Properties

Label 525.3.o.k.376.2
Level $525$
Weight $3$
Character 525.376
Analytic conductor $14.305$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,3,Mod(376,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.376");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.o (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 376.2
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 525.376
Dual form 525.3.o.k.451.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72474 - 2.98735i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-3.94949 - 6.84072i) q^{4} +5.97469i q^{6} +(6.50000 - 2.59808i) q^{7} -13.4495 q^{8} +(1.50000 - 2.59808i) q^{9} +(-1.44949 - 2.51059i) q^{11} +(11.8485 + 6.84072i) q^{12} -17.1455i q^{13} +(3.44949 - 23.8988i) q^{14} +(-7.39898 + 12.8154i) q^{16} +(-1.65153 + 0.953512i) q^{17} +(-5.17423 - 8.96204i) q^{18} +(-14.5454 - 8.39780i) q^{19} +(-7.50000 + 9.52628i) q^{21} -10.0000 q^{22} +(-10.0000 + 17.3205i) q^{23} +(20.1742 - 11.6476i) q^{24} +(-51.2196 - 29.5717i) q^{26} +5.19615i q^{27} +(-43.4444 - 34.2036i) q^{28} -31.3939 q^{29} +(29.3939 - 16.9706i) q^{31} +(-1.37628 - 2.38378i) q^{32} +(4.34847 + 2.51059i) q^{33} +6.57826i q^{34} -23.6969 q^{36} +(-24.7474 + 42.8638i) q^{37} +(-50.1742 + 28.9681i) q^{38} +(14.8485 + 25.7183i) q^{39} -76.7175i q^{41} +(15.5227 + 38.8355i) q^{42} -59.7980 q^{43} +(-11.4495 + 19.8311i) q^{44} +(34.4949 + 59.7469i) q^{46} +(58.0454 + 33.5125i) q^{47} -25.6308i q^{48} +(35.5000 - 33.7750i) q^{49} +(1.65153 - 2.86054i) q^{51} +(-117.288 + 67.7161i) q^{52} +(47.7423 + 82.6922i) q^{53} +(15.5227 + 8.96204i) q^{54} +(-87.4217 + 34.9428i) q^{56} +29.0908 q^{57} +(-54.1464 + 93.7844i) q^{58} +(60.1362 - 34.7197i) q^{59} +(-36.4546 - 21.0471i) q^{61} -117.080i q^{62} +(3.00000 - 20.7846i) q^{63} -68.6867 q^{64} +(15.0000 - 8.66025i) q^{66} +(-47.0403 - 81.4762i) q^{67} +(13.0454 + 7.53177i) q^{68} -34.6410i q^{69} +22.9898 q^{71} +(-20.1742 + 34.9428i) q^{72} +(37.1969 - 21.4757i) q^{73} +(85.3661 + 147.858i) q^{74} +132.668i q^{76} +(-15.9444 - 12.5529i) q^{77} +102.439 q^{78} +(-10.0959 + 17.4866i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-229.182 - 132.318i) q^{82} -0.857187i q^{83} +(94.7878 + 13.6814i) q^{84} +(-103.136 + 178.637i) q^{86} +(47.0908 - 27.1879i) q^{87} +(19.4949 + 33.7662i) q^{88} +(18.7423 + 10.8209i) q^{89} +(-44.5454 - 111.446i) q^{91} +157.980 q^{92} +(-29.3939 + 50.9117i) q^{93} +(200.227 - 115.601i) q^{94} +(4.12883 + 2.38378i) q^{96} -72.3785i q^{97} +(-39.6691 - 164.304i) q^{98} -8.69694 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 6 q^{3} - 6 q^{4} + 26 q^{7} - 44 q^{8} + 6 q^{9} + 4 q^{11} + 18 q^{12} + 4 q^{14} - 10 q^{16} - 36 q^{17} - 6 q^{18} + 30 q^{19} - 30 q^{21} - 40 q^{22} - 40 q^{23} + 66 q^{24} - 102 q^{26}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72474 2.98735i 0.862372 1.49367i −0.00726029 0.999974i \(-0.502311\pi\)
0.869633 0.493699i \(-0.164356\pi\)
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) −3.94949 6.84072i −0.987372 1.71018i
\(5\) 0 0
\(6\) 5.97469i 0.995782i
\(7\) 6.50000 2.59808i 0.928571 0.371154i
\(8\) −13.4495 −1.68119
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.44949 2.51059i −0.131772 0.228235i 0.792588 0.609758i \(-0.208733\pi\)
−0.924360 + 0.381522i \(0.875400\pi\)
\(12\) 11.8485 + 6.84072i 0.987372 + 0.570060i
\(13\) 17.1455i 1.31889i −0.751754 0.659444i \(-0.770792\pi\)
0.751754 0.659444i \(-0.229208\pi\)
\(14\) 3.44949 23.8988i 0.246392 1.70705i
\(15\) 0 0
\(16\) −7.39898 + 12.8154i −0.462436 + 0.800963i
\(17\) −1.65153 + 0.953512i −0.0971489 + 0.0560889i −0.547787 0.836618i \(-0.684530\pi\)
0.450638 + 0.892707i \(0.351196\pi\)
\(18\) −5.17423 8.96204i −0.287457 0.497891i
\(19\) −14.5454 8.39780i −0.765548 0.441989i 0.0657363 0.997837i \(-0.479060\pi\)
−0.831284 + 0.555848i \(0.812394\pi\)
\(20\) 0 0
\(21\) −7.50000 + 9.52628i −0.357143 + 0.453632i
\(22\) −10.0000 −0.454545
\(23\) −10.0000 + 17.3205i −0.434783 + 0.753066i −0.997278 0.0737349i \(-0.976508\pi\)
0.562495 + 0.826801i \(0.309841\pi\)
\(24\) 20.1742 11.6476i 0.840593 0.485317i
\(25\) 0 0
\(26\) −51.2196 29.5717i −1.96999 1.13737i
\(27\) 5.19615i 0.192450i
\(28\) −43.4444 34.2036i −1.55159 1.22156i
\(29\) −31.3939 −1.08255 −0.541274 0.840846i \(-0.682058\pi\)
−0.541274 + 0.840846i \(0.682058\pi\)
\(30\) 0 0
\(31\) 29.3939 16.9706i 0.948190 0.547438i 0.0556715 0.998449i \(-0.482270\pi\)
0.892518 + 0.451012i \(0.148937\pi\)
\(32\) −1.37628 2.38378i −0.0430086 0.0744931i
\(33\) 4.34847 + 2.51059i 0.131772 + 0.0760785i
\(34\) 6.57826i 0.193478i
\(35\) 0 0
\(36\) −23.6969 −0.658248
\(37\) −24.7474 + 42.8638i −0.668850 + 1.15848i 0.309376 + 0.950940i \(0.399880\pi\)
−0.978226 + 0.207542i \(0.933454\pi\)
\(38\) −50.1742 + 28.9681i −1.32037 + 0.762319i
\(39\) 14.8485 + 25.7183i 0.380730 + 0.659444i
\(40\) 0 0
\(41\) 76.7175i 1.87116i −0.353117 0.935579i \(-0.614878\pi\)
0.353117 0.935579i \(-0.385122\pi\)
\(42\) 15.5227 + 38.8355i 0.369588 + 0.924655i
\(43\) −59.7980 −1.39065 −0.695325 0.718695i \(-0.744740\pi\)
−0.695325 + 0.718695i \(0.744740\pi\)
\(44\) −11.4495 + 19.8311i −0.260216 + 0.450707i
\(45\) 0 0
\(46\) 34.4949 + 59.7469i 0.749889 + 1.29885i
\(47\) 58.0454 + 33.5125i 1.23501 + 0.713033i 0.968070 0.250681i \(-0.0806545\pi\)
0.266939 + 0.963713i \(0.413988\pi\)
\(48\) 25.6308i 0.533975i
\(49\) 35.5000 33.7750i 0.724490 0.689286i
\(50\) 0 0
\(51\) 1.65153 2.86054i 0.0323830 0.0560889i
\(52\) −117.288 + 67.7161i −2.25553 + 1.30223i
\(53\) 47.7423 + 82.6922i 0.900799 + 1.56023i 0.826459 + 0.562997i \(0.190352\pi\)
0.0743398 + 0.997233i \(0.476315\pi\)
\(54\) 15.5227 + 8.96204i 0.287457 + 0.165964i
\(55\) 0 0
\(56\) −87.4217 + 34.9428i −1.56110 + 0.623979i
\(57\) 29.0908 0.510365
\(58\) −54.1464 + 93.7844i −0.933559 + 1.61697i
\(59\) 60.1362 34.7197i 1.01926 0.588469i 0.105369 0.994433i \(-0.466398\pi\)
0.913889 + 0.405964i \(0.133064\pi\)
\(60\) 0 0
\(61\) −36.4546 21.0471i −0.597616 0.345034i 0.170487 0.985360i \(-0.445466\pi\)
−0.768103 + 0.640326i \(0.778799\pi\)
\(62\) 117.080i 1.88838i
\(63\) 3.00000 20.7846i 0.0476190 0.329914i
\(64\) −68.6867 −1.07323
\(65\) 0 0
\(66\) 15.0000 8.66025i 0.227273 0.131216i
\(67\) −47.0403 81.4762i −0.702094 1.21606i −0.967730 0.251989i \(-0.918915\pi\)
0.265636 0.964073i \(-0.414418\pi\)
\(68\) 13.0454 + 7.53177i 0.191844 + 0.110761i
\(69\) 34.6410i 0.502044i
