Properties

Label 525.3.o.k
Level $525$
Weight $3$
Character orbit 525.o
Analytic conductor $14.305$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,3,Mod(376,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.376");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.o (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + ( - \beta_1 - 1) q^{3} + (2 \beta_{3} - 2 \beta_{2} + 3 \beta_1 - 3) q^{4} + ( - \beta_{3} + 2 \beta_{2} - 2 \beta_1 + 1) q^{6} + (3 \beta_1 + 5) q^{7} + (\beta_{3} - 11) q^{8}+ \cdots + (6 \beta_{3} + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 6 q^{3} - 6 q^{4} + 26 q^{7} - 44 q^{8} + 6 q^{9} + 4 q^{11} + 18 q^{12} + 4 q^{14} - 10 q^{16} - 36 q^{17} - 6 q^{18} + 30 q^{19} - 30 q^{21} - 40 q^{22} - 40 q^{23} + 66 q^{24} - 102 q^{26}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{3} + 4\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
376.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
−0.724745 + 1.25529i −1.50000 + 0.866025i 0.949490 + 1.64456i 0 2.51059i 6.50000 2.59808i −8.55051 1.50000 2.59808i 0
376.2 1.72474 2.98735i −1.50000 + 0.866025i −3.94949 6.84072i 0 5.97469i 6.50000 2.59808i −13.4495 1.50000 2.59808i 0
451.1 −0.724745 1.25529i −1.50000 0.866025i 0.949490 1.64456i 0 2.51059i 6.50000 + 2.59808i −8.55051 1.50000 + 2.59808i 0
451.2 1.72474 + 2.98735i −1.50000 0.866025i −3.94949 + 6.84072i 0 5.97469i 6.50000 + 2.59808i −13.4495 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.3.o.k yes 4
5.b even 2 1 525.3.o.j 4
5.c odd 4 2 525.3.s.g 8
7.d odd 6 1 inner 525.3.o.k yes 4
35.i odd 6 1 525.3.o.j 4
35.k even 12 2 525.3.s.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.3.o.j 4 5.b even 2 1
525.3.o.j 4 35.i odd 6 1
525.3.o.k yes 4 1.a even 1 1 trivial
525.3.o.k yes 4 7.d odd 6 1 inner
525.3.s.g 8 5.c odd 4 2
525.3.s.g 8 35.k even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(525, [\chi])\):

\( T_{2}^{4} - 2T_{2}^{3} + 9T_{2}^{2} + 10T_{2} + 25 \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{3} + 36T_{11}^{2} + 80T_{11} + 400 \) Copy content Toggle raw display
\( T_{13}^{4} + 294T_{13}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 13 T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$13$ \( T^{4} + 294T^{2} + 9 \) Copy content Toggle raw display
$17$ \( T^{4} + 36 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$19$ \( T^{4} - 30 T^{3} + \cdots + 328329 \) Copy content Toggle raw display
$23$ \( (T^{2} + 20 T + 400)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 860)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 1152 T^{2} + 1327104 \) Copy content Toggle raw display
$37$ \( T^{4} + 50 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$41$ \( T^{4} + 7656 T^{2} + 10419984 \) Copy content Toggle raw display
$43$ \( (T^{2} + 100 T + 2404)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 144 T^{3} + \cdots + 1166400 \) Copy content Toggle raw display
$53$ \( T^{4} - 44 T^{3} + \cdots + 24167056 \) Copy content Toggle raw display
$59$ \( T^{4} + 24 T^{3} + \cdots + 33454656 \) Copy content Toggle raw display
$61$ \( T^{4} + 234 T^{3} + \cdots + 15327225 \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 75047569 \) Copy content Toggle raw display
$71$ \( (T^{2} + 52 T - 1724)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 90 T^{3} + \cdots + 149769 \) Copy content Toggle raw display
$79$ \( T^{4} - 38 T^{3} + \cdots + 1380625 \) Copy content Toggle raw display
$83$ \( T^{4} + 7056 T^{2} + 5184 \) Copy content Toggle raw display
$89$ \( T^{4} + 72 T^{3} + \cdots + 1871424 \) Copy content Toggle raw display
$97$ \( T^{4} + 22470 T^{2} + 90269001 \) Copy content Toggle raw display
show more
show less