Properties

Label 51.7.b.a.35.3
Level $51$
Weight $7$
Character 51.35
Analytic conductor $11.733$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,7,Mod(35,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.35");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 51.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7327582646\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 35.3
Character \(\chi\) \(=\) 51.35
Dual form 51.7.b.a.35.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.9722i q^{2} +(23.6370 + 13.0496i) q^{3} -131.222 q^{4} +76.5124i q^{5} +(182.331 - 330.261i) q^{6} -548.925 q^{7} +939.239i q^{8} +(388.417 + 616.906i) q^{9} +1069.05 q^{10} +1542.64i q^{11} +(-3101.70 - 1712.39i) q^{12} -3442.11 q^{13} +7669.68i q^{14} +(-998.455 + 1808.53i) q^{15} +4725.01 q^{16} +1191.58i q^{17} +(8619.53 - 5427.03i) q^{18} +3758.59 q^{19} -10040.1i q^{20} +(-12974.9 - 7163.24i) q^{21} +21554.0 q^{22} -15746.1i q^{23} +(-12256.7 + 22200.8i) q^{24} +9770.85 q^{25} +48093.8i q^{26} +(1130.64 + 19650.5i) q^{27} +72031.0 q^{28} -13783.9i q^{29} +(25269.1 + 13950.6i) q^{30} -43753.9 q^{31} -5907.44i q^{32} +(-20130.8 + 36463.4i) q^{33} +16648.9 q^{34} -41999.6i q^{35} +(-50968.8 - 80951.7i) q^{36} -11046.9 q^{37} -52515.8i q^{38} +(-81361.2 - 44918.1i) q^{39} -71863.5 q^{40} +29854.9i q^{41} +(-100086. + 181288. i) q^{42} -11876.0 q^{43} -202428. i q^{44} +(-47201.0 + 29718.7i) q^{45} -220007. q^{46} +24476.0i q^{47} +(111685. + 61659.4i) q^{48} +183669. q^{49} -136520. i q^{50} +(-15549.6 + 28165.3i) q^{51} +451681. q^{52} +164876. i q^{53} +(274560. - 15797.6i) q^{54} -118031. q^{55} -515571. i q^{56} +(88841.9 + 49048.1i) q^{57} -192591. q^{58} +81554.6i q^{59} +(131019. - 237318. i) q^{60} -430458. q^{61} +611338. i q^{62} +(-213212. - 338635. i) q^{63} +219861. q^{64} -263364. i q^{65} +(509473. + 281271. i) q^{66} -6416.60 q^{67} -156361. i q^{68} +(205479. - 372190. i) q^{69} -586826. q^{70} +374466. i q^{71} +(-579422. + 364816. i) q^{72} +468151. q^{73} +154349. i q^{74} +(230954. + 127505. i) q^{75} -493210. q^{76} -846792. i q^{77} +(-627604. + 1.13679e6i) q^{78} -72781.8 q^{79} +361522. i q^{80} +(-229706. + 479234. i) q^{81} +417138. q^{82} -821984. i q^{83} +(1.70260e6 + 939975. i) q^{84} -91170.5 q^{85} +165933. i q^{86} +(179874. - 325810. i) q^{87} -1.44891e6 q^{88} +467567. i q^{89} +(415236. + 659501. i) q^{90} +1.88946e6 q^{91} +2.06623e6i q^{92} +(-1.03421e6 - 570971. i) q^{93} +341983. q^{94} +287579. i q^{95} +(77089.6 - 139634. i) q^{96} -931439. q^{97} -2.56626e6i q^{98} +(-951663. + 599186. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{3} - 1024 q^{4} + 286 q^{6} + 568 q^{7} - 912 q^{9} - 744 q^{10} + 194 q^{12} - 2312 q^{13} - 6240 q^{15} + 13208 q^{16} + 2936 q^{18} + 7936 q^{19} - 21688 q^{21} + 13176 q^{22} + 18282 q^{24}+ \cdots + 1619864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 13.9722i 1.74652i −0.487251 0.873262i \(-0.662000\pi\)
0.487251 0.873262i \(-0.338000\pi\)
\(3\) 23.6370 + 13.0496i 0.875445 + 0.483318i
\(4\) −131.222 −2.05034
\(5\) 76.5124i 0.612100i 0.952016 + 0.306050i \(0.0990074\pi\)
−0.952016 + 0.306050i \(0.900993\pi\)
\(6\) 182.331 330.261i 0.844126 1.52899i
\(7\) −548.925 −1.60036 −0.800182 0.599757i \(-0.795264\pi\)
−0.800182 + 0.599757i \(0.795264\pi\)
\(8\) 939.239i 1.83445i
\(9\) 388.417 + 616.906i 0.532808 + 0.846236i
\(10\) 1069.05 1.06905
\(11\) 1542.64i 1.15901i 0.814970 + 0.579503i \(0.196753\pi\)
−0.814970 + 0.579503i \(0.803247\pi\)
\(12\) −3101.70 1712.39i −1.79496 0.990968i
\(13\) −3442.11 −1.56673 −0.783366 0.621560i \(-0.786499\pi\)
−0.783366 + 0.621560i \(0.786499\pi\)
\(14\) 7669.68i 2.79507i
\(15\) −998.455 + 1808.53i −0.295839 + 0.535859i
\(16\) 4725.01 1.15357
\(17\) 1191.58i 0.242536i
\(18\) 8619.53 5427.03i 1.47797 0.930561i
\(19\) 3758.59 0.547980 0.273990 0.961733i \(-0.411657\pi\)
0.273990 + 0.961733i \(0.411657\pi\)
\(20\) 10040.1i 1.25501i
\(21\) −12974.9 7163.24i −1.40103 0.773484i
\(22\) 21554.0 2.02423
\(23\) 15746.1i 1.29416i −0.762422 0.647080i \(-0.775990\pi\)
0.762422 0.647080i \(-0.224010\pi\)
\(24\) −12256.7 + 22200.8i −0.886623 + 1.60596i
\(25\) 9770.85 0.625334
\(26\) 48093.8i 2.73633i
\(27\) 1130.64 + 19650.5i 0.0574427 + 0.998349i
\(28\) 72031.0 3.28130
\(29\) 13783.9i 0.565169i −0.959242 0.282584i \(-0.908808\pi\)
0.959242 0.282584i \(-0.0911917\pi\)
\(30\) 25269.1 + 13950.6i 0.935891 + 0.516689i
\(31\) −43753.9 −1.46870 −0.734348 0.678773i \(-0.762512\pi\)
−0.734348 + 0.678773i \(0.762512\pi\)
\(32\) 5907.44i 0.180281i
\(33\) −20130.8 + 36463.4i −0.560169 + 1.01465i
\(34\) 16648.9 0.423594
\(35\) 41999.6i 0.979582i
\(36\) −50968.8 80951.7i −1.09244 1.73508i
\(37\) −11046.9 −0.218089 −0.109044 0.994037i \(-0.534779\pi\)
−0.109044 + 0.994037i \(0.534779\pi\)
\(38\) 52515.8i 0.957060i
\(39\) −81361.2 44918.1i −1.37159 0.757230i
\(40\) −71863.5 −1.12287
\(41\) 29854.9i 0.433175i 0.976263 + 0.216588i \(0.0694927\pi\)
−0.976263 + 0.216588i \(0.930507\pi\)
\(42\) −100086. + 181288.i −1.35091 + 2.44693i
\(43\) −11876.0 −0.149370 −0.0746850 0.997207i \(-0.523795\pi\)
−0.0746850 + 0.997207i \(0.523795\pi\)
\(44\) 202428.i 2.37636i
\(45\) −47201.0 + 29718.7i −0.517981 + 0.326131i
\(46\) −220007. −2.26028
\(47\) 24476.0i 0.235747i 0.993029 + 0.117873i \(0.0376077\pi\)
−0.993029 + 0.117873i \(0.962392\pi\)
\(48\) 111685. + 61659.4i 1.00988 + 0.557539i
\(49\) 183669. 1.56116
\(50\) 136520.i 1.09216i
\(51\) −15549.6 + 28165.3i −0.117222 + 0.212327i
\(52\) 451681. 3.21234
\(53\) 164876.i 1.10746i 0.832695 + 0.553732i \(0.186797\pi\)
−0.832695 + 0.553732i \(0.813203\pi\)
\(54\) 274560. 15797.6i 1.74364 0.100325i
\(55\) −118031. −0.709427
\(56\) 515571.i 2.93579i
\(57\) 88841.9 + 49048.1i 0.479726 + 0.264848i
\(58\) −192591. −0.987080
\(59\) 81554.6i 0.397093i 0.980091 + 0.198547i \(0.0636221\pi\)
−0.980091 + 0.198547i \(0.936378\pi\)
\(60\) 131019. 237318.i 0.606571 1.09870i
\(61\) −430458. −1.89645 −0.948225 0.317600i \(-0.897123\pi\)
−0.948225 + 0.317600i \(0.897123\pi\)
\(62\) 611338.i 2.56511i
\(63\) −213212. 338635.i −0.852686 1.35429i
\(64\) 219861. 0.838702
\(65\) 263364.i 0.958996i
\(66\) 509473. + 281271.i 1.77210 + 0.978348i
\(67\) −6416.60 −0.0213344 −0.0106672 0.999943i \(-0.503396\pi\)
−0.0106672 + 0.999943i \(0.503396\pi\)
\(68\) 156361.i 0.497281i
\(69\) 205479. 372190.i 0.625491 1.13297i