\(70\) 0 0
\(71\) 22.9898 0.323800 0.161900 0.986807i \(-0.448238\pi\)
0.161900 + 0.986807i \(0.448238\pi\)
\(72\) −20.1742 + 34.9428i −0.280198 + 0.485317i
\(73\) 37.1969 21.4757i 0.509547 0.294187i −0.223100 0.974795i \(-0.571618\pi\)
0.732647 + 0.680608i \(0.238284\pi\)
\(74\) 85.3661 + 147.858i 1.15360 + 1.99809i
\(75\) 0 0
\(76\) 132.668i 1.74563i
\(77\) −15.9444 12.5529i −0.207070 0.163025i
\(78\) 102.439 1.31332
\(79\) −10.0959 + 17.4866i −0.127796 + 0.221350i −0.922823 0.385225i \(-0.874124\pi\)
0.795026 + 0.606575i \(0.207457\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −229.182 132.318i −2.79490 1.61364i
\(83\) 0.857187i 0.0103276i −0.999987 0.00516378i \(-0.998356\pi\)
0.999987 0.00516378i \(-0.00164369\pi\)
\(84\) 94.7878 + 13.6814i 1.12843 + 0.162874i
\(85\) 0 0
\(86\) −103.136 + 178.637i −1.19926 + 2.07718i
\(87\) 47.0908 27.1879i 0.541274 0.312505i
\(88\) 19.4949 + 33.7662i 0.221533 + 0.383706i
\(89\) 18.7423 + 10.8209i 0.210588 + 0.121583i 0.601585 0.798809i \(-0.294536\pi\)
−0.390997 + 0.920392i \(0.627870\pi\)
\(90\) 0 0
\(91\) −44.5454 111.446i −0.489510 1.22468i
\(92\) 157.980 1.71717
\(93\) −29.3939 + 50.9117i −0.316063 + 0.547438i
\(94\) 200.227 115.601i 2.13007 1.22980i
\(95\) 0 0
\(96\) 4.12883 + 2.38378i 0.0430086 + 0.0248310i
\(97\) 72.3785i 0.746170i −0.927797 0.373085i \(-0.878300\pi\)
0.927797 0.373085i \(-0.121700\pi\)
\(98\) −39.6691 164.304i −0.404787 1.67657i
\(99\) −8.69694 −0.0878479
\(100\) 0 0
\(101\) 19.6515 11.3458i 0.194570 0.112335i −0.399550 0.916711i \(-0.630834\pi\)
0.594120 + 0.804376i \(0.297500\pi\)
\(102\) −5.69694 9.86739i −0.0558523 0.0967391i
\(103\) 76.1969 + 43.9923i 0.739776 + 0.427110i 0.821988 0.569505i \(-0.192865\pi\)
−0.0822118 + 0.996615i \(0.526198\pi\)
\(104\) 230.599i 2.21730i
\(105\) 0 0
\(106\) 329.373 3.10730
\(107\) 90.3485 156.488i 0.844378 1.46251i −0.0417819 0.999127i \(-0.513303\pi\)
0.886160 0.463379i \(-0.153363\pi\)
\(108\) 35.5454 20.5222i 0.329124 0.190020i
\(109\) 17.1515 + 29.7073i 0.157353 + 0.272544i 0.933914 0.357499i \(-0.116370\pi\)
−0.776560 + 0.630043i \(0.783037\pi\)
\(110\) 0 0
\(111\) 85.7277i 0.772321i
\(112\) −14.7980 + 102.523i −0.132125 + 0.915386i
\(113\) 8.38367 0.0741918 0.0370959 0.999312i \(-0.488189\pi\)
0.0370959 + 0.999312i \(0.488189\pi\)
\(114\) 50.1742 86.9043i 0.440125 0.762319i
\(115\) 0 0
\(116\) 123.990 + 214.757i 1.06888 + 1.85135i
\(117\) −44.5454 25.7183i −0.380730 0.219815i
\(118\) 239.530i 2.02992i
\(119\) −8.25765 + 10.4886i −0.0693920 + 0.0881397i
\(120\) 0 0
\(121\) 56.2980 97.5109i 0.465272 0.805875i
\(122\) −125.750 + 72.6016i −1.03074 + 0.595095i
\(123\) 66.4393 + 115.076i 0.540157 + 0.935579i
\(124\) −232.182 134.050i −1.87243 1.08105i
\(125\) 0 0
\(126\) −56.9166 44.8102i −0.451719 0.355636i
\(127\) 160.798 1.26613 0.633063 0.774100i \(-0.281797\pi\)
0.633063 + 0.774100i \(0.281797\pi\)
\(128\) −112.962 + 195.656i −0.882516 + 1.52856i
\(129\) 89.6969 51.7866i 0.695325 0.401446i
\(130\) 0 0
\(131\) 44.6969 + 25.8058i 0.341198 + 0.196991i 0.660802 0.750561i \(-0.270216\pi\)
−0.319604 + 0.947551i \(0.603550\pi\)
\(132\) 39.6622i 0.300471i
\(133\) −116.363 16.7956i −0.874912 0.126283i
\(134\) −324.530 −2.42187
\(135\) 0 0
\(136\) 22.2122 12.8242i 0.163325 0.0942959i
\(137\) 136.697 + 236.766i 0.997788 + 1.72822i 0.556466 + 0.830871i \(0.312157\pi\)
0.441322 + 0.897349i \(0.354510\pi\)
\(138\) −103.485 59.7469i −0.749889 0.432949i
\(139\) 225.656i 1.62343i 0.584057 + 0.811713i \(0.301465\pi\)
−0.584057 + 0.811713i \(0.698535\pi\)
\(140\) 0 0
\(141\) −116.091 −0.823339
\(142\) 39.6515 68.6785i 0.279236 0.483651i
\(143\) −43.0454 + 24.8523i −0.301017 + 0.173792i
\(144\) 22.1969 + 38.4462i 0.154145 + 0.266988i
\(145\) 0 0
\(146\) 148.160i 1.01480i
\(147\) −24.0000 + 81.4064i −0.163265 + 0.553785i
\(148\) 390.959 2.64162
\(149\) 100.328 173.773i 0.673343 1.16626i −0.303608 0.952797i \(-0.598191\pi\)
0.976950 0.213467i \(-0.0684755\pi\)
\(150\) 0 0
\(151\) −117.187 202.973i −0.776071 1.34419i −0.934191 0.356775i \(-0.883876\pi\)
0.158119 0.987420i \(-0.449457\pi\)
\(152\) 195.628 + 112.946i 1.28703 + 0.743066i
\(153\) 5.72107i 0.0373926i
\(154\) −65.0000 + 25.9808i −0.422078 + 0.168706i
\(155\) 0 0
\(156\) 117.288 203.148i 0.751845 1.30223i
\(157\) −36.1515 + 20.8721i −0.230265 + 0.132943i −0.610694 0.791867i \(-0.709109\pi\)
0.380430 + 0.924810i \(0.375776\pi\)
\(158\) 34.8258 + 60.3200i 0.220416 + 0.381772i
\(159\) −143.227 82.6922i −0.900799 0.520077i
\(160\) 0 0
\(161\) −20.0000 + 138.564i −0.124224 + 0.860646i
\(162\) −31.0454 −0.191638
\(163\) −21.3332 + 36.9501i −0.130878 + 0.226688i −0.924015 0.382355i \(-0.875113\pi\)
0.793137 + 0.609043i \(0.208446\pi\)
\(164\) −524.803 + 302.995i −3.20002 + 1.84753i
\(165\) 0 0
\(166\) −2.56072 1.47843i −0.0154260 0.00890620i
\(167\) 161.570i 0.967487i 0.875210 + 0.483743i \(0.160723\pi\)
−0.875210 + 0.483743i \(0.839277\pi\)
\(168\) 100.871 128.124i 0.600424 0.762640i
\(169\) −124.969 −0.739464
\(170\) 0 0
\(171\) −43.6362 + 25.1934i −0.255183 + 0.147330i
\(172\) 236.171 + 409.061i 1.37309 + 2.37826i
\(173\) 120.909 + 69.8070i 0.698897 + 0.403508i 0.806936 0.590638i \(-0.201124\pi\)
−0.108039 + 0.994147i \(0.534457\pi\)
\(174\) 187.569i 1.07798i
\(175\) 0 0
\(176\) 42.8990 0.243744
\(177\) −60.1362 + 104.159i −0.339753 + 0.588469i
\(178\) 64.6515 37.3266i 0.363211 0.209700i
\(179\) 37.6061 + 65.1357i 0.210090 + 0.363887i 0.951743 0.306898i \(-0.0992909\pi\)
−0.741652 + 0.670784i \(0.765958\pi\)
\(180\) 0 0
\(181\) 42.5837i 0.235269i −0.993057 0.117635i \(-0.962469\pi\)
0.993057 0.117635i \(-0.0375311\pi\)
\(182\) −409.757 59.1433i −2.25141 0.324963i
\(183\) 72.9092 0.398411
\(184\) 134.495 232.952i 0.730951 1.26604i
\(185\) 0 0
\(186\) 101.394 + 175.619i 0.545128 + 0.944190i
\(187\) 4.78775 + 2.76421i 0.0256030 + 0.0147819i
\(188\) 529.430i 2.81611i
\(189\) 13.5000 + 33.7750i 0.0714286 + 0.178704i
\(190\) 0 0
\(191\) 6.86378 11.8884i 0.0359360 0.0622430i −0.847498 0.530799i \(-0.821892\pi\)
0.883434 + 0.468556i \(0.155225\pi\)
\(192\) 103.030 59.4845i 0.536615 0.309815i
\(193\) −31.0908 53.8509i −0.161092 0.279020i 0.774168 0.632980i \(-0.218168\pi\)
−0.935261 + 0.353960i \(0.884835\pi\)
\(194\) −216.220 124.834i −1.11453 0.643477i
\(195\) 0 0
\(196\) −371.252 109.451i −1.89414 0.558426i
\(197\) −16.3837 −0.0831658 −0.0415829 0.999135i \(-0.513240\pi\)
