −0.957273 0.289187i \(-0.906615\pi\)
0.729079 + 0.684429i \(0.239949\pi\)
\(942\) 0 0
\(943\) 40.0000 + 69.2820i 1.30258 + 2.25613i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.0000 38.1051i −0.714904 1.23825i −0.962997 0.269514i \(-0.913137\pi\)
0.248093 0.968736i \(-0.420196\pi\)
\(948\) 0 0
\(949\) −42.0000 + 72.7461i −1.36338 + 2.36144i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.0000 + 62.3538i −1.16250 + 2.01351i
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.00000 + 5.19615i 0.0965734 + 0.167270i
\(966\) 0 0
\(967\) −10.0000 + 17.3205i −0.321578 + 0.556990i −0.980814 0.194946i \(-0.937547\pi\)
0.659236 + 0.751936i \(0.270880\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.0000 1.79713 0.898563 0.438845i \(-0.144612\pi\)
0.898563 + 0.438845i \(0.144612\pi\)
\(972\) 0 0
\(973\) −48.0000 −1.53881
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.0000 + 43.3013i −0.799821 + 1.38533i 0.119912 + 0.992785i \(0.461739\pi\)
−0.919732 + 0.392546i \(0.871594\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 5.00000 8.66025i 0.159313 0.275939i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15.0000 + 25.9808i 0.475055 + 0.822819i 0.999592 0.0285686i \(-0.00909491\pi\)
−0.524537 + 0.851388i \(0.675762\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.2.q.a.1081.1 2
3.2 odd 2 3240.2.q.m.1081.1 2
9.2 odd 6 3240.2.q.m.2161.1 2
9.4 even 3 360.2.a.e.1.1 1
9.5 odd 6 120.2.a.a.1.1 1
9.7 even 3 inner 3240.2.q.a.2161.1 2
36.23 even 6 240.2.a.a.1.1 1
36.31 odd 6 720.2.a.f.1.1 1
45.4 even 6 1800.2.a.c.1.1 1
45.13 odd 12 1800.2.f.g.649.1 2
45.14 odd 6 600.2.a.a.1.1 1
45.22 odd 12 1800.2.f.g.649.2 2
45.23 even 12 600.2.f.c.49.2 2
45.32 even 12 600.2.f.c.49.1 2
63.41 even 6 5880.2.a.p.1.1 1
72.5 odd 6 960.2.a.g.1.1 1
72.13 even 6 2880.2.a.r.1.1 1
72.59 even 6 960.2.a.n.1.1 1
72.67 odd 6 2880.2.a.b.1.1 1
144.5 odd 12 3840.2.k.a.1921.1 2
144.59 even 12 3840.2.k.z.1921.2 2
144.77 odd 12 3840.2.k.a.1921.2 2
144.131 even 12 3840.2.k.z.1921.1 2
180.23 odd 12 1200.2.f.f.49.1 2
180.59 even 6 1200.2.a.r.1.1 1
180.67 even 12 3600.2.f.l.2449.1 2
180.103 even 12 3600.2.f.l.2449.2 2
180.139 odd 6 3600.2.a.bo.1.1 1
180.167 odd 12 1200.2.f.f.49.2 2
360.59 even 6 4800.2.a.bh.1.1 1
360.77 even 12 4800.2.f.u.3649.2 2
360.149 odd 6 4800.2.a.bl.1.1 1
360.203 odd 12 4800.2.f.n.3649.2 2
360.293 even 12 4800.2.f.u.3649.1 2
360.347 odd 12 4800.2.f.n.3649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.a.a.1.1 1 9.5 odd 6
240.2.a.a.1.1 1 36.23 even 6
360.2.a.e.1.1 1 9.4 even 3
600.2.a.a.1.1 1 45.14 odd 6
600.2.f.c.49.1 2 45.32 even 12
600.2.f.c.49.2 2 45.23 even 12
720.2.a.f.1.1 1 36.31 odd 6
960.2.a.g.1.1 1 72.5 odd 6
960.2.a.n.1.1 1 72.59 even 6
1200.2.a.r.1.1 1 180.59 even 6
1200.2.f.f.49.1 2 180.23 odd 12
1200.2.f.f.49.2 2 180.167 odd 12
1800.2.a.c.1.1 1 45.4 even 6
1800.2.f.g.649.1 2 45.13 odd 12
1800.2.f.g.649.2 2 45.22 odd 12
2880.2.a.b.1.1 1 72.67 odd 6
2880.2.a.r.1.1 1 72.13 even 6
3240.2.q.a.1081.1 2 1.1 even 1 trivial
3240.2.q.a.2161.1 2 9.7 even 3 inner
3240.2.q.m.1081.1 2 3.2 odd 2
3240.2.q.m.2161.1 2 9.2 odd 6
3600.2.a.bo.1.1 1 180.139 odd 6
3600.2.f.l.2449.1 2 180.67 even 12
3600.2.f.l.2449.2 2 180.103 even 12
3840.2.k.a.1921.1 2 144.5 odd 12
3840.2.k.a.1921.2 2 144.77 odd 12
3840.2.k.z.1921.1 2 144.131 even 12
3840.2.k.z.1921.2 2 144.59 even 12
4800.2.a.bh.1.1 1 360.59 even 6
4800.2.a.bl.1.1 1 360.149 odd 6
4800.2.f.n.3649.1 2 360.347 odd 12
4800.2.f.n.3649.2 2 360.203 odd 12
4800.2.f.u.3649.1 2 360.293 even 12
4800.2.f.u.3649.2 2 360.77 even 12
5880.2.a.p.1.1 1 63.41 even 6