\(70\) −586826. −1.71086
\(71\) 374466.i 1.04626i 0.852254 + 0.523128i \(0.175235\pi\)
−0.852254 + 0.523128i \(0.824765\pi\)
\(72\) −579422. + 364816.i −1.55238 + 0.977409i
\(73\) 468151. 1.20342 0.601710 0.798715i \(-0.294486\pi\)
0.601710 + 0.798715i \(0.294486\pi\)
\(74\) 154349.i 0.380897i
\(75\) 230954. + 127505.i 0.547446 + 0.302235i
\(76\) −493210. −1.12355
\(77\) 846792.i 1.85483i
\(78\) −627604. + 1.13679e6i −1.32252 + 2.39551i
\(79\) −72781.8 −0.147619 −0.0738093 0.997272i \(-0.523516\pi\)
−0.0738093 + 0.997272i \(0.523516\pi\)
\(80\) 361522.i 0.706098i
\(81\) −229706. + 479234.i −0.432232 + 0.901762i
\(82\) 417138. 0.756551
\(83\) 821984.i 1.43757i −0.695233 0.718785i \(-0.744699\pi\)
0.695233 0.718785i \(-0.255301\pi\)
\(84\) 1.70260e6 + 939975.i 2.87259 + 1.58591i
\(85\) −91170.5 −0.148456
\(86\) 165933.i 0.260878i
\(87\) 179874. 325810.i 0.273156 0.494774i
\(88\) −1.44891e6 −2.12614
\(89\) 467567.i 0.663244i 0.943412 + 0.331622i \(0.107596\pi\)
−0.943412 + 0.331622i \(0.892404\pi\)
\(90\) 415236. + 659501.i 0.569596 + 0.904666i
\(91\) 1.88946e6 2.50734
\(92\) 2.06623e6i 2.65347i
\(93\) −1.03421e6 570971.i −1.28576 0.709847i
\(94\) 341983. 0.411738
\(95\) 287579.i 0.335418i
\(96\) 77089.6 139634.i 0.0871329 0.157826i
\(97\) −931439. −1.02056 −0.510281 0.860008i \(-0.670458\pi\)
−0.510281 + 0.860008i \(0.670458\pi\)
\(98\) 2.56626e6i 2.72661i
\(99\) −951663. + 599186.i −0.980794 + 0.617528i
\(100\) −1.28215e6 −1.28215
\(101\) 1.47373e6i 1.43038i −0.698928 0.715192i \(-0.746339\pi\)
0.698928 0.715192i \(-0.253661\pi\)
\(102\) 393531. + 217262.i 0.370833 + 0.204731i
\(103\) 1.16204e6 1.06344 0.531718 0.846922i \(-0.321547\pi\)
0.531718 + 0.846922i \(0.321547\pi\)
\(104\) 3.23296e6i 2.87409i
\(105\) 548077. 992745.i 0.473449 0.857570i
\(106\) 2.30368e6 1.93421
\(107\) 558307.i 0.455745i 0.973691 + 0.227872i \(0.0731769\pi\)
−0.973691 + 0.227872i \(0.926823\pi\)
\(108\) −148365. 2.57858e6i −0.117777 2.04696i
\(109\) 259325. 0.200246 0.100123 0.994975i \(-0.468076\pi\)
0.100123 + 0.994975i \(0.468076\pi\)
\(110\) 1.64915e6i 1.23903i
\(111\) −261115. 144157.i −0.190925 0.105406i
\(112\) −2.59367e6 −1.84613
\(113\) 130617.i 0.0905241i 0.998975 + 0.0452620i \(0.0144123\pi\)
−0.998975 + 0.0452620i \(0.985588\pi\)
\(114\) 685309. 1.24132e6i 0.462564 0.837853i
\(115\) 1.20477e6 0.792155
\(116\) 1.80875e6i 1.15879i
\(117\) −1.33697e6 2.12346e6i −0.834767 1.32583i
\(118\) 1.13950e6 0.693532
\(119\) 654086.i 0.388145i
\(120\) −1.69864e6 937788.i −0.983008 0.542701i
\(121\) −608170. −0.343296
\(122\) 6.01444e6i 3.31219i
\(123\) −389594. + 705680.i −0.209361 + 0.379221i
\(124\) 5.74148e6 3.01133
\(125\) 1.94310e6i 0.994866i
\(126\) −4.73147e6 + 2.97903e6i −2.36529 + 1.48924i
\(127\) 442172. 0.215864 0.107932 0.994158i \(-0.465577\pi\)
0.107932 + 0.994158i \(0.465577\pi\)
\(128\) 3.45001e6i 1.64509i
\(129\) −280712. 154976.i −0.130765 0.0721932i
\(130\) −3.67978e6 −1.67491
\(131\) 2.15450e6i 0.958367i 0.877715 + 0.479183i \(0.159067\pi\)
−0.877715 + 0.479183i \(0.840933\pi\)
\(132\) 2.64160e6 4.78479e6i 1.14854 2.08037i
\(133\) −2.06319e6 −0.876967
\(134\) 89653.9i 0.0372610i
\(135\) −1.50351e6 + 86508.4i −0.611089 + 0.0351606i
\(136\) −1.11918e6 −0.444920
\(137\) 2.02372e6i 0.787026i −0.919319 0.393513i \(-0.871260\pi\)
0.919319 0.393513i \(-0.128740\pi\)
\(138\) −5.20030e6 2.87100e6i −1.97875 1.09243i
\(139\) −2.54076e6 −0.946062 −0.473031 0.881046i \(-0.656840\pi\)
−0.473031 + 0.881046i \(0.656840\pi\)
\(140\) 5.51127e6i 2.00848i
\(141\) −319401. + 578539.i −0.113941 + 0.206383i
\(142\) 5.23211e6 1.82731
\(143\) 5.30993e6i 1.81585i
\(144\) 1.83527e6 + 2.91489e6i 0.614629 + 0.976190i
\(145\) 1.05464e6 0.345939
\(146\) 6.54109e6i 2.10180i
\(147\) 4.34140e6 + 2.39681e6i 1.36671 + 0.754539i
\(148\) 1.44959e6 0.447157
\(149\) 6.24567e6i 1.88808i 0.329833 + 0.944039i \(0.393008\pi\)
−0.329833 + 0.944039i \(0.606992\pi\)
\(150\) 1.78153e6 3.22693e6i 0.527861 0.956127i
\(151\) −294031. −0.0854009 −0.0427005 0.999088i \(-0.513596\pi\)
−0.0427005 + 0.999088i \(0.513596\pi\)
\(152\) 3.53022e6i 1.00524i
\(153\) −735092. + 462829.i −0.205242 + 0.129225i
\(154\) −1.18315e7 −3.23951
\(155\) 3.34772e6i 0.898988i
\(156\) 1.06764e7 + 5.89425e6i 2.81223 + 1.55258i
\(157\) 4.98082e6 1.28707 0.643534 0.765417i \(-0.277467\pi\)
0.643534 + 0.765417i \(0.277467\pi\)
\(158\) 1.01692e6i 0.257819i
\(159\) −2.15156e6 + 3.89718e6i −0.535257 + 0.969524i
\(160\) 451993. 0.110350
\(161\) 8.64340e6i 2.07113i
\(162\) 6.69594e6 + 3.20949e6i 1.57495 + 0.754903i
\(163\) 2.24420e6 0.518202 0.259101 0.965850i \(-0.416574\pi\)
0.259101 + 0.965850i \(0.416574\pi\)
\(164\) 3.91762e6i 0.888158i
\(165\) −2.78990e6 1.54026e6i −0.621065 0.342879i
\(166\) −1.14849e7 −2.51075
\(167\) 4.33896e6i 0.931615i −0.884886 0.465807i \(-0.845764\pi\)
0.884886 0.465807i \(-0.154236\pi\)
\(168\) 6.72799e6 1.21866e7i 1.41892 2.57012i
\(169\) 7.02132e6 1.45465
\(170\) 1.27385e6i 0.259282i
\(171\) 1.45990e6 + 2.31870e6i 0.291968 + 0.463720i
\(172\) 1.55839e6 0.306260
\(173\) 9.55679e6i 1.84575i 0.385094 + 0.922877i \(0.374169\pi\)
−0.385094 + 0.922877i \(0.625831\pi\)
\(174\) −4.55228e6 2.51323e6i −0.864134 0.477073i
\(175\) −5.36346e6 −1.00076
\(176\) 7.28898e6i 1.33699i
\(177\) −1.06425e6 + 1.92771e6i −0.191922 + 0.347633i
\(178\) 6.53293e6 1.15837
\(179\) 2.01726e6i 0.351725i 0.984415 + 0.175862i \(0.0562714\pi\)
−0.984415 + 0.175862i \(0.943729\pi\)
\(180\) 6.19381e6 3.89975e6i 1.06204 0.668682i
\(181\) 6.73662e6 1.13607 0.568037 0.823003i \(-0.307703\pi\)
0.568037 + 0.823003i \(0.307703\pi\)
\(182\) 2.63999e7i 4.37913i
\(183\) −1.01747e7 5.61730e6i −1.66024 0.916588i
\(184\) 1.47893e7 2.37407
\(185\) 845222.i 0.133492i
\(186\) −7.97771e6 + 1.44502e7i −1.23976 + 2.24561i
\(187\) −1.83817e6 −0.281100
\(188\) 3.21178e6i 0.483362i
\(189\) −620639. 1.07866e7i −0.0919292 1.59772i
\(190\) 4.01811e6 0.585816
\(191\) 7.36801e6i 1.05743i 0.848800 + 0.528713i \(0.177325\pi\)
−0.848800 + 0.528713i \(0.822675\pi\)
\(192\) 5.19685e6 + 2.86909e6i 0.734238 + 0.405360i
\(193\) −1.28611e7 −1.78898 −0.894492 0.447085i \(-0.852462\pi\)
−0.894492 + 0.447085i \(0.852462\pi\)
\(194\) 1.30142e7i 1.78243i
\(195\) 3.43679e6 6.22515e6i 0.463500 0.839548i
\(196\) −2.41015e7 −3.20092
\(197\) 1.14789e6i 0.150142i 0.997178 + 0.0750711i \(0.0239184\pi\)
−0.997178 + 0.0750711i \(0.976082\pi\)