−0.0415829 + 0.999135i \(0.513240\pi\)
\(198\) −15.0000 + 25.9808i −0.0757576 + 0.131216i
\(199\) 240.257 138.713i 1.20732 0.697048i 0.245149 0.969485i \(-0.421163\pi\)
0.962173 + 0.272438i \(0.0878298\pi\)
\(200\) 0 0
\(201\) 141.121 + 81.4762i 0.702094 + 0.405354i
\(202\) 78.2746i 0.387498i
\(203\) −204.060 + 81.5637i −1.00522 + 0.401792i
\(204\) −26.0908 −0.127896
\(205\) 0 0
\(206\) 262.841 151.751i 1.27593 0.736656i
\(207\) 30.0000 + 51.9615i 0.144928 + 0.251022i
\(208\) 219.727 + 126.859i 1.05638 + 0.609901i
\(209\) 48.6901i 0.232967i
\(210\) 0 0
\(211\) 63.5153 0.301020 0.150510 0.988608i \(-0.451908\pi\)
0.150510 + 0.988608i \(0.451908\pi\)
\(212\) 377.116 653.184i 1.77885 3.08106i
\(213\) −34.4847 + 19.9097i −0.161900 + 0.0934730i
\(214\) −311.656 539.804i −1.45634 2.52245i
\(215\) 0 0
\(216\) 69.8856i 0.323544i
\(217\) 146.969 186.676i 0.677278 0.860259i
\(218\) 118.328 0.542789
\(219\) −37.1969 + 64.4270i −0.169849 + 0.294187i
\(220\) 0 0
\(221\) 16.3485 + 28.3164i 0.0739750 + 0.128128i
\(222\) −256.098 147.858i −1.15360 0.666029i
\(223\) 300.274i 1.34652i −0.739406 0.673260i \(-0.764893\pi\)
0.739406 0.673260i \(-0.235107\pi\)
\(224\) −15.1390 11.9189i −0.0675850 0.0532094i
\(225\) 0 0
\(226\) 14.4597 25.0449i 0.0639810 0.110818i
\(227\) 58.8184 33.9588i 0.259112 0.149598i −0.364818 0.931079i \(-0.618869\pi\)
0.623929 + 0.781481i \(0.285535\pi\)
\(228\) −114.894 199.002i −0.503921 0.872816i
\(229\) 303.393 + 175.164i 1.32486 + 0.764909i 0.984500 0.175385i \(-0.0561171\pi\)
0.340362 + 0.940295i \(0.389450\pi\)
\(230\) 0 0
\(231\) 34.7878 + 5.02118i 0.150596 + 0.0217367i
\(232\) 422.232 1.81996
\(233\) 46.5301 80.5925i 0.199700 0.345891i −0.748731 0.662874i \(-0.769337\pi\)
0.948431 + 0.316983i \(0.102670\pi\)
\(234\) −153.659 + 88.7150i −0.656662 + 0.379124i
\(235\) 0 0
\(236\) −475.015 274.250i −2.01277 1.16208i
\(237\) 34.9733i 0.147567i
\(238\) 17.0908 + 42.7587i 0.0718101 + 0.179658i
\(239\) −112.363 −0.470139 −0.235070 0.971979i \(-0.575532\pi\)
−0.235070 + 0.971979i \(0.575532\pi\)
\(240\) 0 0
\(241\) −342.560 + 197.777i −1.42141 + 0.820652i −0.996420 0.0845448i \(-0.973056\pi\)
−0.424992 + 0.905197i \(0.639723\pi\)
\(242\) −194.199 336.363i −0.802476 1.38993i
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 332.501i 1.36271i
\(245\) 0 0
\(246\) 458.363 1.86327
\(247\) −143.985 + 249.389i −0.582934 + 1.00967i
\(248\) −395.333 + 228.245i −1.59408 + 0.920344i
\(249\) 0.742346 + 1.28578i 0.00298131 + 0.00516378i
\(250\) 0 0
\(251\) 113.423i 0.451884i −0.974141 0.225942i \(-0.927454\pi\)
0.974141 0.225942i \(-0.0725459\pi\)
\(252\) −154.030 + 61.5665i −0.611231 + 0.244311i
\(253\) 57.9796 0.229168
\(254\) 277.335 480.359i 1.09187 1.89118i
\(255\) 0 0
\(256\) 252.288 + 436.975i 0.985499 + 1.70693i
\(257\) 163.348 + 94.3093i 0.635597 + 0.366962i 0.782917 0.622127i \(-0.213731\pi\)
−0.147319 + 0.989089i \(0.547065\pi\)
\(258\) 357.274i 1.38478i
\(259\) −49.4949 + 342.911i −0.191100 + 1.32398i
\(260\) 0 0
\(261\) −47.0908 + 81.5637i −0.180425 + 0.312505i
\(262\) 154.182 89.0168i 0.588480 0.339759i
\(263\) 9.97959 + 17.2852i 0.0379452 + 0.0657230i 0.884374 0.466778i \(-0.154585\pi\)
−0.846429 + 0.532501i \(0.821252\pi\)
\(264\) −58.4847 33.7662i −0.221533 0.127902i
\(265\) 0 0
\(266\) −250.871 + 318.649i −0.943125 + 1.19793i
\(267\) −37.4847 −0.140392
\(268\) −371.570 + 643.579i −1.38646 + 2.40141i
\(269\) −334.590 + 193.176i −1.24383 + 0.718126i −0.969872 0.243616i \(-0.921666\pi\)
−0.273958 + 0.961742i \(0.588333\pi\)
\(270\) 0 0
\(271\) −33.6367 19.4202i −0.124121 0.0716612i 0.436654 0.899629i \(-0.356163\pi\)
−0.560775 + 0.827968i \(0.689497\pi\)
\(272\) 28.2201i 0.103750i
\(273\) 163.333 + 128.592i 0.598290 + 0.471031i
\(274\) 943.069 3.44186
\(275\) 0 0
\(276\) −236.969 + 136.814i −0.858585 + 0.495704i
\(277\) 263.606 + 456.578i 0.951645 + 1.64830i 0.741866 + 0.670548i \(0.233941\pi\)
0.209779 + 0.977749i \(0.432726\pi\)
\(278\) 674.113 + 389.199i 2.42487 + 1.40000i
\(279\) 101.823i 0.364958i
\(280\) 0 0
\(281\) 322.050 1.14609 0.573043 0.819526i \(-0.305763\pi\)
0.573043 + 0.819526i \(0.305763\pi\)
\(282\) −200.227 + 346.803i −0.710025 + 1.22980i
\(283\) 406.272 234.561i 1.43559 0.828838i 0.438051 0.898950i \(-0.355669\pi\)
0.997539 + 0.0701121i \(0.0223357\pi\)
\(284\) −90.7980 157.267i −0.319711 0.553756i
\(285\) 0 0
\(286\) 171.455i 0.599494i
\(287\) −199.318 498.664i −0.694487 1.73750i
\(288\) −8.25765 −0.0286724
\(289\) −142.682 + 247.132i −0.493708 + 0.855127i
\(290\) 0 0
\(291\) 62.6816 + 108.568i 0.215401 + 0.373085i
\(292\) −293.818 169.636i −1.00623 0.580945i
\(293\) 192.555i 0.657183i 0.944472 + 0.328591i \(0.106574\pi\)
−0.944472 + 0.328591i \(0.893426\pi\)
\(294\) 201.795 + 212.102i 0.686378 + 0.721434i
\(295\) 0 0
\(296\) 332.841 576.497i 1.12446 1.94762i
\(297\) 13.0454 7.53177i 0.0439239 0.0253595i
\(298\) −346.081 599.429i −1.16134 2.01151i
\(299\) 296.969 + 171.455i 0.993209 + 0.573429i
\(300\) 0 0
\(301\) −388.687 + 155.360i −1.29132 + 0.516145i
\(302\) −808.469 −2.67705
\(303\) −19.6515 + 34.0374i −0.0648565 + 0.112335i
\(304\) 215.242 124.270i 0.708034 0.408784i
\(305\) 0 0
\(306\) 17.0908 + 9.86739i 0.0558523 + 0.0322464i
\(307\) 35.6555i 0.116142i −0.998312 0.0580708i \(-0.981505\pi\)
0.998312 0.0580708i \(-0.0184949\pi\)
\(308\) −22.8990 + 158.649i −0.0743473 + 0.515093i
\(309\) −152.394 −0.493184
\(310\) 0 0
\(311\) −176.060 + 101.648i −0.566110 + 0.326844i −0.755594 0.655040i \(-0.772652\pi\)
0.189484 + 0.981884i \(0.439318\pi\)
\(312\) −199.704 345.898i −0.640078 1.10865i
\(313\) −51.5755 29.7771i −0.164778 0.0951346i 0.415343 0.909665i \(-0.363661\pi\)
−0.580121 + 0.814530i \(0.696995\pi\)
\(314\) 143.996i 0.458587i
\(315\) 0 0
\(316\) 159.495 0.504731
\(317\) −211.879 + 366.984i −0.668387 + 1.15768i 0.309969 + 0.950747i \(0.399681\pi\)
−0.978355 + 0.206933i \(0.933652\pi\)
\(318\) −494.060 + 285.246i −1.55365 + 0.896999i
\(319\) 45.5051 + 78.8171i 0.142649 + 0.247076i
\(320\) 0 0
\(321\) 312.976i 0.975004i
\(322\) 379.444 + 298.735i 1.17840 + 0.927747i
\(323\) 32.0296 0.0991628
\(324\) −35.5454 + 61.5665i −0.109708 + 0.190020i
\(325\) 0 0
\(326\) 73.5885 + 127.459i 0.225732 + 0.390979i
\(327\) −51.4546 29.7073i −0.157353 0.0908481i
\(328\) 1031.81i 3.14577i
\(329\) 464.363 + 67.0251i 1.41144 + 0.203724i
\(330\) 0 0
\(331\) 200.758 347.722i 0.606519 1.05052i −0.385291 0.922795i \(-0.625899\pi\)
