L(s) = 1 | − 13.9i·2-s + (23.6 + 13.0i)3-s − 131.·4-s + 76.5i·5-s + (182. − 330. i)6-s − 548.·7-s + 939. i·8-s + (388. + 616. i)9-s + 1.06e3·10-s + 1.54e3i·11-s + (−3.10e3 − 1.71e3i)12-s − 3.44e3·13-s + 7.66e3i·14-s + (−998. + 1.80e3i)15-s + 4.72e3·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | − 1.74i·2-s + (0.875 + 0.483i)3-s − 2.05·4-s + 0.612i·5-s + (0.844 − 1.52i)6-s − 1.60·7-s + 1.83i·8-s + (0.532 + 0.846i)9-s + 1.06·10-s + 1.15i·11-s + (−1.79 − 0.990i)12-s − 1.56·13-s + 2.79i·14-s + (−0.295 + 0.535i)15-s + 1.15·16-s + 0.242i·17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(0.483−0.875i)Λ(7−s)
Λ(s)=(=(51s/2ΓC(s+3)L(s)(0.483−0.875i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
0.483−0.875i
|
Analytic conductor: |
11.7327 |
Root analytic conductor: |
3.42531 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :3), 0.483−0.875i)
|
Particular Values
L(27) |
≈ |
0.541156+0.319387i |
L(21) |
≈ |
0.541156+0.319387i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−23.6−13.0i)T |
| 17 | 1−1.19e3iT |
good | 2 | 1+13.9iT−64T2 |
| 5 | 1−76.5iT−1.56e4T2 |
| 7 | 1+548.T+1.17e5T2 |
| 11 | 1−1.54e3iT−1.77e6T2 |
| 13 | 1+3.44e3T+4.82e6T2 |
| 19 | 1−3.75e3T+4.70e7T2 |
| 23 | 1+1.57e4iT−1.48e8T2 |
| 29 | 1+1.37e4iT−5.94e8T2 |
| 31 | 1+4.37e4T+8.87e8T2 |
| 37 | 1+1.10e4T+2.56e9T2 |
| 41 | 1−2.98e4iT−4.75e9T2 |
| 43 | 1+1.18e4T+6.32e9T2 |
| 47 | 1−2.44e4iT−1.07e10T2 |
| 53 | 1−1.64e5iT−2.21e10T2 |
| 59 | 1−8.15e4iT−4.21e10T2 |
| 61 | 1+4.30e5T+5.15e10T2 |
| 67 | 1+6.41e3T+9.04e10T2 |
| 71 | 1−3.74e5iT−1.28e11T2 |
| 73 | 1−4.68e5T+1.51e11T2 |
| 79 | 1+7.27e4T+2.43e11T2 |
| 83 | 1+8.21e5iT−3.26e11T2 |
| 89 | 1−4.67e5iT−4.96e11T2 |
| 97 | 1+9.31e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.20675029626629769123709196755, −12.89970473136282319580942455079, −12.33663011039175065649277028506, −10.56604140470609204525602983437, −9.875506242436834135550903275608, −9.223596823861684709561195642671, −7.18626512688599366024072463254, −4.51673372308967820012274098792, −3.16319969432323171925103031665, −2.33153181746630056007258404911,
0.23717864379384447842185035480, 3.37659593993529699307039976379, 5.37881859144461047292847579639, 6.73478733353558357672993758817, 7.63182047377603294363303256548, 8.991426010886817187937782255016, 9.568835586083786566024847951630, 12.46110486311187144344843387077, 13.32672294921642420727648879438, 14.16240123005180851897589353536