L(s) = 1 | + 2·2-s − 6·3-s + 3·4-s − 12·6-s + 26·7-s − 6·8-s + 21·9-s + 4·11-s − 18·12-s + 52·14-s − 12·16-s − 36·17-s + 42·18-s + 30·19-s − 156·21-s + 8·22-s − 40·23-s + 36·24-s − 54·27-s + 78·28-s − 8·29-s − 42·32-s − 24·33-s − 72·34-s + 63·36-s − 50·37-s + 60·38-s + ⋯ |
L(s) = 1 | + 2-s − 2·3-s + 3/4·4-s − 2·6-s + 26/7·7-s − 3/4·8-s + 7/3·9-s + 4/11·11-s − 3/2·12-s + 26/7·14-s − 3/4·16-s − 2.11·17-s + 7/3·18-s + 1.57·19-s − 7.42·21-s + 4/11·22-s − 1.73·23-s + 3/2·24-s − 2·27-s + 2.78·28-s − 0.275·29-s − 1.31·32-s − 0.727·33-s − 2.11·34-s + 7/4·36-s − 1.35·37-s + 1.57·38-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
41877.1 |
Root analytic conductor: |
3.78222 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
4.845930012 |
L(21) |
≈ |
4.845930012 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+pT+pT2)2 |
| 5 | | 1 |
| 7 | C2 | (1−13T+p2T2)2 |
good | 2 | D4×C2 | 1−pT+T2+5pT3−23T4+5p3T5+p4T6−p7T7+p8T8 |
| 11 | D4×C2 | 1−4T−206T2+80T3+32707T4+80p2T5−206p4T6−4p6T7+p8T8 |
| 13 | D4×C2 | 1−382T2+72003T4−382p4T6+p8T8 |
| 17 | D4×C2 | 1+36T+1046T2+22104T3+418323T4+22104p2T5+1046p4T6+36p6T7+p8T8 |
| 19 | D4×C2 | 1−30T+449T2−4470T3+180T4−4470p2T5+449p4T6−30p6T7+p8T8 |
| 23 | C22 | (1+20T−129T2+20p2T3+p4T4)2 |
| 29 | D4 | (1+4T+822T2+4p2T3+p4T4)2 |
| 31 | C23 | 1+770T2−330621T4+770p4T6+p8T8 |
| 37 | D4×C2 | 1+50T−263T2+1250T3+2337508T4+1250p2T5−263p4T6+50p6T7+p8T8 |
| 41 | D4×C2 | 1+932T2+1635078T4+932p4T6+p8T8 |
| 43 | D4 | (1+100T+6102T2+100p2T3+p4T4)2 |
| 47 | D4×C2 | 1−144T+12410T2−791712T3+40616931T4−791712p2T5+12410p4T6−144p6T7+p8T8 |
| 53 | D4×C2 | 1−44T+1234T2+216304T3−12835901T4+216304p2T5+1234p4T6−44p6T7+p8T8 |
| 59 | D4×C2 | 1+24T+1370T2+28272T3−10061325T4+28272p2T5+1370p4T6+24p6T7+p8T8 |
| 61 | D4×C2 | 1+234T+29609T2+2657538T3+183051300T4+2657538p2T5+29609p4T6+234p6T7+p8T8 |
| 67 | D4×C2 | 1+2T−311T2−17326T3−20069852T4−17326p2T5−311p4T6+2p6T7+p8T8 |
| 71 | D4 | (1+52T+8358T2+52p2T3+p4T4)2 |
| 73 | D4×C2 | 1−90T+13745T2−994050T3+107982084T4−994050p2T5+13745p4T6−90p6T7+p8T8 |
| 79 | D4×C2 | 1−38T−9863T2+44650T3+79886164T4+44650p2T5−9863p4T6−38p6T7+p8T8 |
| 83 | D4×C2 | 1−20500T2+187537542T4−20500p4T6+p8T8 |
| 89 | D4×C2 | 1+72T+16202T2+1042128T3+160441923T4+1042128p2T5+16202p4T6+72p6T7+p8T8 |
| 97 | D4×C2 | 1−15166T2+198604227T4−15166p4T6+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.48648631182100294558106381320, −7.47714660131268725102083522968, −7.21196020824932607001040810802, −6.63144955488260325116389368751, −6.53002075501113332818534225022, −6.50484221001224225464639250015, −5.88625612494286435374801272161, −5.63575755339058352695631919696, −5.60909758371248619408964207249, −5.57458008704128769616970542677, −5.14478201505659318763634002656, −4.76631040383731409946451209957, −4.67045841760122013299132733327, −4.52237972443779369621808524106, −4.28138655270854586376728366600, −4.03026283542381001134254350325, −3.39079579403300998126143041405, −3.31337112171294096463724065765, −2.91342508322134079630602762481, −1.99549176162360804685915768498, −1.97868151263975733608444574943, −1.76987334655824090688519683427, −1.59671249791477935225535253902, −0.62373707054128203683210487197, −0.53477630185195833696425007371,
0.53477630185195833696425007371, 0.62373707054128203683210487197, 1.59671249791477935225535253902, 1.76987334655824090688519683427, 1.97868151263975733608444574943, 1.99549176162360804685915768498, 2.91342508322134079630602762481, 3.31337112171294096463724065765, 3.39079579403300998126143041405, 4.03026283542381001134254350325, 4.28138655270854586376728366600, 4.52237972443779369621808524106, 4.67045841760122013299132733327, 4.76631040383731409946451209957, 5.14478201505659318763634002656, 5.57458008704128769616970542677, 5.60909758371248619408964207249, 5.63575755339058352695631919696, 5.88625612494286435374801272161, 6.50484221001224225464639250015, 6.53002075501113332818534225022, 6.63144955488260325116389368751, 7.21196020824932607001040810802, 7.47714660131268725102083522968, 7.48648631182100294558106381320