0.991810 0.127726i \(-0.0407678\pi\)
\(332\) −5.86378 + 3.38545i −0.0176620 + 0.0101971i
\(333\) 74.2423 + 128.592i 0.222950 + 0.386161i
\(334\) 482.666 + 278.668i 1.44511 + 0.834334i
\(335\) 0 0
\(336\) −66.5908 166.600i −0.198187 0.495834i
\(337\) −445.333 −1.32146 −0.660731 0.750623i \(-0.729754\pi\)
−0.660731 + 0.750623i \(0.729754\pi\)
\(338\) −215.540 + 373.327i −0.637693 + 1.10452i
\(339\) −12.5755 + 7.26047i −0.0370959 + 0.0214173i
\(340\) 0 0
\(341\) −85.2122 49.1973i −0.249889 0.144274i
\(342\) 173.809i 0.508212i
\(343\) 143.000 311.769i 0.416910 0.908948i
\(344\) 804.252 2.33794
\(345\) 0 0
\(346\) 417.075 240.798i 1.20542 0.695949i
\(347\) 161.025 + 278.903i 0.464049 + 0.803756i 0.999158 0.0410266i \(-0.0130628\pi\)
−0.535109 + 0.844783i \(0.679729\pi\)
\(348\) −371.969 214.757i −1.06888 0.617117i
\(349\) 45.0687i 0.129137i −0.997913 0.0645683i \(-0.979433\pi\)
0.997913 0.0645683i \(-0.0205670\pi\)
\(350\) 0 0
\(351\) 89.0908 0.253820
\(352\) −3.98979 + 6.91053i −0.0113346 + 0.0196322i
\(353\) −564.106 + 325.687i −1.59803 + 0.922625i −0.606167 + 0.795337i \(0.707294\pi\)
−0.991866 + 0.127287i \(0.959373\pi\)
\(354\) 207.439 + 359.295i 0.585987 + 1.01496i
\(355\) 0 0
\(356\) 170.948i 0.480191i
\(357\) 3.30306 22.8843i 0.00925227 0.0641016i
\(358\) 259.444 0.724704
\(359\) 3.48011 6.02772i 0.00969389 0.0167903i −0.861138 0.508372i \(-0.830248\pi\)
0.870832 + 0.491581i \(0.163581\pi\)
\(360\) 0 0
\(361\) −39.4541 68.3365i −0.109291 0.189298i
\(362\) −127.212 73.4460i −0.351415 0.202890i
\(363\) 195.022i 0.537250i
\(364\) −586.439 + 744.877i −1.61110 + 2.04637i
\(365\) 0 0
\(366\) 125.750 217.805i 0.343579 0.595095i
\(367\) 440.969 254.594i 1.20155 0.693716i 0.240651 0.970612i \(-0.422639\pi\)
0.960900 + 0.276896i \(0.0893056\pi\)
\(368\) −147.980 256.308i −0.402118 0.696490i
\(369\) −199.318 115.076i −0.540157 0.311860i
\(370\) 0 0
\(371\) 525.166 + 413.461i 1.41554 + 1.11445i
\(372\) 464.363 1.24829
\(373\) 89.1107 154.344i 0.238903 0.413792i −0.721497 0.692418i \(-0.756546\pi\)
0.960400 + 0.278626i \(0.0898790\pi\)
\(374\) 16.5153 9.53512i 0.0441586 0.0254950i
\(375\) 0 0
\(376\) −780.681 450.726i −2.07628 1.19874i
\(377\) 538.265i 1.42776i
\(378\) 124.182 + 17.9241i 0.328523 + 0.0474182i
\(379\) −215.899 −0.569654 −0.284827 0.958579i \(-0.591936\pi\)
−0.284827 + 0.958579i \(0.591936\pi\)
\(380\) 0 0
\(381\) −241.197 + 139.255i −0.633063 + 0.365499i
\(382\) −23.6765 41.0089i −0.0619804 0.107353i
\(383\) −146.666 84.6778i −0.382941 0.221091i 0.296156 0.955140i \(-0.404295\pi\)
−0.679097 + 0.734049i \(0.737628\pi\)
\(384\) 391.312i 1.01904i
\(385\) 0 0
\(386\) −214.495 −0.555686
\(387\) −89.6969 + 155.360i −0.231775 + 0.401446i
\(388\) −495.121 + 285.858i −1.27608 + 0.736748i
\(389\) −26.4699 45.8472i −0.0680460 0.117859i 0.829995 0.557771i \(-0.188343\pi\)
−0.898041 + 0.439912i \(0.855010\pi\)
\(390\) 0 0
\(391\) 38.1405i 0.0975460i
\(392\) −477.457 + 454.256i −1.21800 + 1.15882i
\(393\) −89.3939 −0.227465
\(394\) −28.2577 + 48.9437i −0.0717199 + 0.124223i
\(395\) 0 0
\(396\) 34.3485 + 59.4933i 0.0867386 + 0.150236i
\(397\) −343.757 198.468i −0.865887 0.499920i 9.22678e−5 1.00000i \(-0.499971\pi\)
−0.865979 + 0.500080i \(0.833304\pi\)
\(398\) 956.975i 2.40446i
\(399\) 189.090 75.5802i 0.473911 0.189424i
\(400\) 0 0
\(401\) −207.398 + 359.225i −0.517203 + 0.895822i 0.482597 + 0.875842i \(0.339694\pi\)
−0.999800 + 0.0199797i \(0.993640\pi\)
\(402\) 486.795 281.051i 1.21093 0.699133i
\(403\) −290.969 503.974i −0.722008 1.25056i
\(404\) −155.227 89.6204i −0.384225 0.221833i
\(405\) 0 0
\(406\) −108.293 + 750.275i −0.266731 + 1.84797i
\(407\) 143.485 0.352542
\(408\) −22.2122 + 38.4727i −0.0544418 + 0.0942959i
\(409\) 440.651 254.410i 1.07739 0.622029i 0.147196 0.989107i \(-0.452975\pi\)
0.930190 + 0.367078i \(0.119642\pi\)
\(410\) 0 0
\(411\) −410.091 236.766i −0.997788 0.576073i
\(412\) 694.989i 1.68687i
\(413\) 300.681 381.916i 0.728041 0.924737i
\(414\) 206.969 0.499926
\(415\) 0 0
\(416\) −40.8712 + 23.5970i −0.0982480 + 0.0567235i
\(417\) −195.424 338.484i −0.468643 0.811713i
\(418\) 145.454 + 83.9780i 0.347976 + 0.200904i
\(419\) 234.946i 0.560729i −0.959894 0.280365i \(-0.909545\pi\)
0.959894 0.280365i \(-0.0904554\pi\)
\(420\) 0 0
\(421\) −537.919 −1.27772 −0.638859 0.769324i \(-0.720593\pi\)
−0.638859 + 0.769324i \(0.720593\pi\)
\(422\) 109.548 189.742i 0.259592 0.449626i
\(423\) 174.136 100.538i 0.411670 0.237678i
\(424\) −642.110 1112.17i −1.51441 2.62304i
\(425\) 0 0
\(426\) 137.357i 0.322434i
\(427\) −291.637 42.0941i −0.682990 0.0985811i
\(428\) −1427.32 −3.33486
\(429\) 43.0454 74.5568i 0.100339 0.173792i
\(430\) 0 0
\(431\) −16.6663 28.8669i −0.0386690 0.0669766i 0.846043 0.533114i \(-0.178978\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(432\) −66.5908 38.4462i −0.154145 0.0889959i
\(433\) 443.405i 1.02403i 0.858976 + 0.512015i \(0.171101\pi\)
−0.858976 + 0.512015i \(0.828899\pi\)
\(434\) −304.182 761.017i −0.700879 1.75350i
\(435\) 0 0
\(436\) 135.480 234.658i 0.310733 0.538205i
\(437\) 290.908 167.956i 0.665694 0.384338i
\(438\) 128.310 + 222.240i 0.292946 + 0.507398i
\(439\) −320.985 185.321i −0.731172 0.422143i 0.0876785 0.996149i \(-0.472055\pi\)
−0.818851 + 0.574006i \(0.805389\pi\)
\(440\) 0 0
\(441\) −34.5000 142.894i −0.0782313 0.324023i
\(442\) 112.788 0.255176
\(443\) 393.182 681.011i 0.887543 1.53727i 0.0447724 0.998997i \(-0.485744\pi\)
0.842771 0.538273i \(-0.180923\pi\)
\(444\) −586.439 + 338.581i −1.32081 + 0.762569i
\(445\) 0 0
\(446\) −897.022 517.896i −2.01126 1.16120i
\(447\) 347.547i 0.777509i
\(448\) −446.464 + 178.453i −0.996571 + 0.398333i
\(449\) 93.3439 0.207893 0.103946 0.994583i \(-0.466853\pi\)
0.103946 + 0.994583i \(0.466853\pi\)
\(450\) 0 0
\(451\) −192.606 + 111.201i −0.427065 + 0.246566i
\(452\) −33.1112 57.3503i −0.0732549 0.126881i
\(453\) 351.560 + 202.973i 0.776071 + 0.448065i
\(454\) 234.281i 0.516038i
\(455\) 0 0
\(456\) −391.257 −0.858019
\(457\) 264.187 457.585i 0.578089 1.00128i −0.417609 0.908627i \(-0.637132\pi\)
0.995698 0.0926531i \(-0.0295347\pi\)
\(458\) 1046.55 604.227i 2.28505 1.31927i
\(459\) −4.95459 8.58161i −0.0107943 0.0186963i
\(460\) 0 0
\(461\) 730.505i 1.58461i 0.610126 + 0.792305i \(0.291119\pi\)
−0.610126 + 0.792305i \(0.708881\pi\)
\(462\) 75.0000 95.2628i 0.162338 0.206197i
\(463\) −217.908 −0.470644 −0.235322 0.971917i \(-0.575614\pi\)