\(198\) 8.37195e6 + 1.32968e7i 1.07853 + 1.71298i
\(199\) −6.00763e6 −0.762332 −0.381166 0.924507i \(-0.624477\pi\)
−0.381166 + 0.924507i \(0.624477\pi\)
\(200\) 9.17716e6i 1.14714i
\(201\) −151669. 83733.9i −0.0186771 0.0103113i
\(202\) −2.05912e7 −2.49820
\(203\) 7.56632e6i 0.904475i
\(204\) 2.04045e6 3.69591e6i 0.240345 0.435343i
\(205\) −2.28427e6 −0.265146
\(206\) 1.62363e7i 1.85731i
\(207\) 9.71384e6 6.11603e6i 1.09517 0.689539i
\(208\) −1.62640e7 −1.80733
\(209\) 5.79815e6i 0.635112i
\(210\) −1.38708e7 7.65783e6i −1.49777 0.826891i
\(211\) 6.01757e6 0.640581 0.320290 0.947319i \(-0.396220\pi\)
0.320290 + 0.947319i \(0.396220\pi\)
\(212\) 2.16354e7i 2.27068i
\(213\) −4.88663e6 + 8.85126e6i −0.505674 + 0.915939i
\(214\) 7.80077e6 0.795969
\(215\) 908658.i 0.0914293i
\(216\) −1.84565e7 + 1.06194e6i −1.83142 + 0.105376i
\(217\) 2.40176e7 2.35045
\(218\) 3.62333e6i 0.349735i
\(219\) 1.10657e7 + 6.10917e6i 1.05353 + 0.581634i
\(220\) 1.54883e7 1.45457
\(221\) 4.10154e6i 0.379988i
\(222\) −2.01419e6 + 3.64834e6i −0.184095 + 0.333455i
\(223\) −5.02279e6 −0.452930 −0.226465 0.974019i \(-0.572717\pi\)
−0.226465 + 0.974019i \(0.572717\pi\)
\(224\) 3.24274e6i 0.288515i
\(225\) 3.79516e6 + 6.02770e6i 0.333183 + 0.529180i
\(226\) 1.82500e6 0.158102
\(227\) 1.68620e7i 1.44156i −0.693166 0.720778i \(-0.743785\pi\)
0.693166 0.720778i \(-0.256215\pi\)
\(228\) −1.16580e7 6.43619e6i −0.983604 0.543030i
\(229\) 1.50996e7 1.25736 0.628678 0.777666i \(-0.283596\pi\)
0.628678 + 0.777666i \(0.283596\pi\)
\(230\) 1.68333e7i 1.38352i
\(231\) 1.10503e7 2.00156e7i 0.896474 1.62380i
\(232\) 1.29464e7 1.03677
\(233\) 5.33260e6i 0.421571i 0.977532 + 0.210786i \(0.0676022\pi\)
−0.977532 + 0.210786i \(0.932398\pi\)
\(234\) −2.96694e7 + 1.86804e7i −2.31559 + 1.45794i
\(235\) −1.87272e6 −0.144301
\(236\) 1.07018e7i 0.814177i
\(237\) −1.72034e6 949772.i −0.129232 0.0713467i
\(238\) −9.13902e6 −0.677905
\(239\) 1.14958e6i 0.0842062i 0.999113 + 0.0421031i \(0.0134058\pi\)
−0.999113 + 0.0421031i \(0.986594\pi\)
\(240\) −4.71771e6 + 8.54530e6i −0.341270 + 0.618150i
\(241\) −2.38751e7 −1.70566 −0.852832 0.522185i \(-0.825117\pi\)
−0.852832 + 0.522185i \(0.825117\pi\)
\(242\) 8.49747e6i 0.599575i
\(243\) −1.16834e7 + 8.33009e6i −0.814233 + 0.580538i
\(244\) 5.64856e7 3.88837
\(245\) 1.40530e7i 0.955588i
\(246\) 9.85989e6 + 5.44347e6i 0.662318 + 0.365654i
\(247\) −1.29375e7 −0.858538
\(248\) 4.10954e7i 2.69425i
\(249\) 1.07265e7 1.94292e7i 0.694803 1.25851i
\(250\) 2.71493e7 1.73756
\(251\) 1.62523e7i 1.02776i −0.857861 0.513881i \(-0.828207\pi\)
0.857861 0.513881i \(-0.171793\pi\)
\(252\) 2.79781e7 + 4.44364e7i 1.74830 + 2.77675i
\(253\) 2.42905e7 1.49994
\(254\) 6.17811e6i 0.377012i
\(255\) −2.15500e6 1.18974e6i −0.129965 0.0717514i
\(256\) −3.41331e7 −2.03449
\(257\) 5.62767e6i 0.331535i 0.986165 + 0.165767i \(0.0530101\pi\)
−0.986165 + 0.165767i \(0.946990\pi\)
\(258\) −2.16536e6 + 3.92216e6i −0.126087 + 0.228384i
\(259\) 6.06389e6 0.349022
\(260\) 3.45592e7i 1.96627i
\(261\) 8.50337e6 5.35390e6i 0.478266 0.301126i
\(262\) 3.01030e7 1.67381
\(263\) 7.99601e6i 0.439548i −0.975551 0.219774i \(-0.929468\pi\)
0.975551 0.219774i \(-0.0705319\pi\)
\(264\) −3.42478e7 1.89076e7i −1.86132 1.02760i
\(265\) −1.26151e7 −0.677878
\(266\) 2.88272e7i 1.53164i
\(267\) −6.10155e6 + 1.10519e7i −0.320558 + 0.580634i
\(268\) 841999. 0.0437429
\(269\) 3.82451e6i 0.196480i 0.995163 + 0.0982402i \(0.0313213\pi\)
−0.995163 + 0.0982402i \(0.968679\pi\)
\(270\) 1.20871e6 + 2.10073e7i 0.0614089 + 1.06728i
\(271\) −3.24302e7 −1.62945 −0.814726 0.579846i \(-0.803113\pi\)
−0.814726 + 0.579846i \(0.803113\pi\)
\(272\) 5.63021e6i 0.279781i
\(273\) 4.46612e7 + 2.46567e7i 2.19504 + 1.21184i
\(274\) −2.82758e7 −1.37456
\(275\) 1.50729e7i 0.724766i
\(276\) −2.69634e7 + 4.88395e7i −1.28247 + 2.32297i
\(277\) 1.89457e7 0.891396 0.445698 0.895183i \(-0.352955\pi\)
0.445698 + 0.895183i \(0.352955\pi\)
\(278\) 3.55000e7i 1.65232i
\(279\) −1.69948e7 2.69921e7i −0.782533 1.24286i
\(280\) 3.94476e7 1.79699
\(281\) 5.35271e6i 0.241243i 0.992699 + 0.120622i \(0.0384888\pi\)
−0.992699 + 0.120622i \(0.961511\pi\)
\(282\) 8.08345e6 + 4.46273e6i 0.360454 + 0.199000i
\(283\) −1.07877e7 −0.475961 −0.237980 0.971270i \(-0.576485\pi\)
−0.237980 + 0.971270i \(0.576485\pi\)
\(284\) 4.91382e7i 2.14518i
\(285\) −3.75279e6 + 6.79751e6i −0.162114 + 0.293640i
\(286\) −7.41913e7 −3.17143
\(287\) 1.63881e7i 0.693238i
\(288\) 3.64434e6 2.29455e6i 0.152560 0.0960550i
\(289\) −1.41986e6 −0.0588235
\(290\) 1.47356e7i 0.604191i
\(291\) −2.20164e7 1.21549e7i −0.893445 0.493255i
\(292\) −6.14317e7 −2.46742
\(293\) 1.26877e7i 0.504407i −0.967674 0.252204i \(-0.918845\pi\)
0.967674 0.252204i \(-0.0811553\pi\)
\(294\) 3.34887e7 6.06588e7i 1.31782 2.38700i
\(295\) −6.23994e6 −0.243060
\(296\) 1.03756e7i 0.400073i
\(297\) −3.03136e7 + 1.74417e6i −1.15709 + 0.0665765i
\(298\) 8.72656e7 3.29757
\(299\) 5.41997e7i 2.02760i
\(300\) −3.03062e7 1.67315e7i −1.12245 0.619686i
\(301\) 6.51901e6 0.239046
\(302\) 4.10826e6i 0.149155i
\(303\) 1.92315e7 3.48345e7i 0.691330 1.25222i
\(304\) 1.77594e7 0.632131
\(305\) 3.29354e7i 1.16082i
\(306\) 6.46673e6 + 1.02708e7i 0.225694 + 0.358461i
\(307\) −3.39493e7 −1.17332 −0.586659 0.809834i \(-0.699557\pi\)
−0.586659 + 0.809834i \(0.699557\pi\)
\(308\) 1.11118e8i 3.80304i
\(309\) 2.74673e7 + 1.51642e7i 0.930979 + 0.513977i
\(310\) −4.67750e7 −1.57010
\(311\) 1.64551e7i 0.547041i −0.961866 0.273520i \(-0.911812\pi\)
0.961866 0.273520i \(-0.0881881\pi\)
\(312\) 4.21888e7 7.64176e7i 1.38910 2.51611i
\(313\) −8.44685e6 −0.275462 −0.137731 0.990470i \(-0.543981\pi\)
−0.137731 + 0.990470i \(0.543981\pi\)
\(314\) 6.95929e7i 2.24789i
\(315\) 2.59098e7 1.63133e7i 0.828958 0.521929i
\(316\) 9.55057e6 0.302669
\(317\) 5.80618e7i 1.82269i 0.411644 + 0.911345i \(0.364955\pi\)
−0.411644 + 0.911345i \(0.635045\pi\)
\(318\) 5.44521e7 + 3.00620e7i 1.69330 + 0.934839i
\(319\) 2.12636e7 0.655034
\(320\) 1.68221e7i 0.513369i
\(321\) −7.28567e6 + 1.31967e7i −0.220270 + 0.398979i
\(322\) 1.20767e8 3.61727
\(323\) 4.47866e6i 0.132905i
\(324\) 3.01425e7 6.28860e7i 0.886224 1.84892i
\(325\) −3.36323e7 −0.979731
\(326\) 3.13564e7i 0.905052i
\(327\) 6.12966e6 + 3.38408e6i 0.175305 + 0.0967826i
\(328\) −2.80408e7 −0.794638
\(329\) 1.34355e7i 0.377281i
\(330\) −2.15207e7 + 3.89810e7i −0.598846 + 1.08470i