−0.235322 + 0.971917i \(0.575614\pi\)
\(464\) 232.283 402.325i 0.500609 0.867081i
\(465\) 0 0
\(466\) −160.505 278.003i −0.344432 0.596573i
\(467\) 173.363 + 100.091i 0.371228 + 0.214328i 0.673995 0.738736i \(-0.264577\pi\)
−0.302767 + 0.953065i \(0.597910\pi\)
\(468\) 406.297i 0.868155i
\(469\) −517.443 407.381i −1.10329 0.868616i
\(470\) 0 0
\(471\) 36.1515 62.6163i 0.0767548 0.132943i
\(472\) −808.802 + 466.962i −1.71356 + 0.989326i
\(473\) 86.6765 + 150.128i 0.183248 + 0.317396i
\(474\) −104.477 60.3200i −0.220416 0.127257i
\(475\) 0 0
\(476\) 104.363 + 15.0635i 0.219251 + 0.0316461i
\(477\) 286.454 0.600533
\(478\) −193.798 + 335.668i −0.405435 + 0.702234i
\(479\) 227.864 131.557i 0.475707 0.274650i −0.242919 0.970047i \(-0.578105\pi\)
0.718626 + 0.695397i \(0.244771\pi\)
\(480\) 0 0
\(481\) 734.923 + 424.308i 1.52791 + 0.882138i
\(482\) 1364.46i 2.83083i
\(483\) −90.0000 225.167i −0.186335 0.466183i
\(484\) −889.393 −1.83759
\(485\) 0 0
\(486\) 46.5681 26.8861i 0.0958192 0.0553212i
\(487\) 150.283 + 260.297i 0.308589 + 0.534491i 0.978054 0.208352i \(-0.0668100\pi\)
−0.669465 + 0.742843i \(0.733477\pi\)
\(488\) 490.296 + 283.072i 1.00470 + 0.580066i
\(489\) 73.9002i 0.151125i
\(490\) 0 0
\(491\) 268.061 0.545950 0.272975 0.962021i \(-0.411992\pi\)
0.272975 + 0.962021i \(0.411992\pi\)
\(492\) 524.803 908.985i 1.06667 1.84753i
\(493\) 51.8480 29.9344i 0.105168 0.0607189i
\(494\) 496.674 + 860.264i 1.00541 + 1.74143i
\(495\) 0 0
\(496\) 502.259i 1.01262i
\(497\) 149.434 59.7292i 0.300671 0.120180i
\(498\) 5.12143 0.0102840
\(499\) −73.4240 + 127.174i −0.147142 + 0.254858i −0.930170 0.367129i \(-0.880341\pi\)
0.783028 + 0.621987i \(0.213674\pi\)
\(500\) 0 0
\(501\) −139.924 242.355i −0.279289 0.483743i
\(502\) −338.833 195.625i −0.674966 0.389692i
\(503\) 102.944i 0.204660i −0.994751 0.102330i \(-0.967370\pi\)
0.994751 0.102330i \(-0.0326297\pi\)
\(504\) −40.3485 + 279.542i −0.0800565 + 0.554648i
\(505\) 0 0
\(506\) 100.000 173.205i 0.197628 0.342303i
\(507\) 187.454 108.227i 0.369732 0.213465i
\(508\) −635.070 1099.97i −1.25014 2.16530i
\(509\) −777.879 449.108i −1.52825 0.882335i −0.999435 0.0335965i \(-0.989304\pi\)
−0.528813 0.848738i \(-0.677363\pi\)
\(510\) 0 0
\(511\) 185.985 236.232i 0.363962 0.462294i
\(512\) 836.832 1.63444
\(513\) 43.6362 75.5802i 0.0850609 0.147330i
\(514\) 563.469 325.319i 1.09624 0.632916i
\(515\) 0 0
\(516\) −708.514 409.061i −1.37309 0.792754i
\(517\) 194.304i 0.375830i
\(518\) 939.027 + 739.292i 1.81279 + 1.42720i
\(519\) −241.818 −0.465931
\(520\) 0 0
\(521\) 414.606 239.373i 0.795789 0.459449i −0.0462075 0.998932i \(-0.514714\pi\)
0.841997 + 0.539483i \(0.181380\pi\)
\(522\) 162.439 + 281.353i 0.311186 + 0.538991i
\(523\) −543.848 313.991i −1.03986 0.600365i −0.120068 0.992766i \(-0.538311\pi\)
−0.919794 + 0.392401i \(0.871645\pi\)
\(524\) 407.679i 0.778013i
\(525\) 0 0
\(526\) 68.8490 0.130892
\(527\) −32.3633 + 56.0548i −0.0614104 + 0.106366i
\(528\) −64.3485 + 37.1516i −0.121872 + 0.0703629i
\(529\) 64.5000 + 111.717i 0.121928 + 0.211186i
\(530\) 0 0
\(531\) 208.318i 0.392313i
\(532\) 344.682 + 862.342i 0.647898 + 1.62094i
\(533\) −1315.36 −2.46785
\(534\) −64.6515 + 111.980i −0.121070 + 0.209700i
\(535\) 0 0
\(536\) 632.668 + 1095.81i 1.18035 + 2.04443i
\(537\) −112.818 65.1357i −0.210090 0.121296i
\(538\) 1332.72i 2.47717i
\(539\) −136.252 40.1694i −0.252787 0.0745259i
\(540\) 0 0
\(541\) −43.9801 + 76.1758i −0.0812941 + 0.140806i −0.903806 0.427942i \(-0.859239\pi\)
0.822512 + 0.568748i \(0.192572\pi\)
\(542\) −116.030 + 66.9897i −0.214077 + 0.123597i
\(543\) 36.8786 + 63.8756i 0.0679163 + 0.117635i
\(544\) 4.54592 + 2.62459i 0.00835648 + 0.00482461i
\(545\) 0 0
\(546\) 665.855 266.145i 1.21952 0.487445i
\(547\) −1047.41 −1.91483 −0.957415 0.288715i \(-0.906772\pi\)
−0.957415 + 0.288715i \(0.906772\pi\)
\(548\) 1079.77 1870.21i 1.97038 3.41279i
\(549\) −109.364 + 63.1412i −0.199205 + 0.115011i
\(550\) 0 0
\(551\) 456.637 + 263.639i 0.828742 + 0.478474i
\(552\) 465.904i 0.844029i
\(553\) −20.1918 + 139.893i −0.0365133 + 0.252971i
\(554\) 1818.61 3.28269
\(555\) 0 0
\(556\) 1543.65 891.227i 2.77635 1.60293i
\(557\) 350.414 + 606.935i 0.629110 + 1.08965i 0.987731 + 0.156167i \(0.0499138\pi\)
−0.358621 + 0.933483i \(0.616753\pi\)
\(558\) −304.182 175.619i −0.545128 0.314730i
\(559\) 1025.27i 1.83411i
\(560\) 0 0
\(561\) −9.57551 −0.0170686
\(562\) 555.454 962.075i 0.988352 1.71188i
\(563\) 408.804 236.023i 0.726116 0.419224i −0.0908833 0.995862i \(-0.528969\pi\)
0.817000 + 0.576638i \(0.195636\pi\)
\(564\) 458.499 + 794.144i 0.812942 + 1.40806i
\(565\) 0 0
\(566\) 1618.23i 2.85907i
\(567\) −49.5000 38.9711i −0.0873016 0.0687322i
\(568\) −309.201 −0.544368
\(569\) 91.0862 157.766i 0.160081 0.277269i −0.774816 0.632186i \(-0.782158\pi\)
0.934898 + 0.354917i \(0.115491\pi\)
\(570\) 0 0
\(571\) −321.212 556.355i −0.562542 0.974352i −0.997274 0.0737918i \(-0.976490\pi\)
0.434731 0.900560i \(-0.356843\pi\)
\(572\) 340.015 + 196.308i 0.594431 + 0.343195i
\(573\) 23.7768i 0.0414953i
\(574\) −1833.45 264.636i −3.19417 0.461039i
\(575\) 0 0
\(576\) −103.030 + 178.453i −0.178872 + 0.309815i
\(577\) −649.696 + 375.102i −1.12599 + 0.650090i −0.942923 0.333010i \(-0.891936\pi\)
−0.183066 + 0.983101i \(0.558602\pi\)
\(578\) 492.179 + 852.479i 0.851520 + 1.47488i
\(579\) 93.2724 + 53.8509i 0.161092 + 0.0930067i
\(580\) 0 0
\(581\) −2.22704 5.57172i −0.00383311 0.00958988i
\(582\) 432.439 0.743023
\(583\) 138.404 239.723i 0.237400 0.411189i
\(584\) −500.280 + 288.837i −0.856644 + 0.494583i
\(585\) 0 0
\(586\) 575.227 + 332.107i 0.981616 + 0.566736i
\(587\) 975.092i 1.66114i −0.556911 0.830572i \(-0.688014\pi\)
0.556911 0.830572i \(-0.311986\pi\)
\(588\) 651.666 157.336i 1.10828 0.267579i
\(589\) −570.061 −0.967846
\(590\) 0 0
\(591\) 24.5755 14.1887i 0.0415829 0.0240079i
\(592\) −366.212 634.297i −0.618601 1.07145i
\(593\) 175.243 + 101.177i 0.295519 + 0.170618i 0.640428 0.768018i \(-0.278757\pi\)
−0.344909 + 0.938636i \(0.612090\pi\)
\(594\) 51.9615i 0.0874773i
\(595\) 0 0
\(596\) −1584.98 −2.65936
\(597\) −240.257 + 416.138i −0.402441 + 0.697048i
\(598\) 1024.39 591.433i 1.71303 0.989019i
\(599\) 392.176 + 679.269i 0.654718 + 1.13400i 0.981964 + 0.189066i \(0.0605459\pi\)
−0.327247 + 0.944939i \(0.606121\pi\)
\(600\) 0 0
\(601\) 252.476i 0.420094i 0.977691 + 0.210047i \(0.0673617\pi\)
−0.977691 + 0.210047i \(0.932638\pi\)
\(602\) −206.272 + 1429.10i −0.342645 + 2.37392i
\(603\) −282.242 −0.468063
\(604\) −925.656 + 1603.28i −1.53254 + 2.65444i
\(605\) 0 0
\(606\) 67.7878 + 117.412i 0.111861 + 0.193749i
\(607\) −182.954 105.629i −0.301407 0.174017i 0.341668 0.939821i \(-0.389008\pi\)
−0.643075 + 0.765803i \(0.722342\pi\)
\(608\) 46.2307i 0.0760374i
\(609\) 235.454 299.067i 0.386624 0.491079i
\(610\) 0 0
\(611\) 574.590 995.220i 0.940410 1.62884i
\(612\) 39.1362 22.5953i 0.0639481 0.0369204i
\(613\) 329.565 + 570.824i 0.537627 + 0.931197i 0.999031 + 0.0440072i \(0.0140124\pi\)
−0.461404 + 0.887190i \(0.652654\pi\)
\(614\) −106.515 61.4966i −0.173478 0.100157i
\(615\) 0 0
\(616\) 214.444 + 168.831i 0.348123 + 0.274076i
\(617\) −155.757 −0.252443 −0.126221 0.992002i \(-0.540285\pi\)
−0.126221 + 0.992002i \(0.540285\pi\)
\(618\) −262.841 + 455.253i −0.425308 + 0.736656i
\(619\) 544.665 314.463i 0.879912 0.508017i 0.00928235 0.999957i \(-0.497045\pi\)
0.870629 + 0.491940i \(0.163712\pi\)
\(620\) 0 0
\(621\) −90.0000 51.9615i −0.144928 0.0836740i
\(622\) 701.270i 1.12744i
\(623\) 149.939 + 21.6418i 0.240672 + 0.0347380i
\(624\) −439.454 −0.704253
\(625\) 0 0
\(626\) −177.909 + 102.716i −0.284200 + 0.164083i
\(627\) −42.1668 73.0351i −0.0672517 0.116483i
\(628\) 285.560 + 164.868i 0.454714 + 0.262529i
\(629\) 94.3879i 0.150060i
\(630\) 0 0
\(631\) −126.333 −0.200210 −0.100105 0.994977i \(-0.531918\pi\)
−0.100105 + 0.994977i \(0.531918\pi\)
\(632\) 135.785 235.186i 0.214850 0.372130i
\(633\) −95.2730 + 55.0059i −0.150510 + 0.0868971i
\(634\) 730.873 + 1265.91i 1.15280 + 1.99670i
\(635\) 0 0
\(636\) 1306.37i 2.05404i
\(637\) −579.090 608.667i −0.909090 0.955520i
\(638\) 313.939 0.492067
\(639\) 34.4847 59.7292i 0.0539667 0.0934730i
\(640\) 0 0
\(641\) −62.6561 108.524i −0.0977475 0.169304i 0.813004 0.582257i \(-0.197830\pi\)
−0.910752 + 0.412954i \(0.864497\pi\)
\(642\) 934.968 + 539.804i 1.45634 + 0.840817i
\(643\) 895.765i 1.39310i 0.717507 + 0.696552i \(0.245283\pi\)
−0.717507 + 0.696552i \(0.754717\pi\)
\(644\) 1026.87 410.443i 1.59451 0.637334i
\(645\) 0 0
\(646\) 55.2429 95.6834i 0.0855153 0.148117i
\(647\) 828.620 478.404i 1.28071 0.739419i 0.303732 0.952757i \(-0.401767\pi\)
0.976978 + 0.213339i \(0.0684338\pi\)
\(648\) 60.5227 + 104.828i 0.0933992 + 0.161772i
\(649\) −174.334 100.652i −0.268619 0.155087i
\(650\) 0 0
\(651\) −58.7878 + 407.294i −0.0903038 + 0.625643i
\(652\) 337.020 0.516902
\(653\) −605.257 + 1048.34i −0.926886 + 1.60541i −0.138387 + 0.990378i \(0.544192\pi\)
−0.788499 + 0.615036i \(0.789142\pi\)
\(654\) −177.492 + 102.475i −0.271395 + 0.156690i
\(655\) 0 0
\(656\) 983.166 + 567.631i 1.49873 + 0.865291i
\(657\) 128.854i 0.196125i
\(658\) 1001.14 1271.61i 1.52148 1.93254i
\(659\) −741.485 −1.12517 −0.562583 0.826741i \(-0.690192\pi\)
−0.562583 + 0.826741i \(0.690192\pi\)
\(660\) 0 0
\(661\) 318.424 183.842i 0.481731 0.278127i −0.239407 0.970919i \(-0.576953\pi\)
0.721137 + 0.692792i \(0.243620\pi\)
\(662\) −692.511 1199.47i −1.04609 1.81188i
\(663\) −49.0454 28.3164i −0.0739750 0.0427095i
\(664\) 11.5287i 0.0173626i
\(665\) 0 0
\(666\) 512.196 0.769064
\(667\) 313.939 543.758i 0.470673 0.815229i
\(668\) 1105.26 638.120i 1.65458 0.955270i
\(669\) 260.045 + 450.411i 0.388707 + 0.673260i
\(670\) 0 0
\(671\) 122.030i 0.181863i
\(672\) 33.0306 + 4.76756i 0.0491527 + 0.00709458i
\(673\) −200.514 −0.297941 −0.148970 0.988842i \(-0.547596\pi\)
−0.148970 + 0.988842i \(0.547596\pi\)
\(674\) −768.085 + 1330.36i −1.13959 + 1.97383i
\(675\) 0 0
\(676\) 493.565 + 854.880i 0.730126 + 1.26462i
\(677\) −940.393 542.936i −1.38906 0.801974i −0.395850 0.918315i \(-0.629550\pi\)
−0.993209 + 0.116342i \(0.962883\pi\)
\(678\) 50.0899i 0.0738788i
\(679\) −188.045 470.460i −0.276944 0.692872i
\(680\) 0 0
\(681\) −58.8184 + 101.876i −0.0863706 + 0.149598i
\(682\) −293.939 + 169.706i −0.430995 + 0.248835i
\(683\) −19.8230 34.3344i −0.0290234 0.0502699i 0.851149 0.524924i \(-0.175906\pi\)
−0.880172 + 0.474654i \(0.842573\pi\)
\(684\) 344.682 + 199.002i 0.503921 + 0.290939i
\(685\) 0 0
\(686\) −684.724 964.913i −0.998140 1.40658i
\(687\) −606.787 −0.883241
\(688\) 442.444 766.335i 0.643087 1.11386i
\(689\) 1417.80 818.568i 2.05777 1.18805i
\(690\) 0 0
\(691\) −38.3648 22.1499i −0.0555207 0.0320549i 0.471983 0.881608i \(-0.343538\pi\)
−0.527503 + 0.849553i \(0.676872\pi\)
\(692\) 1102.81i 1.59365i
\(693\) −56.5301 + 22.5953i −0.0815730 + 0.0326051i
\(694\) 1110.91 1.60073
\(695\) 0 0
\(696\) −633.347 + 365.663i −0.909982 + 0.525378i
\(697\) 73.1510 + 126.701i 0.104951 + 0.181781i
\(698\) −134.636 77.7320i −0.192888 0.111364i
\(699\) 161.185i 0.230594i
\(700\) 0 0
\(701\) 409.848 0.584662 0.292331 0.956317i \(-0.405569\pi\)
0.292331 + 0.956317i \(0.405569\pi\)
\(702\) 153.659 266.145i 0.218887 0.379124i
\(703\) 719.923 415.648i 1.02407 0.591249i
\(704\) 99.5607 + 172.444i 0.141421 + 0.244949i
\(705\) 0 0
\(706\) 2246.90i 3.18258i
\(707\) 98.2577 124.804i 0.138978 0.176526i
\(708\) 950.030 1.34185
\(709\) 228.364 395.538i 0.322093 0.557881i −0.658827 0.752295i \(-0.728947\pi\)
0.980920 + 0.194414i \(0.0622804\pi\)
\(710\) 0 0
\(711\) 30.2878 + 52.4599i 0.0425988 + 0.0737833i
\(712\) −252.075 145.536i −0.354038 0.204404i
\(713\) 678.823i 0.952065i
\(714\) −62.6663 49.3369i −0.0877680 0.0690993i
\(715\) 0 0
\(716\) 297.050 514.506i 0.414874 0.718583i
\(717\) 168.545 97.3094i 0.235070 0.135717i
\(718\) −12.0046 20.7926i −0.0167195 0.0289590i
\(719\) −58.0148 33.4949i −0.0806882 0.0465853i 0.459113 0.888378i \(-0.348167\pi\)
−0.539801 + 0.841793i \(0.681501\pi\)
\(720\) 0 0
\(721\) 609.576 + 87.9846i 0.845458 + 0.122031i
\(722\) −272.193 −0.376998
\(723\) 342.560 593.332i 0.473804 0.820652i
\(724\) −291.303 + 168.184i −0.402352 + 0.232298i
\(725\) 0 0
\(726\) 582.598 + 336.363i 0.802476 + 0.463310i
\(727\) 433.766i 0.596651i −0.954464 0.298326i \(-0.903572\pi\)
0.954464 0.298326i \(-0.0964282\pi\)
\(728\) 599.113 + 1498.89i 0.822957 + 2.05892i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 98.7582 57.0181i 0.135100 0.0780001i
\(732\) −287.954 498.751i −0.393380 0.681354i
\(733\) −256.939 148.344i −0.350531 0.202379i 0.314388 0.949295i \(-0.398201\pi\)
−0.664919 + 0.746915i \(0.731534\pi\)
\(734\) 1756.44i 2.39297i
\(735\) 0 0
\(736\) 55.0510 0.0747976
\(737\) −136.369 + 236.198i −0.185032 + 0.320486i