\(331\) −2.14944e7 −0.592710 −0.296355 0.955078i \(-0.595771\pi\)
−0.296355 + 0.955078i \(0.595771\pi\)
\(332\) 1.07862e8i 2.94751i
\(333\) −4.29079e6 6.81488e6i −0.116199 0.184555i
\(334\) −6.06248e7 −1.62709
\(335\) 490950.i 0.0130588i
\(336\) −6.13067e7 3.38464e7i −1.61618 0.892266i
\(337\) −6.30235e7 −1.64669 −0.823347 0.567538i \(-0.807896\pi\)
−0.823347 + 0.567538i \(0.807896\pi\)
\(338\) 9.81032e7i 2.54058i
\(339\) −1.70450e6 + 3.08739e6i −0.0437519 + 0.0792488i
\(340\) 1.19636e7 0.304386
\(341\) 6.74965e7i 1.70223i
\(342\) 3.23973e7 2.03980e7i 0.809899 0.509929i
\(343\) −3.62402e7 −0.898067
\(344\) 1.11544e7i 0.274012i
\(345\) 2.84771e7 + 1.57217e7i 0.693488 + 0.382863i
\(346\) 1.33529e8 3.22365
\(347\) 3.94698e7i 0.944661i −0.881422 0.472331i \(-0.843413\pi\)
0.881422 0.472331i \(-0.156587\pi\)
\(348\) −2.36034e7 + 4.27535e7i −0.560064 + 1.01446i
\(349\) 1.49778e7 0.352347 0.176174 0.984359i \(-0.443628\pi\)
0.176174 + 0.984359i \(0.443628\pi\)
\(350\) 7.49393e7i 1.74785i
\(351\) −3.89180e6 6.76392e7i −0.0899973 1.56415i
\(352\) 9.11304e6 0.208947
\(353\) 3.92245e7i 0.891730i 0.895100 + 0.445865i \(0.147104\pi\)
−0.895100 + 0.445865i \(0.852896\pi\)
\(354\) 2.69343e7 + 1.48699e7i 0.607149 + 0.335197i
\(355\) −2.86513e7 −0.640412
\(356\) 6.13550e7i 1.35988i
\(357\) 8.53555e6 1.54606e7i 0.187598 0.339800i
\(358\) 2.81855e7 0.614295
\(359\) 6.33820e7i 1.36988i 0.728600 + 0.684940i \(0.240172\pi\)
−0.728600 + 0.684940i \(0.759828\pi\)
\(360\) −2.79130e7 4.43330e7i −0.598272 0.950210i
\(361\) −3.29189e7 −0.699718
\(362\) 9.41253e7i 1.98418i
\(363\) −1.43753e7 7.93637e6i −0.300537 0.165921i
\(364\) −2.47939e8 −5.14091
\(365\) 3.58194e7i 0.736613i
\(366\) −7.84859e7 + 1.42163e8i −1.60084 + 2.89964i
\(367\) −7.82479e6 −0.158298 −0.0791489 0.996863i \(-0.525220\pi\)
−0.0791489 + 0.996863i \(0.525220\pi\)
\(368\) 7.44003e7i 1.49290i
\(369\) −1.84177e7 + 1.15961e7i −0.366569 + 0.230799i
\(370\) −1.18096e7 −0.233147
\(371\) 9.05045e7i 1.77235i
\(372\) 1.35711e8 + 7.49239e7i 2.63626 + 1.45543i
\(373\) −7.37682e6 −0.142149 −0.0710744 0.997471i \(-0.522643\pi\)
−0.0710744 + 0.997471i \(0.522643\pi\)
\(374\) 2.56833e7i 0.490948i
\(375\) −2.53566e7 + 4.59290e7i −0.480837 + 0.870951i
\(376\) −2.29888e7 −0.432466
\(377\) 4.74457e7i 0.885468i
\(378\) −1.50713e8 + 8.67168e6i −2.79046 + 0.160556i
\(379\) 2.88715e6 0.0530336 0.0265168 0.999648i \(-0.491558\pi\)
0.0265168 + 0.999648i \(0.491558\pi\)
\(380\) 3.77367e7i 0.687723i
\(381\) 1.04516e7 + 5.77016e6i 0.188977 + 0.104331i
\(382\) 1.02947e8 1.84682
\(383\) 8.15610e7i 1.45173i −0.687837 0.725865i \(-0.741440\pi\)
0.687837 0.725865i \(-0.258560\pi\)
\(384\) 4.50212e7 8.15480e7i 0.795103 1.44019i
\(385\) 6.47901e7 1.13534
\(386\) 1.79698e8i 3.12450i
\(387\) −4.61282e6 7.32635e6i −0.0795855 0.126402i
\(388\) 1.22225e8 2.09250
\(389\) 8.91326e7i 1.51422i 0.653290 + 0.757108i \(0.273388\pi\)
−0.653290 + 0.757108i \(0.726612\pi\)
\(390\) −8.69789e7 4.80195e7i −1.46629 0.809514i
\(391\) 1.87626e7 0.313880
\(392\) 1.72509e8i 2.86388i
\(393\) −2.81153e7 + 5.09258e7i −0.463196 + 0.838997i
\(394\) 1.60386e7 0.262227
\(395\) 5.56871e6i 0.0903573i
\(396\) 1.24879e8 7.86265e7i 2.01096 1.26614i
\(397\) 6.47825e7 1.03535 0.517674 0.855578i \(-0.326798\pi\)
0.517674 + 0.855578i \(0.326798\pi\)
\(398\) 8.39398e7i 1.33143i
\(399\) −4.87675e7 2.69237e7i −0.767736 0.423854i
\(400\) 4.61673e7 0.721365
\(401\) 6.19346e7i 0.960507i 0.877130 + 0.480254i \(0.159455\pi\)
−0.877130 + 0.480254i \(0.840545\pi\)
\(402\) −1.16995e6 + 2.11915e6i −0.0180089 + 0.0326200i
\(403\) 1.50606e8 2.30105
\(404\) 1.93385e8i 2.93278i
\(405\) −3.66673e7 1.75753e7i −0.551968 0.264569i
\(406\) 1.05718e8 1.57969
\(407\) 1.70413e7i 0.252766i
\(408\) −2.64540e7 1.46048e7i −0.389503 0.215038i
\(409\) 6.80218e7 0.994210 0.497105 0.867690i \(-0.334396\pi\)
0.497105 + 0.867690i \(0.334396\pi\)
\(410\) 3.19162e7i 0.463084i
\(411\) 2.64087e7 4.78347e7i 0.380384 0.688998i
\(412\) −1.52486e8 −2.18041
\(413\) 4.47673e7i 0.635493i
\(414\) −8.54543e7 1.35724e8i −1.20430 1.91273i
\(415\) 6.28920e7 0.879936
\(416\) 2.03341e7i 0.282452i
\(417\) −6.00560e7 3.31559e7i −0.828225 0.457249i
\(418\) 8.10128e7 1.10924
\(419\) 8.89863e7i 1.20971i −0.796336 0.604855i \(-0.793231\pi\)
0.796336 0.604855i \(-0.206769\pi\)
\(420\) −7.19198e7 + 1.30270e8i −0.970734 + 1.75831i
\(421\) −4.87978e7 −0.653964 −0.326982 0.945030i \(-0.606032\pi\)
−0.326982 + 0.945030i \(0.606032\pi\)
\(422\) 8.40786e7i 1.11879i
\(423\) −1.50994e7 + 9.50687e6i −0.199498 + 0.125608i
\(424\) −1.54858e8 −2.03159
\(425\) 1.16427e7i 0.151666i
\(426\) 1.23672e8 + 6.82769e7i 1.59971 + 0.883171i
\(427\) 2.36289e8 3.03501
\(428\) 7.32621e7i 0.934433i
\(429\) 6.92924e7 1.25511e8i 0.877634 1.58968i
\(430\) −1.26959e7 −0.159683
\(431\) 4.20458e7i 0.525159i 0.964910 + 0.262580i \(0.0845733\pi\)
−0.964910 + 0.262580i \(0.915427\pi\)
\(432\) 5.34231e6 + 9.28488e7i 0.0662640 + 1.15166i
\(433\) −5.84441e7 −0.719908 −0.359954 0.932970i \(-0.617208\pi\)
−0.359954 + 0.932970i \(0.617208\pi\)
\(434\) 3.35579e8i 4.10511i
\(435\) 2.49285e7 + 1.37626e7i 0.302851 + 0.167199i
\(436\) −3.40291e7 −0.410574
\(437\) 5.91830e7i 0.709174i
\(438\) 8.53585e7 1.54612e8i 1.01584 1.84001i
\(439\) −1.03339e7 −0.122144 −0.0610718 0.998133i \(-0.519452\pi\)
−0.0610718 + 0.998133i \(0.519452\pi\)
\(440\) 1.10859e8i 1.30141i
\(441\) 7.13403e7 + 1.13307e8i 0.831800 + 1.32111i
\(442\) −5.73075e7 −0.663659
\(443\) 1.70511e7i 0.196129i 0.995180 + 0.0980645i \(0.0312651\pi\)
−0.995180 + 0.0980645i \(0.968735\pi\)
\(444\) 3.42640e7 + 1.89166e7i 0.391462 + 0.216119i
\(445\) −3.57747e7 −0.405971
\(446\) 7.01794e7i 0.791052i
\(447\) −8.15034e7 + 1.47629e8i −0.912542 + 1.65291i
\(448\) −1.20687e8 −1.34223
\(449\) 3.33949e7i 0.368927i 0.982839 + 0.184464i \(0.0590548\pi\)
−0.982839 + 0.184464i \(0.940945\pi\)
\(450\) 8.42201e7 5.30267e7i 0.924226 0.581912i
\(451\) −4.60552e7 −0.502053
\(452\) 1.71398e7i 0.185605i
\(453\) −6.95002e6 3.83698e6i −0.0747638 0.0412758i
\(454\) −2.35599e8 −2.51771
\(455\) 1.44567e8i 1.53474i
\(456\) −4.60679e7 + 8.34438e7i −0.485851 + 0.880034i
\(457\) 9.61317e7 1.00721 0.503603 0.863935i \(-0.332008\pi\)
0.503603 + 0.863935i \(0.332008\pi\)
\(458\) 2.10974e8i 2.19600i
\(459\) −2.34151e7 + 1.34725e6i −0.242135 + 0.0139319i
\(460\) −1.58092e8 −1.62419
\(461\) 1.15458e8i 1.17848i 0.807959 + 0.589238i \(0.200572\pi\)
−0.807959 + 0.589238i \(0.799428\pi\)
\(462\) −2.79662e8 1.54397e8i −2.83601 1.56571i
\(463\) −3.79753e7 −0.382612 −0.191306 0.981530i \(-0.561272\pi\)
−0.191306 + 0.981530i \(0.561272\pi\)
\(464\) 6.51290e7i 0.651960i
\(465\) 4.36864e7 7.91301e7i 0.434497 0.787015i
\(466\) 7.45081e7 0.736284
\(467\) 6.42028e7i 0.630382i −0.949028 0.315191i \(-0.897931\pi\)
0.949028 0.315191i \(-0.102069\pi\)
\(468\) 1.75440e8 + 2.78645e8i 1.71156 + 2.71840i
\(469\) 3.52223e6 0.0341428
\(470\) 2.61659e7i 0.252024i
\(471\) 1.17732e8 + 6.49976e7i 1.12676 + 0.622063i
\(472\) −7.65992e7 −0.728448
\(473\) 1.83203e7i 0.173121i
\(474\) −1.32704e7 + 2.40370e7i −0.124609 + 0.225707i
\(475\) 3.67246e7 0.342670
\(476\) 8.58305e7i 0.795831i
\(477\) −1.01713e8 + 6.40406e7i −0.937177 + 0.590066i
\(478\) 1.60621e7 0.147068
\(479\) 3.33892e7i 0.303808i −0.988395 0.151904i \(-0.951460\pi\)
0.988395 0.151904i \(-0.0485405\pi\)
\(480\) 1.06838e7 + 5.89832e6i 0.0966052 + 0.0533340i
\(481\) 3.80245e7 0.341687
\(482\) 3.33587e8i 2.97898i
\(483\) −1.12793e8 + 2.04304e8i −1.00101 + 1.81316i
\(484\) 7.98053e7 0.703876
\(485\) 7.12666e7i 0.624685i
\(486\) 1.16390e8 + 1.63242e8i 1.01392 + 1.42208i
\(487\) 1.18889e7 0.102933 0.0514666 0.998675i \(-0.483610\pi\)
0.0514666 + 0.998675i \(0.483610\pi\)
\(488\) 4.04303e8i 3.47894i
\(489\) 5.30463e7 + 2.92859e7i 0.453658 + 0.250456i
\(490\) 1.96351e8 1.66896
\(491\) 1.14678e8i 0.968801i −0.874846 0.484400i \(-0.839038\pi\)
0.874846 0.484400i \(-0.160962\pi\)
\(492\) 5.11233e7 9.26007e7i 0.429263 0.777534i
\(493\) 1.64246e7 0.137074
\(494\) 1.80765e8i 1.49946i
\(495\) −4.58452e7 7.28141e7i −0.377988 0.600343i
\(496\) −2.06738e8 −1.69424
\(497\) 2.05554e8i 1.67439i
\(498\) −2.71469e8 1.49873e8i −2.19802 1.21349i
\(499\) −1.68425e8 −1.35552 −0.677759 0.735284i \(-0.737049\pi\)
−0.677759 + 0.735284i \(0.737049\pi\)
\(500\) 2.54977e8i 2.03982i
\(501\) 5.66216e7 1.02560e8i 0.450266 0.815577i
\(502\) −2.27080e8 −1.79501
\(503\) 8.97159e7i 0.704961i −0.935819 0.352481i \(-0.885338\pi\)
0.935819 0.352481i \(-0.114662\pi\)
\(504\) 3.18059e8 2.00257e8i 2.48437 1.56421i
\(505\) 1.12758e8 0.875537
\(506\) 3.39391e8i 2.61968i
\(507\) 1.65963e8 + 9.16253e7i 1.27347 + 0.703058i
\(508\) −5.80227e7 −0.442596
\(509\) 1.85400e8i 1.40590i 0.711238 + 0.702951i \(0.248135\pi\)
−0.711238 + 0.702951i \(0.751865\pi\)
\(510\) −1.66232e7 + 3.01100e7i −0.125316 + 0.226987i
\(511\) −2.56980e8 −1.92591
\(512\) 2.56114e8i 1.90820i
\(513\) 4.24963e6 + 7.38582e7i 0.0314774 + 0.547075i
\(514\) 7.86309e7 0.579033
\(515\) 8.89109e7i 0.650928i
\(516\) 3.68356e7 + 2.03363e7i 0.268114 + 0.148021i
\(517\) −3.77575e7 −0.273232
\(518\) 8.47259e7i 0.609574i
\(519\) −1.24712e8 + 2.25894e8i −0.892086 + 1.61586i
\(520\) 2.47362e8 1.75923
\(521\) 7.29135e6i 0.0515579i −0.999668 0.0257789i \(-0.991793\pi\)
0.999668 0.0257789i \(-0.00820660\pi\)
\(522\) −7.48057e7 1.18811e8i −0.525924 0.835303i
\(523\) −1.02948e8 −0.719634 −0.359817 0.933023i \(-0.617161\pi\)
−0.359817 + 0.933023i \(0.617161\pi\)
\(524\) 2.82717e8i 1.96498i
\(525\) −1.26776e8 6.99909e7i −0.876112 0.483686i
\(526\) −1.11722e8 −0.767680
\(527\) 5.21362e7i 0.356211i
\(528\) −9.51181e7 + 1.72290e8i −0.646192 + 1.17046i
\(529\) −9.99023e7 −0.674852
\(530\) 1.76260e8i 1.18393i
\(531\) −5.03115e7 + 3.16772e7i −0.336035 + 0.211574i
\(532\) 2.70735e8 1.79808
\(533\) 1.02764e8i 0.678670i
\(534\) 1.54419e8 + 8.52520e7i 1.01409 + 0.559862i
\(535\) −4.27174e7 −0.278961
\(536\) 6.02672e6i 0.0391369i
\(537\) −2.63244e7 + 4.76820e7i −0.169995 + 0.307916i
\(538\) 5.34368e7 0.343158
\(539\) 2.83335e8i 1.80940i
\(540\) 1.97293e8 1.13518e7i 1.25294 0.0720914i
\(541\) 5.04741e7 0.318769 0.159385 0.987217i \(-0.449049\pi\)
0.159385 + 0.987217i \(0.449049\pi\)
\(542\) 4.53121e8i 2.84588i
\(543\) 1.59234e8 + 8.79101e7i 0.994570 + 0.549084i
\(544\) 7.03917e6 0.0437245
\(545\) 1.98416e7i 0.122571i
\(546\) 3.44508e8 6.24015e8i 2.11651 3.83369i
\(547\) 2.51788e8 1.53841 0.769207 0.639000i \(-0.220652\pi\)
0.769207 + 0.639000i \(0.220652\pi\)
\(548\) 2.65557e8i 1.61367i
\(549\) −1.67197e8 2.65552e8i −1.01044 1.60484i
\(550\) 2.10601e8 1.26582
\(551\) 5.18081e7i 0.309701i
\(552\) 3.49575e8 + 1.92994e8i 2.07837 + 1.14743i
\(553\) 3.99517e7 0.236244
\(554\) 2.64713e8i 1.55684i
\(555\) 1.10298e7 1.99785e7i 0.0645191 0.116865i
\(556\) 3.33404e8 1.93975
\(557\) 2.50076e8i 1.44712i 0.690259 + 0.723562i \(0.257496\pi\)
−0.690259 + 0.723562i \(0.742504\pi\)
\(558\) −3.77138e8 + 2.37454e8i −2.17069 + 1.36671i
\(559\) 4.08784e7 0.234023
\(560\) 1.98448e8i 1.13001i
\(561\) −4.34489e7 2.39874e7i −0.246088 0.135861i
\(562\) 7.47891e7 0.421337
\(563\) 3.02110e8i 1.69293i −0.532443 0.846466i \(-0.678726\pi\)
0.532443 0.846466i \(-0.321274\pi\)
\(564\) 4.19124e7 7.59170e7i 0.233618 0.423157i
\(565\) −9.99382e6 −0.0554097
\(566\) 1.50728e8i 0.831276i
\(567\) 1.26091e8 2.63063e8i 0.691728 1.44315i
\(568\) −3.51713e8 −1.91930
\(569\) 1.03975e7i 0.0564408i −0.999602 0.0282204i \(-0.991016\pi\)
0.999602 0.0282204i \(-0.00898402\pi\)
\(570\) 9.49761e7 + 5.24347e7i 0.512850 + 0.283135i
\(571\) 1.02221e8 0.549077 0.274538 0.961576i \(-0.411475\pi\)
0.274538 + 0.961576i \(0.411475\pi\)
\(572\) 6.96780e8i 3.72312i
\(573\) −9.61495e7 + 1.74158e8i −0.511073 + 0.925719i
\(574\) −2.28977e8 −1.21076
\(575\) 1.53852e8i 0.809283i
\(576\) 8.53976e7 + 1.35633e8i 0.446867 + 0.709740i
\(577\) 1.06043e8 0.552018 0.276009 0.961155i \(-0.410988\pi\)
0.276009 + 0.961155i \(0.410988\pi\)
\(578\) 1.98385e7i 0.102737i
\(579\) −3.03998e8 1.67832e8i −1.56616 0.864648i
\(580\) −1.38392e8 −0.709295
\(581\) 4.51207e8i 2.30063i
\(582\) −1.69830e8 + 3.07618e8i −0.861482 + 1.56042i
\(583\) −2.54344e8 −1.28356
\(584\) 4.39705e8i 2.20761i
\(585\) 1.62471e8 1.02295e8i 0.811537 0.510961i
\(586\) −1.77275e8 −0.880959
\(587\) 6.29843e7i 0.311400i 0.987804 + 0.155700i \(0.0497633\pi\)
−0.987804 + 0.155700i \(0.950237\pi\)
\(588\) −5.69687e8 3.14514e8i −2.80223 1.54706i
\(589\) −1.64453e8 −0.804816
\(590\) 8.71856e7i 0.424511i
\(591\) −1.49795e7 + 2.71328e7i −0.0725664 + 0.131441i
\(592\) −5.21965e7 −0.251580
\(593\) 1.28440e8i 0.615935i −0.951397 0.307968i \(-0.900351\pi\)
0.951397 0.307968i \(-0.0996488\pi\)
\(594\) 2.43699e7 + 4.23547e8i 0.116277 + 2.02089i
\(595\) 5.00458e7 0.237584
\(596\) 8.19569e8i 3.87121i
\(597\) −1.42002e8 7.83971e7i −0.667380 0.368449i
\(598\) 7.57288e8 3.54126