\(738\) −687.545 + 396.954i −0.931633 + 0.537878i
\(739\) −569.080 985.676i −0.770068 1.33380i −0.937525 0.347917i \(-0.886889\pi\)
0.167457 0.985879i \(-0.446444\pi\)
\(740\) 0 0
\(741\) 498.778i 0.673114i
\(742\) 2140.93 855.737i 2.88535 1.15328i
\(743\) −331.637 −0.446348 −0.223174 0.974779i \(-0.571642\pi\)
−0.223174 + 0.974779i \(0.571642\pi\)
\(744\) 395.333 684.736i 0.531361 0.920344i
\(745\) 0 0
\(746\) −307.386 532.409i −0.412046 0.713685i
\(747\) −2.22704 1.28578i −0.00298131 0.00172126i
\(748\) 43.6689i 0.0583809i
\(749\) 180.697 1251.91i 0.241251 1.67144i
\(750\) 0 0
\(751\) 481.923 834.716i 0.641709 1.11147i −0.343342 0.939210i \(-0.611559\pi\)
0.985051 0.172262i \(-0.0551076\pi\)
\(752\) −858.954 + 495.917i −1.14223 + 0.659464i
\(753\) 98.2270 + 170.134i 0.130448 + 0.225942i
\(754\) 1607.98 + 928.370i 2.13260 + 1.23126i
\(755\) 0 0
\(756\) 177.727 225.744i 0.235089 0.298603i
\(757\) 400.242 0.528721 0.264361 0.964424i \(-0.414839\pi\)
0.264361 + 0.964424i \(0.414839\pi\)
\(758\) −372.371 + 644.965i −0.491254 + 0.850877i
\(759\) −86.9694 + 50.2118i −0.114584 + 0.0661552i
\(760\) 0 0
\(761\) 224.925 + 129.861i 0.295565 + 0.170645i 0.640449 0.768001i \(-0.278748\pi\)
−0.344884 + 0.938645i \(0.612082\pi\)
\(762\) 960.718i 1.26079i
\(763\) 188.667 + 148.537i 0.247270 + 0.194674i
\(764\) −108.434 −0.141929
\(765\) 0 0
\(766\) −505.924 + 292.095i −0.660475 + 0.381326i
\(767\) −595.287 1031.07i −0.776124 1.34429i
\(768\) −756.863 436.975i −0.985499 0.568978i
\(769\) 119.179i 0.154980i 0.996993 + 0.0774898i \(0.0246905\pi\)
−0.996993 + 0.0774898i \(0.975309\pi\)
\(770\) 0 0
\(771\) −326.697 −0.423731
\(772\) −245.586 + 425.367i −0.318116 + 0.550993i
\(773\) 362.241 209.140i 0.468617 0.270556i −0.247044 0.969004i \(-0.579459\pi\)
0.715661 + 0.698448i \(0.246126\pi\)
\(774\) 309.409 + 535.912i 0.399753 + 0.692392i
\(775\) 0 0
\(776\) 973.454i 1.25445i
\(777\) −222.727 557.230i −0.286650 0.717156i
\(778\) −182.615 −0.234724
\(779\) −644.258 + 1115.89i −0.827032 + 1.43246i
\(780\) 0 0
\(781\) −33.3235 57.7179i −0.0426677 0.0739026i
\(782\) −113.939 65.7826i −0.145702 0.0841209i
\(783\) 163.127i 0.208336i
\(784\) 170.177 + 704.847i 0.217062 + 0.899040i
\(785\) 0 0
\(786\) −154.182 + 267.050i −0.196160 + 0.339759i
\(787\) −138.243 + 79.8149i −0.175659 + 0.101417i −0.585251 0.810852i \(-0.699004\pi\)
0.409593 + 0.912269i \(0.365671\pi\)
\(788\) 64.7071 + 112.076i 0.0821157 + 0.142229i
\(789\) −29.9388 17.2852i −0.0379452 0.0219077i
\(790\) 0 0
\(791\) 54.4939 21.7814i 0.0688924 0.0275366i
\(792\) 116.969 0.147689
\(793\) −360.863 + 625.034i −0.455061 + 0.788189i
\(794\) −1185.79 + 684.614i −1.49343 + 0.862235i
\(795\) 0 0
\(796\) −1897.79 1095.69i −2.38415 1.37649i
\(797\) 610.067i 0.765454i −0.923861 0.382727i \(-0.874985\pi\)
0.923861 0.382727i \(-0.125015\pi\)
\(798\) 100.348 695.235i 0.125750 0.871221i
\(799\) −127.818 −0.159973
\(800\) 0 0
\(801\) 56.2270 32.4627i 0.0701961 0.0405277i
\(802\) 715.419 + 1239.14i 0.892043 + 1.54506i
\(803\) −107.833 62.2575i −0.134288 0.0775311i
\(804\) 1287.16i 1.60094i
\(805\) 0 0
\(806\) −2007.39 −2.49056
\(807\) 334.590 579.527i 0.414610 0.718126i
\(808\) −264.303 + 152.595i −0.327108 + 0.188856i
\(809\) −35.2531 61.0601i −0.0435761 0.0754760i 0.843415 0.537263i \(-0.180542\pi\)
−0.886991 + 0.461787i \(0.847208\pi\)
\(810\) 0 0
\(811\) 656.361i 0.809323i 0.914467 + 0.404661i \(0.132611\pi\)
−0.914467 + 0.404661i \(0.867389\pi\)
\(812\) 1363.89 + 1073.78i 1.67966 + 1.32239i
\(813\) 67.2735 0.0827472
\(814\) 247.474 428.638i 0.304023 0.526583i
\(815\) 0 0
\(816\) 24.4393 + 42.3301i 0.0299501 + 0.0518751i
\(817\) 869.786 + 502.171i 1.06461 + 0.614652i
\(818\) 1755.17i 2.14568i
\(819\) −356.363 51.4366i −0.435120 0.0628042i
\(820\) 0 0
\(821\) 466.984 808.840i 0.568799 0.985189i −0.427886 0.903833i \(-0.640741\pi\)
0.996685 0.0813564i \(-0.0259252\pi\)
\(822\) −1414.60 + 816.722i −1.72093 + 0.993579i
\(823\) −92.0153 159.375i −0.111805 0.193652i 0.804693 0.593691i \(-0.202330\pi\)
−0.916498 + 0.400039i \(0.868996\pi\)
\(824\) −1024.81 591.674i −1.24370 0.718051i
\(825\) 0 0
\(826\) −622.318 1556.95i −0.753411 1.88492i
\(827\) −819.778 −0.991267 −0.495633 0.868532i \(-0.665064\pi\)
−0.495633 + 0.868532i \(0.665064\pi\)
\(828\) 236.969 410.443i 0.286195 0.495704i
\(829\) 289.364 167.064i 0.349052 0.201525i −0.315216 0.949020i \(-0.602077\pi\)
0.664267 + 0.747495i \(0.268744\pi\)
\(830\) 0 0
\(831\) −790.817 456.578i −0.951645 0.549432i
\(832\) 1177.67i 1.41547i
\(833\) −26.4245 + 89.6301i −0.0317221 + 0.107599i
\(834\) −1348.23 −1.61658
\(835\) 0 0
\(836\) 333.075 192.301i 0.398415 0.230025i
\(837\) 88.1816 + 152.735i 0.105354 + 0.182479i
\(838\) −701.864 405.221i −0.837546 0.483558i
\(839\) 1185.81i 1.41336i 0.707534 + 0.706679i \(0.249808\pi\)
−0.707534 + 0.706679i \(0.750192\pi\)
\(840\) 0 0
\(841\) 144.576 0.171909
\(842\) −927.774 + 1606.95i −1.10187 + 1.90849i
\(843\) −483.075 + 278.903i −0.573043 + 0.330846i
\(844\) −250.853 434.490i −0.297219 0.514799i
\(845\) 0 0
\(846\) 693.607i 0.819866i
\(847\) 112.596 780.087i 0.132935 0.921000i
\(848\) −1412.98 −1.66625
\(849\) −406.272 + 703.684i −0.478530 + 0.828838i
\(850\) 0 0
\(851\) −494.949 857.277i −0.581609 1.00738i
\(852\) 272.394 + 157.267i 0.319711 + 0.184585i
\(853\) 1094.34i 1.28293i 0.767151 + 0.641466i \(0.221674\pi\)
−0.767151 + 0.641466i \(0.778326\pi\)
\(854\) −628.749 + 798.618i −0.736240 + 0.935150i
\(855\) 0 0
\(856\) −1215.14 + 2104.69i −1.41956 + 2.45874i
\(857\) 716.939 413.925i 0.836568 0.482993i −0.0195282 0.999809i \(-0.506216\pi\)
0.856096 + 0.516817i \(0.172883\pi\)
\(858\) −148.485 257.183i −0.173059 0.299747i
\(859\) −344.969 199.168i −0.401594 0.231860i 0.285577 0.958356i \(-0.407815\pi\)
−0.687172 + 0.726495i \(0.741148\pi\)
\(860\) 0 0
\(861\) 730.832 + 575.381i 0.848818 + 0.668271i
\(862\) −114.981 −0.133388
\(863\) 284.934 493.520i 0.330167 0.571866i −0.652377 0.757894i \(-0.726228\pi\)
0.982544 + 0.186028i \(0.0595616\pi\)
\(864\) 12.3865 7.15134i 0.0143362 0.00827701i
\(865\) 0 0
\(866\) 1324.60 + 764.761i 1.52957 + 0.883095i
\(867\) 494.264i 0.570085i
\(868\) −1857.45 268.100i −2.13992 0.308871i
\(869\) 58.5357 0.0673599
\(870\) 0 0
\(871\) −1396.95 + 806.531i −1.60385 + 0.925983i
\(872\) −230.679 399.548i −0.264541 0.458198i
\(873\) −188.045 108.568i −0.215401 0.124362i
\(874\) 1158.72i 1.32577i