\(599\) 2.23285e8i 1.03891i −0.854497 0.519456i \(-0.826135\pi\)
0.854497 0.519456i \(-0.173865\pi\)
\(600\) −1.19758e8 + 2.16921e8i −0.554435 + 1.00426i
\(601\) −7.23276e7 −0.333181 −0.166591 0.986026i \(-0.553276\pi\)
−0.166591 + 0.986026i \(0.553276\pi\)
\(602\) 9.10848e7i 0.417500i
\(603\) −2.49232e6 3.95844e6i −0.0113671 0.0180539i
\(604\) 3.85834e7 0.175101
\(605\) 4.65326e7i 0.210132i
\(606\) −4.86714e8 2.68706e8i −2.18703 1.20742i
\(607\) 1.95537e8 0.874306 0.437153 0.899387i \(-0.355987\pi\)
0.437153 + 0.899387i \(0.355987\pi\)
\(608\) 2.22037e7i 0.0987902i
\(609\) −9.87373e7 + 1.78845e8i −0.437149 + 0.791818i
\(610\) −4.60180e8 −2.02739
\(611\) 8.42490e7i 0.369352i
\(612\) 9.64602e7 6.07333e7i 0.420818 0.264955i
\(613\) 3.05389e8 1.32578 0.662891 0.748715i \(-0.269329\pi\)
0.662891 + 0.748715i \(0.269329\pi\)
\(614\) 4.74346e8i 2.04923i
\(615\) −5.39933e7 2.98088e7i −0.232121 0.128150i
\(616\) 7.95340e8 3.40260
\(617\) 3.37059e7i 0.143500i 0.997423 + 0.0717498i \(0.0228583\pi\)
−0.997423 + 0.0717498i \(0.977142\pi\)
\(618\) 2.11877e8 3.83778e8i 0.897673 1.62598i
\(619\) 7.18540e7 0.302955 0.151478 0.988461i \(-0.451597\pi\)
0.151478 + 0.988461i \(0.451597\pi\)
\(620\) 4.39295e8i 1.84324i
\(621\) 3.09418e8 1.78032e7i 1.29202 0.0743401i
\(622\) −2.29914e8 −0.955419
\(623\) 2.56659e8i 1.06143i
\(624\) −3.84433e8 2.12238e8i −1.58222 0.873515i
\(625\) 3.99824e6 0.0163768
\(626\) 1.18021e8i 0.481101i
\(627\) −7.56634e7 + 1.37051e8i −0.306961 + 0.556006i
\(628\) −6.53593e8 −2.63893
\(629\) 1.31632e7i 0.0528943i
\(630\) −2.27933e8 3.62017e8i −0.911561 1.44779i
\(631\) −2.30047e8 −0.915649 −0.457825 0.889042i \(-0.651371\pi\)
−0.457825 + 0.889042i \(0.651371\pi\)
\(632\) 6.83594e7i 0.270799i
\(633\) 1.42237e8 + 7.85268e7i 0.560793 + 0.309604i
\(634\) 8.11250e8 3.18337
\(635\) 3.38317e7i 0.132130i
\(636\) 2.82332e8 5.11395e8i 1.09746 1.98786i
\(637\) −6.32211e8 −2.44593
\(638\) 2.97098e8i 1.14403i
\(639\) −2.31011e8 + 1.45449e8i −0.885379 + 0.557453i
\(640\) 2.63969e8 1.00696
\(641\) 2.00468e8i 0.761151i −0.924750 0.380576i \(-0.875726\pi\)
0.924750 0.380576i \(-0.124274\pi\)
\(642\) 1.84387e8 + 1.01797e8i 0.696827 + 0.384706i
\(643\) 7.38859e7 0.277926 0.138963 0.990298i \(-0.455623\pi\)
0.138963 + 0.990298i \(0.455623\pi\)
\(644\) 1.13420e9i 4.24653i
\(645\) 1.18576e7 2.14780e7i 0.0441894 0.0800413i
\(646\) 6.25766e7 0.232121
\(647\) 1.33382e8i 0.492476i 0.969209 + 0.246238i \(0.0791944\pi\)
−0.969209 + 0.246238i \(0.920806\pi\)
\(648\) −4.50115e8 2.15749e8i −1.65424 0.792908i
\(649\) −1.25809e8 −0.460233
\(650\) 4.69917e8i 1.71112i
\(651\) 5.67705e8 + 3.13420e8i 2.05769 + 1.13601i
\(652\) −2.94489e8 −1.06249
\(653\) 1.29106e8i 0.463667i 0.972755 + 0.231834i \(0.0744725\pi\)
−0.972755 + 0.231834i \(0.925528\pi\)
\(654\) 4.72830e7 8.56448e7i 0.169033 0.306174i
\(655\) −1.64846e8 −0.586616
\(656\) 1.41065e8i 0.499696i
\(657\) 1.81838e8 + 2.88805e8i 0.641191 + 1.01838i
\(658\) −1.87723e8 −0.658930
\(659\) 2.07847e8i 0.726252i −0.931740 0.363126i \(-0.881710\pi\)
0.931740 0.363126i \(-0.118290\pi\)
\(660\) 3.66096e8 + 2.02115e8i 1.27340 + 0.703020i
\(661\) 4.35233e8 1.50701 0.753507 0.657440i \(-0.228360\pi\)
0.753507 + 0.657440i \(0.228360\pi\)
\(662\) 3.00324e8i 1.03518i
\(663\) 5.35234e7 9.69482e7i 0.183655 0.332659i
\(664\) 7.72039e8 2.63715
\(665\) 1.57859e8i 0.536791i
\(666\) −9.52187e7 + 5.99517e7i −0.322329 + 0.202945i
\(667\) −2.17042e8 −0.731419
\(668\) 5.69367e8i 1.91013i
\(669\) −1.18724e8 6.55453e7i −0.396515 0.218909i
\(670\) −6.85964e6 −0.0228075
\(671\) 6.64041e8i 2.19800i
\(672\) −4.23164e7 + 7.66487e7i −0.139444 + 0.252579i
\(673\) 4.51544e8 1.48134 0.740670 0.671869i \(-0.234508\pi\)
0.740670 + 0.671869i \(0.234508\pi\)
\(674\) 8.80577e8i 2.87599i
\(675\) 1.10474e7 + 1.92002e8i 0.0359209 + 0.624302i
\(676\) −9.21352e8 −2.98253
\(677\) 5.23061e8i 1.68572i −0.538130 0.842862i \(-0.680869\pi\)
0.538130 0.842862i \(-0.319131\pi\)
\(678\) 4.31376e7 + 2.38155e7i 0.138410 + 0.0764137i
\(679\) 5.11290e8 1.63327
\(680\) 8.56309e7i 0.272335i
\(681\) 2.20042e8 3.98567e8i 0.696730 1.26200i
\(682\) −9.43073e8 −2.97298
\(683\) 2.01564e8i 0.632631i 0.948654 + 0.316315i \(0.102446\pi\)
−0.948654 + 0.316315i \(0.897554\pi\)
\(684\) −1.91571e8 3.04265e8i −0.598635 0.950787i
\(685\) 1.54840e8 0.481738
\(686\) 5.06355e8i 1.56850i
\(687\) 3.56909e8 + 1.97043e8i 1.10075 + 0.607703i
\(688\) −5.61140e7 −0.172308
\(689\) 5.67521e8i 1.73510i
\(690\) 2.19667e8 3.97888e8i 0.668679 1.21119i
\(691\) −2.97598e8 −0.901978 −0.450989 0.892530i \(-0.648929\pi\)
−0.450989 + 0.892530i \(0.648929\pi\)
\(692\) 1.25406e9i 3.78443i
\(693\) 5.22391e8 3.28908e8i 1.56963 0.988269i
\(694\) −5.51479e8 −1.64987
\(695\) 1.94400e8i 0.579084i
\(696\) 3.06013e8 + 1.68945e8i 0.907638 + 0.501091i
\(697\) −3.55744e7 −0.105060
\(698\) 2.09272e8i 0.615383i
\(699\) −6.95882e7 + 1.26047e8i −0.203753 + 0.369063i
\(700\) 7.03804e8 2.05191
\(701\) 4.47494e8i 1.29907i −0.760331 0.649535i \(-0.774963\pi\)
0.760331 0.649535i \(-0.225037\pi\)
\(702\) −9.45068e8 + 5.43770e7i −2.73182 + 0.157182i
\(703\) −4.15207e7 −0.119508
\(704\) 3.39165e8i 0.972061i
\(705\) −4.42654e7 2.44382e7i −0.126327 0.0697431i
\(706\) 5.48052e8 1.55743
\(707\) 8.08964e8i 2.28913i
\(708\) 1.39653e8 2.52958e8i 0.393506 0.712767i
\(709\) −6.10696e8 −1.71351 −0.856755 0.515724i \(-0.827523\pi\)
−0.856755 + 0.515724i \(0.827523\pi\)
\(710\) 4.00322e8i 1.11850i
\(711\) −2.82697e7 4.48995e7i −0.0786524 0.124920i
\(712\) −4.39157e8 −1.21669
\(713\) 6.88952e8i 1.90073i
\(714\) −2.16019e8 1.19260e8i −0.593468 0.327643i
\(715\) 4.06276e8 1.11148
\(716\) 2.64709e8i 0.721157i
\(717\) −1.50015e7 + 2.71726e7i −0.0406984 + 0.0737179i
\(718\) 8.85585e8 2.39253
\(719\) 6.74433e8i 1.81448i 0.420614 + 0.907240i \(0.361815\pi\)
−0.420614 + 0.907240i \(0.638185\pi\)
\(720\) −2.23025e8 + 1.40421e8i −0.597526 + 0.376214i
\(721\) −6.37875e8 −1.70188
\(722\) 4.59948e8i 1.22207i
\(723\) −5.64335e8 3.11560e8i −1.49322 0.824378i
\(724\) −8.83993e8 −2.32934
\(725\) 1.34680e8i 0.353419i
\(726\) −1.10888e8 + 2.00855e8i −0.289785 + 0.524895i
\(727\) 4.49333e7 0.116941 0.0584703 0.998289i \(-0.481378\pi\)
0.0584703 + 0.998289i \(0.481378\pi\)
\(728\) 1.77465e9i 4.59959i
\(729\) −3.84864e8 + 4.44355e7i −0.993401 + 0.114696i
\(730\) 5.00475e8 1.28651
\(731\) 1.41511e7i 0.0362275i
\(732\) 1.33515e9 + 7.37113e8i 3.40406 + 1.87932i
\(733\) 2.94605e8 0.748045 0.374022 0.927420i \(-0.377978\pi\)
0.374022 + 0.927420i \(0.377978\pi\)
\(734\) 1.09329e8i 0.276471i
\(735\) −1.83386e8 + 3.32171e8i −0.461853 + 0.836565i
\(736\) −9.30189e7 −0.233312
\(737\) 9.89849e6i 0.0247267i
\(738\) 1.62023e8 + 2.57335e8i 0.403096 + 0.640221i
\(739\) 2.17628e7 0.0539240 0.0269620 0.999636i \(-0.491417\pi\)
0.0269620 + 0.999636i \(0.491417\pi\)
\(740\) 1.10912e8i 0.273705i
\(741\) −3.05804e8 1.68829e8i −0.751603 0.414947i
\(742\) −1.26455e9 −3.09544
\(743\) 9.30103e7i 0.226759i −0.993552 0.113379i \(-0.963832\pi\)
0.993552 0.113379i \(-0.0361676\pi\)
\(744\) 5.36278e8 9.71372e8i 1.30218 2.35867i
\(745\) −4.77871e8 −1.15569
\(746\) 1.03070e8i 0.248266i
\(747\) 5.07087e8 3.19272e8i 1.21652 0.765948i
\(748\) 2.41209e8 0.576353
\(749\) 3.06468e8i 0.729357i
\(750\) 6.41729e8 + 3.54287e8i 1.52114 + 0.839792i
\(751\) −1.10996e8 −0.262053 −0.131027 0.991379i \(-0.541827\pi\)
−0.131027 + 0.991379i \(0.541827\pi\)
\(752\) 1.15649e8i 0.271950i
\(753\) 2.12085e8 3.84155e8i 0.496736 0.899749i
\(754\) 6.62920e8 1.54649
\(755\) 2.24971e7i 0.0522739i
\(756\) 8.14415e7 + 1.41545e9i 0.188486 + 3.27588i
\(757\) −7.58602e8 −1.74874 −0.874372 0.485257i \(-0.838726\pi\)
−0.874372 + 0.485257i \(0.838726\pi\)
\(758\) 4.03397e7i 0.0926244i
\(759\) 5.74154e8 + 3.16980e8i 1.31312 + 0.724948i
\(760\) −2.70106e8 −0.615308
\(761\) 5.43052e8i 1.23222i 0.787661 + 0.616109i \(0.211292\pi\)
−0.787661 + 0.616109i \(0.788708\pi\)
\(762\) 8.06218e7 1.46032e8i 0.182216 0.330053i
\(763\) −1.42350e8 −0.320467
\(764\) 9.66846e8i 2.16809i
\(765\) −3.54122e7 5.62437e7i −0.0790985 0.125629i
\(766\) −1.13959e9 −2.53548
\(767\) 2.80720e8i 0.622139i
\(768\) −8.06805e8 4.45423e8i −1.78109 0.983307i
\(769\) −1.95292e8 −0.429444 −0.214722 0.976675i \(-0.568885\pi\)
−0.214722 + 0.976675i \(0.568885\pi\)
\(770\) 9.05260e8i 1.98290i
\(771\) −7.34387e7 + 1.33021e8i −0.160237 + 0.290241i
\(772\) 1.68766e9 3.66803
\(773\) 4.49070e8i 0.972245i −0.873891 0.486123i \(-0.838411\pi\)
0.873891 0.486123i \(-0.161589\pi\)
\(774\) −1.02365e8 + 6.44512e7i −0.220765 + 0.138998i
\(775\) −4.27513e8 −0.918426
\(776\) 8.74843e8i 1.87217i
\(777\) 1.43332e8 + 7.91313e7i 0.305549 + 0.168688i
\(778\) 1.24538e9 2.64461
\(779\) 1.12212e8i 0.237371i
\(780\) −4.50983e8 + 8.16876e8i −0.950334 + 1.72136i
\(781\) −5.77666e8 −1.21262
\(782\) 2.62155e8i 0.548199i
\(783\) 2.70860e8 1.55847e7i 0.564235 0.0324648i
\(784\) 8.67840e8 1.80091
\(785\) 3.81094e8i 0.787814i
\(786\) 7.11545e8 + 3.92832e8i 1.46533 + 0.808982i
\(787\) −3.95231e8 −0.810824 −0.405412 0.914134i \(-0.632872\pi\)
−0.405412 + 0.914134i \(0.632872\pi\)
\(788\) 1.50629e8i 0.307843i
\(789\) 1.04345e8 1.89002e8i 0.212441 0.384800i
\(790\) −7.78071e7 −0.157811
\(791\) 7.16988e7i 0.144871i
\(792\) −5.62779e8 8.93839e8i −1.13282 1.79922i
\(793\) 1.48168e9 2.97123
\(794\) 9.05153e8i 1.80826i
\(795\) −2.98182e8 1.64621e8i −0.593445 0.327631i
\(796\) 7.88334e8 1.56304
\(797\) 2.08748e8i 0.412333i 0.978517 + 0.206166i \(0.0660988\pi\)
−0.978517 + 0.206166i \(0.933901\pi\)
\(798\) −3.76183e8 + 6.81389e8i −0.740271 + 1.34087i
\(799\) −2.91650e7 −0.0571770
\(800\) 5.77207e7i 0.112736i
\(801\) −2.88445e8 + 1.81611e8i −0.561261 + 0.353382i
\(802\) 8.65362e8 1.67755
\(803\) 7.22187e8i 1.39477i
\(804\) 1.99023e7 + 1.09877e7i 0.0382945 + 0.0211417i
\(805\) −6.61328e8 −1.26774
\(806\) 2.10429e9i 4.01885i
\(807\) −4.99083e7 + 9.04001e7i −0.0949625 + 0.172008i
\(808\) 1.38418e9 2.62397
\(809\) 1.09068e8i 0.205992i 0.994682 + 0.102996i \(0.0328429\pi\)
−0.994682 + 0.102996i \(0.967157\pi\)
\(810\) −2.45566e8 + 5.12323e8i −0.462076 + 0.964026i
\(811\) 5.71123e8 1.07070 0.535349 0.844631i \(-0.320180\pi\)
0.535349 + 0.844631i \(0.320180\pi\)
\(812\) 9.92868e8i 1.85449i
\(813\) −7.66553e8 4.23200e8i −1.42650 0.787543i
\(814\) −2.38104e8 −0.441463
\(815\) 1.71709e8i 0.317191i
\(816\) −7.34719e7 + 1.33081e8i −0.135223 + 0.244933i
\(817\) −4.46369e7 −0.0818517
\(818\) 9.50413e8i 1.73641i
\(819\) 7.33898e8 + 1.16562e9i 1.33593 + 2.12180i
\(820\) 2.99746e8 0.543641
\(821\) 4.06859e8i 0.735215i 0.929981 + 0.367607i \(0.119823\pi\)
−0.929981 + 0.367607i \(0.880177\pi\)
\(822\) −6.68356e8 3.68988e8i −1.20335 0.664349i
\(823\) 4.10677e7 0.0736717 0.0368358 0.999321i \(-0.488272\pi\)
0.0368358 + 0.999321i \(0.488272\pi\)
\(824\) 1.09144e9i 1.95082i
\(825\) −1.96695e8 + 3.56278e8i −0.350293 + 0.634493i
\(826\) −6.25497e8 −1.10990
\(827\) 5.95170e8i 1.05226i 0.850403 + 0.526132i \(0.176358\pi\)
−0.850403 + 0.526132i \(0.823642\pi\)
\(828\) −1.27467e9 + 8.02558e8i −2.24547 + 1.41379i
\(829\) 5.98747e8 1.05095 0.525473 0.850811i \(-0.323889\pi\)
0.525473 + 0.850811i \(0.323889\pi\)
\(830\) 8.78738e8i 1.53683i
\(831\) 4.47819e8 + 2.47233e8i 0.780369 + 0.430828i
\(832\) −7.56785e8 −1.31402
\(833\) 2.18856e8i 0.378638i
\(834\) −4.63260e8 + 8.39114e8i −0.798595 + 1.44651i
\(835\) 3.31984e8 0.570241
\(836\) 7.60845e8i 1.30220i
\(837\) −4.94701e7 8.59787e8i −0.0843659 1.46627i
\(838\) −1.24333e9 −2.11279
\(839\) 1.20600e8i 0.204203i 0.994774 + 0.102102i \(0.0325567\pi\)
−0.994774 + 0.102102i \(0.967443\pi\)
\(840\) 9.32424e8 + 5.14775e8i 1.57317 + 0.868520i
\(841\) 4.04828e8 0.680585
\(842\) 6.81812e8i 1.14216i
\(843\) −6.98507e7 + 1.26522e8i −0.116597 + 0.211195i
\(844\) −7.89638e8 −1.31341
\(845\) 5.37218e8i 0.890391i
\(846\) 1.32832e8 + 2.10971e8i 0.219377 + 0.348427i
\(847\) 3.33840e8 0.549399
\(848\) 7.79040e8i 1.27753i
\(849\) −2.54990e8 1.40775e8i −0.416677 0.230040i
\(850\) 1.62674e8 0.264888
\(851\) 1.73944e8i 0.282242i
\(852\) 6.41233e8 1.16148e9i 1.03681 1.87799i
\(853\) −3.40592e8 −0.548766 −0.274383 0.961621i \(-0.588474\pi\)
−0.274383 + 0.961621i \(0.588474\pi\)
\(854\) 3.30148e9i 5.30071i
\(855\) −1.77409e8 + 1.11701e8i −0.283843 + 0.178713i
\(856\) −5.24383e8 −0.836041
\(857\) 3.90623e8i 0.620606i 0.950638 + 0.310303i \(0.100430\pi\)
−0.950638 + 0.310303i \(0.899570\pi\)
\(858\) −1.75366e9 9.68166e8i −2.77641 1.53281i
\(859\) 1.76674e8 0.278737 0.139368 0.990241i \(-0.455493\pi\)
0.139368 + 0.990241i \(0.455493\pi\)
\(860\) 1.19236e8i 0.187461i
\(861\) 2.13858e8 3.87365e8i 0.335054 0.606892i
\(862\) 5.87472e8 0.917203
\(863\) 1.07362e9i 1.67039i 0.549952 + 0.835196i \(0.314646\pi\)
−0.549952 + 0.835196i \(0.685354\pi\)
\(864\) 1.16084e8 6.67921e6i 0.179983 0.0103558i
\(865\) −7.31214e8 −1.12979