\(875\) 0 0
\(876\) 587.636 0.670817
\(877\) −239.182 + 414.276i −0.272728 + 0.472378i −0.969559 0.244857i \(-0.921259\pi\)
0.696832 + 0.717235i \(0.254592\pi\)
\(878\) −1107.23 + 639.262i −1.26109 + 0.728088i
\(879\) −166.757 288.832i −0.189712 0.328591i
\(880\) 0 0
\(881\) 371.532i 0.421716i −0.977517 0.210858i \(-0.932374\pi\)
0.977517 0.210858i \(-0.0676258\pi\)
\(882\) −486.378 143.393i −0.551449 0.162577i
\(883\) −626.748 −0.709794 −0.354897 0.934905i \(-0.615484\pi\)
−0.354897 + 0.934905i \(0.615484\pi\)
\(884\) 129.136 223.670i 0.146082 0.253021i
\(885\) 0 0
\(886\) −1356.28 2349.14i −1.53079 2.65140i
\(887\) 577.849 + 333.621i 0.651464 + 0.376123i 0.789017 0.614371i \(-0.210590\pi\)
−0.137553 + 0.990494i \(0.543924\pi\)
\(888\) 1152.99i 1.29842i
\(889\) 1045.19 417.765i 1.17569 0.469927i
\(890\) 0 0
\(891\) −13.0454 + 22.5953i −0.0146413 + 0.0253595i
\(892\) −2054.09 + 1185.93i −2.30279 + 1.32952i
\(893\) −562.863 974.907i −0.630305 1.09172i
\(894\) 1038.24 + 599.429i 1.16134 + 0.670502i
\(895\) 0 0
\(896\) −225.924 + 1565.25i −0.252147 + 1.74693i
\(897\) −593.939 −0.662139
\(898\) 160.994 278.850i 0.179281 0.310524i
\(899\) −922.788 + 532.772i −1.02646 + 0.592627i
\(900\) 0 0
\(901\) −157.696 91.0458i −0.175023 0.101050i
\(902\) 767.175i 0.850526i
\(903\) 448.485 569.652i 0.496661 0.630844i
\(904\) −112.756 −0.124730
\(905\) 0 0
\(906\) 1212.70 700.155i 1.33852 0.772798i
\(907\) 274.938 + 476.207i 0.303129 + 0.525035i 0.976843 0.213957i \(-0.0686353\pi\)
−0.673714 + 0.738992i \(0.735302\pi\)
\(908\) −464.605 268.240i −0.511680 0.295418i
\(909\) 68.0749i 0.0748899i
\(910\) 0 0
\(911\) 443.573 0.486908 0.243454 0.969912i \(-0.421719\pi\)
0.243454 + 0.969912i \(0.421719\pi\)
\(912\) −215.242 + 372.811i −0.236011 + 0.408784i
\(913\) −2.15205 + 1.24248i −0.00235712 + 0.00136088i
\(914\) −911.309 1578.43i −0.997056 1.72695i
\(915\) 0 0
\(916\) 2767.24i 3.02100i
\(917\) 357.576 + 51.6116i 0.389941 + 0.0562831i
\(918\) −34.1816 −0.0372349
\(919\) 435.838 754.893i 0.474252 0.821429i −0.525313 0.850909i \(-0.676052\pi\)
0.999565 + 0.0294801i \(0.00938516\pi\)
\(920\) 0 0
\(921\) 30.8786 + 53.4833i 0.0335272 + 0.0580708i
\(922\) 2182.27 + 1259.93i 2.36689 + 1.36652i
\(923\) 394.172i 0.427056i
\(924\) −103.045 257.804i −0.111521 0.279009i
\(925\) 0 0
\(926\) −375.836 + 650.967i −0.405870 + 0.702988i
\(927\) 228.591 131.977i 0.246592 0.142370i
\(928\) 43.2066 + 74.8361i 0.0465589 + 0.0806423i
\(929\) −1091.01 629.896i −1.17439 0.678037i −0.219684 0.975571i \(-0.570502\pi\)
−0.954711 + 0.297534i \(0.903836\pi\)
\(930\) 0 0
\(931\) −799.997 + 193.149i −0.859288 + 0.207464i
\(932\) −735.081 −0.788713
\(933\) 176.060 304.945i 0.188703 0.326844i
\(934\) 598.015 345.264i 0.640273 0.369662i
\(935\) 0 0
\(936\) 599.113 + 345.898i 0.640078 + 0.369549i
\(937\) 267.856i 0.285866i 0.989732 + 0.142933i \(0.0456533\pi\)
−0.989732 + 0.142933i \(0.954347\pi\)
\(938\) −2109.45 + 843.154i −2.24888 + 0.898885i
\(939\) 103.151 0.109852
\(940\) 0 0
\(941\) −257.908 + 148.903i −0.274079 + 0.158239i −0.630740 0.775994i \(-0.717248\pi\)
0.356661 + 0.934234i \(0.383915\pi\)
\(942\) −124.704 215.994i −0.132383 0.229293i
\(943\) 1328.79 + 767.175i 1.40910 + 0.813547i
\(944\) 1027.56i 1.08852i
\(945\) 0 0
\(946\) 597.980 0.632114
\(947\) −880.181 + 1524.52i −0.929441 + 1.60984i −0.145182 + 0.989405i \(0.546377\pi\)
−0.784259 + 0.620434i \(0.786956\pi\)
\(948\) −239.242 + 138.127i −0.252365 + 0.145703i
\(949\) −368.212 637.761i −0.388000 0.672035i
\(950\) 0 0
\(951\) 733.969i 0.771786i
\(952\) 111.061 141.067i 0.116661 0.148179i
\(953\) −380.032 −0.398774 −0.199387 0.979921i \(-0.563895\pi\)
−0.199387 + 0.979921i \(0.563895\pi\)
\(954\) 494.060 855.737i 0.517883 0.896999i
\(955\) 0 0
\(956\) 443.778 + 768.645i 0.464202 + 0.804022i
\(957\) −136.515 78.8171i −0.142649 0.0823586i
\(958\) 907.611i 0.947401i
\(959\) 1503.67 + 1183.83i 1.56795 + 1.23444i
\(960\) 0 0
\(961\) 95.5000 165.411i 0.0993757 0.172124i
\(962\) 2535.11 1463.65i 2.63525 1.52146i
\(963\) −271.045 469.464i −0.281459 0.487502i
\(964\) 2705.88 + 1562.24i 2.80693 + 1.62058i
\(965\) 0 0
\(966\) −827.878 119.494i −0.857016 0.123700i
\(967\) 597.302 0.617686 0.308843 0.951113i \(-0.400058\pi\)
0.308843 + 0.951113i \(0.400058\pi\)
\(968\) −757.179 + 1311.47i −0.782210 + 1.35483i
\(969\) −48.0444 + 27.7384i −0.0495814 + 0.0286258i
\(970\) 0 0
\(971\) 1209.38 + 698.235i 1.24550 + 0.719088i 0.970208 0.242273i \(-0.0778930\pi\)
0.275289 + 0.961361i \(0.411226\pi\)
\(972\) 123.133i 0.126680i
\(973\) 586.272 + 1466.77i 0.602541 + 1.50747i
\(974\) 1036.80 1.06447
\(975\) 0 0
\(976\) 539.454 311.454i 0.552719 0.319112i
\(977\) 885.560 + 1533.83i 0.906407 + 1.56994i 0.819017 + 0.573769i \(0.194519\pi\)
0.0873898 + 0.996174i \(0.472147\pi\)
\(978\) −220.766 127.459i −0.225732 0.130326i
\(979\) 62.7391i 0.0640849i
\(980\) 0 0
\(981\) 102.909 0.104902
\(982\) 462.337 800.792i 0.470812 0.815470i
\(983\) −974.408 + 562.575i −0.991259 + 0.572304i −0.905650 0.424025i \(-0.860617\pi\)
−0.0856086 + 0.996329i \(0.527283\pi\)
\(984\) −893.574 1547.72i −0.908104 1.57288i
\(985\) 0 0
\(986\) 206.517i 0.209449i
\(987\) −754.590 + 301.613i −0.764529 + 0.305585i
\(988\) 2274.66 2.30229
\(989\) 597.980 1035.73i 0.604631 1.04725i
\(990\) 0 0
\(991\) 248.292 + 430.054i 0.250547 + 0.433960i 0.963676 0.267072i \(-0.0860563\pi\)
−0.713130 + 0.701032i \(0.752723\pi\)
\(992\) −80.9082 46.7123i −0.0815606 0.0470891i
\(993\) 695.445i 0.700347i
\(994\) 79.3031 549.428i 0.0797818 0.552744i
\(995\) 0 0
\(996\) 5.86378 10.1564i 0.00588733 0.0101971i
\(997\) 430.272 248.418i 0.431567 0.249165i −0.268447 0.963294i \(-0.586510\pi\)
0.700014 + 0.714129i \(0.253177\pi\)
\(998\) 253.275 + 438.686i 0.253783 + 0.439565i
\(999\) −222.727 128.592i −0.222950 0.128720i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.3.o.k.376.2 yes 4
5.2 odd 4 525.3.s.g.124.4 8
5.3 odd 4 525.3.s.g.124.1 8
5.4 even 2 525.3.o.j.376.1 4
7.3 odd 6 inner 525.3.o.k.451.2 yes 4
35.3 even 12 525.3.s.g.199.4 8
35.17 even 12 525.3.s.g.199.1 8
35.24 odd 6 525.3.o.j.451.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.3.o.j.376.1 4 5.4 even 2
525.3.o.j.451.1 yes 4 35.24 odd 6
525.3.o.k.376.2 yes 4 1.1 even 1 trivial
525.3.o.k.451.2 yes 4 7.3 odd 6 inner
525.3.s.g.124.1 8 5.3 odd 4
525.3.s.g.124.4 8 5.2 odd 4
525.3.s.g.199.1 8 35.17 even 12
525.3.s.g.199.4 8 35.3 even 12