\(866\) 8.16592e8i 1.25734i
\(867\) −3.35612e7 1.85285e7i −0.0514968 0.0284305i
\(868\) −3.15164e9 −4.81923
\(869\) 1.12276e8i 0.171091i
\(870\) 1.92294e8 3.48306e8i 0.292016 0.528936i
\(871\) 2.20866e7 0.0334253
\(872\) 2.43568e8i 0.367342i
\(873\) −3.61786e8 5.74610e8i −0.543763 0.863636i
\(874\) −8.26916e8 −1.23859
\(875\) 1.06661e9i 1.59215i
\(876\) −1.45206e9 8.01658e8i −2.16009 1.19255i
\(877\) 1.27042e9 1.88342 0.941711 0.336423i \(-0.109217\pi\)
0.941711 + 0.336423i \(0.109217\pi\)
\(878\) 1.44387e8i 0.213327i
\(879\) 1.65570e8 2.99900e8i 0.243789 0.441581i
\(880\) −5.57698e8 −0.818372
\(881\) 7.13915e8i 1.04404i −0.852932 0.522022i \(-0.825178\pi\)
0.852932 0.522022i \(-0.174822\pi\)
\(882\) 1.58314e9 9.96780e8i 2.30736 1.45276i
\(883\) 7.16412e8 1.04059 0.520296 0.853986i \(-0.325821\pi\)
0.520296 + 0.853986i \(0.325821\pi\)
\(884\) 5.38213e8i 0.779107i
\(885\) −1.47494e8 8.14286e7i −0.212786 0.117475i
\(886\) 2.38241e8 0.342544
\(887\) 1.12421e9i 1.61093i −0.592642 0.805466i \(-0.701915\pi\)
0.592642 0.805466i \(-0.298085\pi\)
\(888\) 1.35398e8 2.45249e8i 0.193363 0.350242i
\(889\) −2.42719e8 −0.345461
\(890\) 4.99850e8i 0.709039i
\(891\) −7.39284e8 3.54353e8i −1.04515 0.500960i
\(892\) 6.59101e8 0.928661
\(893\) 9.19952e7i 0.129185i
\(894\) 2.06270e9 + 1.13878e9i 2.88684 + 1.59378i
\(895\) −1.54346e8 −0.215291
\(896\) 1.89380e9i 2.63275i
\(897\) −7.07283e8 + 1.28112e9i −0.979977 + 1.77506i
\(898\) 4.66599e8 0.644340
\(899\) 6.03100e8i 0.830061i
\(900\) −4.98009e8 7.90966e8i −0.683139 1.08500i
\(901\) −1.96462e8 −0.268600
\(902\) 6.43493e8i 0.876847i
\(903\) 1.54090e8 + 8.50703e7i 0.209272 + 0.115535i
\(904\) −1.22680e8 −0.166062
\(905\) 5.15435e8i 0.695390i
\(906\) −5.36111e7 + 9.71070e7i −0.0720891 + 0.130577i
\(907\) −1.43794e8 −0.192717 −0.0963583 0.995347i \(-0.530719\pi\)
−0.0963583 + 0.995347i \(0.530719\pi\)
\(908\) 2.21267e9i 2.95568i
\(909\) 9.09150e8 5.72420e8i 1.21044 0.762119i
\(910\) 2.01992e9 2.68046
\(911\) 9.56775e8i 1.26548i 0.774365 + 0.632739i \(0.218069\pi\)
−0.774365 + 0.632739i \(0.781931\pi\)
\(912\) 4.19779e8 + 2.31753e8i 0.553396 + 0.305520i
\(913\) 1.26802e9 1.66615
\(914\) 1.34317e9i 1.75911i
\(915\) 4.29793e8 7.78494e8i 0.561043 1.01623i
\(916\) −1.98140e9 −2.57801
\(917\) 1.18266e9i 1.53374i
\(918\) 1.88240e7 + 3.27160e8i 0.0243324 + 0.422895i
\(919\) 2.96256e8 0.381699 0.190850 0.981619i \(-0.438876\pi\)
0.190850 + 0.981619i \(0.438876\pi\)
\(920\) 1.13157e9i 1.45317i
\(921\) −8.02460e8 4.43024e8i −1.02717 0.567085i
\(922\) 1.61320e9 2.05824
\(923\) 1.28895e9i 1.63920i
\(924\) −1.45004e9 + 2.62649e9i −1.83808 + 3.32936i
\(925\) −1.07937e8 −0.136378
\(926\) 5.30598e8i 0.668241i
\(927\) 4.51358e8 + 7.16873e8i 0.566607 + 0.899918i
\(928\) −8.14275e7 −0.101889
\(929\) 6.82768e8i 0.851581i −0.904822 0.425790i \(-0.859996\pi\)
0.904822 0.425790i \(-0.140004\pi\)
\(930\) −1.10562e9 6.10394e8i −1.37454 0.758860i
\(931\) 6.90339e8 0.855487
\(932\) 6.99754e8i 0.864366i
\(933\) 2.14732e8 3.88950e8i 0.264395 0.478904i
\(934\) −8.97054e8 −1.10098
\(935\) 1.40643e8i 0.172061i
\(936\) 1.99444e9 1.25574e9i 2.43216 1.53134i
\(937\) 8.52089e7 0.103578 0.0517889 0.998658i \(-0.483508\pi\)
0.0517889 + 0.998658i \(0.483508\pi\)
\(938\) 4.92133e7i 0.0596312i
\(939\) −1.99658e8 1.10228e8i −0.241152 0.133136i
\(940\) 2.45742e8 0.295866
\(941\) 1.41772e9i 1.70146i 0.525607 + 0.850728i \(0.323838\pi\)
−0.525607 + 0.850728i \(0.676162\pi\)
\(942\) 9.08158e8 1.64497e9i 1.08645 1.96791i
\(943\) 4.70096e8 0.560598
\(944\) 3.85346e8i 0.458073i
\(945\) 8.25313e8 4.74866e7i 0.977965 0.0562698i
\(946\) −2.55975e8 −0.302359
\(947\) 9.97674e8i 1.17473i 0.809321 + 0.587366i \(0.199835\pi\)
−0.809321 + 0.587366i \(0.800165\pi\)
\(948\) 2.25747e8 + 1.24631e8i 0.264970 + 0.146285i
\(949\) −1.61143e9 −1.88544
\(950\) 5.13124e8i 0.598482i
\(951\) −7.57682e8 + 1.37241e9i −0.880938 + 1.59566i
\(952\) 6.14343e8 0.712033
\(953\) 1.21868e8i 0.140803i −0.997519 0.0704013i \(-0.977572\pi\)
0.997519 0.0704013i \(-0.0224280\pi\)
\(954\) 8.94787e8 + 1.42115e9i 1.03056 + 1.63680i
\(955\) −5.63745e8 −0.647250
\(956\) 1.50850e8i 0.172652i
\(957\) 5.02607e8 + 2.77481e8i 0.573446 + 0.316590i
\(958\) −4.66520e8 −0.530608
\(959\) 1.11087e9i 1.25953i
\(960\) −2.19521e8 + 3.97624e8i −0.248121 + 0.449426i
\(961\) 1.02690e9 1.15707
\(962\) 5.31286e8i 0.596764i
\(963\) −3.44423e8 + 2.16856e8i −0.385668 + 0.242824i
\(964\) 3.13294e9 3.49720
\(965\) 9.84035e8i 1.09504i
\(966\) 2.85458e9 + 1.57596e9i 3.16672 + 1.74829i
\(967\) −5.77633e7 −0.0638811 −0.0319405 0.999490i \(-0.510169\pi\)
−0.0319405 + 0.999490i \(0.510169\pi\)
\(968\) 5.71217e8i 0.629760i
\(969\) −5.84446e7 + 1.05862e8i −0.0642352 + 0.116351i
\(970\) −9.95751e8 −1.09103
\(971\) 1.07632e9i 1.17566i −0.808984 0.587831i \(-0.799982\pi\)
0.808984 0.587831i \(-0.200018\pi\)
\(972\) 1.53311e9 1.09309e9i 1.66946 1.19030i
\(973\) 1.39469e9 1.51404
\(974\) 1.66114e8i 0.179775i
\(975\) −7.94968e8 4.38888e8i −0.857701 0.473522i
\(976\) −2.03392e9 −2.18768
\(977\) 2.67412e7i 0.0286746i −0.999897 0.0143373i \(-0.995436\pi\)
0.999897 0.0143373i \(-0.00456386\pi\)
\(978\) 4.09188e8 7.41172e8i 0.437428 0.792324i
\(979\) −7.21286e8 −0.768704
\(980\) 1.84406e9i 1.95928i
\(981\) 1.00726e8 + 1.59979e8i 0.106693 + 0.169456i
\(982\) −1.60230e9 −1.69203
\(983\) 6.25782e8i 0.658813i −0.944188 0.329407i \(-0.893151\pi\)
0.944188 0.329407i \(-0.106849\pi\)
\(984\) −6.62802e8 3.65921e8i −0.695662 0.384063i
\(985\) −8.78281e7 −0.0919020
\(986\) 2.29487e8i 0.239402i
\(987\) 1.75327e8 3.17574e8i 0.182347 0.330289i
\(988\) 1.69768e9 1.76030
\(989\) 1.86999e8i 0.193309i
\(990\) −1.01737e9 + 6.40558e8i −1.04851 + 0.660166i
\(991\) 4.79795e8 0.492986 0.246493 0.969145i \(-0.420722\pi\)
0.246493 + 0.969145i \(0.420722\pi\)
\(992\) 2.58474e8i 0.264778i
\(993\) −5.08064e8 2.80494e8i −0.518885 0.286467i
\(994\) −2.87204e9 −2.92436
\(995\) 4.59659e8i 0.466623i
\(996\) −1.40756e9 + 2.54954e9i −1.42459 + 2.58038i
\(997\) 4.30412e8 0.434309 0.217155 0.976137i \(-0.430322\pi\)
0.217155 + 0.976137i \(0.430322\pi\)
\(998\) 2.35327e9i 2.36744i
\(999\) −1.24901e7 2.17076e8i −0.0125276 0.217729i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.7.b.a.35.3 32
3.2 odd 2 inner 51.7.b.a.35.30 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.7.b.a.35.3 32 1.1 even 1 trivial
51.7.b.a.35.30 yes 32 3.2 odd 2 inner