L(s) = 1 | + 4·3-s − 2·5-s + 2·7-s + 6·9-s + 2·11-s + 2·13-s − 8·15-s + 16·19-s + 8·21-s − 6·23-s + 11·25-s − 4·27-s + 10·29-s + 10·31-s + 8·33-s − 4·35-s − 16·37-s + 8·39-s + 14·41-s − 10·43-s − 12·45-s + 2·47-s + 9·49-s − 16·53-s − 4·55-s + 64·57-s − 14·59-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 0.894·5-s + 0.755·7-s + 2·9-s + 0.603·11-s + 0.554·13-s − 2.06·15-s + 3.67·19-s + 1.74·21-s − 1.25·23-s + 11/5·25-s − 0.769·27-s + 1.85·29-s + 1.79·31-s + 1.39·33-s − 0.676·35-s − 2.63·37-s + 1.28·39-s + 2.18·41-s − 1.52·43-s − 1.78·45-s + 0.291·47-s + 9/7·49-s − 2.19·53-s − 0.539·55-s + 8.47·57-s − 1.82·59-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅38)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
447.505 |
Root analytic conductor: |
2.14461 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.526243371 |
L(21) |
≈ |
7.526243371 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1−2T+pT2)2 |
good | 5 | C22 | (1+T−4T2+pT3+p2T4)2 |
| 7 | D4×C2 | 1−2T−5T2+10T3+4T4+10pT5−5p2T6−2p3T7+p4T8 |
| 11 | D4×C2 | 1−2T−13T2+10T3+124T4+10pT5−13p2T6−2p3T7+p4T8 |
| 13 | D4×C2 | 1−2T+T2+46T3−212T4+46pT5+p2T6−2p3T7+p4T8 |
| 17 | C22 | (1+10T2+p2T4)2 |
| 19 | C2 | (1−4T+pT2)4 |
| 23 | D4×C2 | 1+6T−13T2+18T3+1044T4+18pT5−13p2T6+6p3T7+p4T8 |
| 29 | D4×C2 | 1−10T+41T2−10T3−260T4−10pT5+41p2T6−10p3T7+p4T8 |
| 31 | D4×C2 | 1−10T+19T2−190T3+2500T4−190pT5+19p2T6−10p3T7+p4T8 |
| 37 | D4 | (1+8T+66T2+8pT3+p2T4)2 |
| 41 | D4×C2 | 1−14T+89T2−350T3+1732T4−350pT5+89p2T6−14p3T7+p4T8 |
| 43 | C2×C22 | (1+10T+pT2)2(1−10T+57T2−10pT3+p2T4) |
| 47 | D4×C2 | 1−2T−37T2+106T3−716T4+106pT5−37p2T6−2p3T7+p4T8 |
| 53 | D4 | (1+8T+98T2+8pT3+p2T4)2 |
| 59 | D4×C2 | 1+14T+83T2−70T3−2276T4−70pT5+83p2T6+14p3T7+p4T8 |
| 61 | D4×C2 | 1+6T−71T2−90T3+5532T4−90pT5−71p2T6+6p3T7+p4T8 |
| 67 | D4×C2 | 1+10T−5T2−290T3−164T4−290pT5−5p2T6+10p3T7+p4T8 |
| 71 | D4 | (1−4T+50T2−4pT3+p2T4)2 |
| 73 | C22 | (1+122T2+p2T4)2 |
| 79 | D4×C2 | 1−22T+211T2−2530T3+30052T4−2530pT5+211p2T6−22p3T7+p4T8 |
| 83 | D4×C2 | 1−6T−133T2−18T3+18684T4−18pT5−133p2T6−6p3T7+p4T8 |
| 89 | D4 | (1+16T+218T2+16pT3+p2T4)2 |
| 97 | D4×C2 | 1+2T−167T2−46T3+19444T4−46pT5−167p2T6+2p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.919990534893391139527431022185, −7.57300857532943257530523585071, −7.41224954358226739939056998737, −7.22137311280688918980388961774, −6.84958210846295113531646742289, −6.80747250635659838157061923861, −6.23983221875339386927075768264, −6.09613362390045556365967160179, −5.86224862027021403070764277253, −5.51521547616245808768252320713, −5.14450479600244695432608722570, −4.85814454422634889427170534330, −4.70538099372624309367350085496, −4.36868652569293850968624610200, −4.29475107872026393678415096385, −3.50842229530506274032217200578, −3.41686170466394717851233553985, −3.39059690869868641099343918450, −3.18698482994409146676985043365, −2.79159711250996208435376553078, −2.48120016549726666044315873454, −2.08323582182060101802531385446, −1.46898640719925528769004951341, −1.30174529726152120009415348975, −0.77996947509189724206880637229,
0.77996947509189724206880637229, 1.30174529726152120009415348975, 1.46898640719925528769004951341, 2.08323582182060101802531385446, 2.48120016549726666044315873454, 2.79159711250996208435376553078, 3.18698482994409146676985043365, 3.39059690869868641099343918450, 3.41686170466394717851233553985, 3.50842229530506274032217200578, 4.29475107872026393678415096385, 4.36868652569293850968624610200, 4.70538099372624309367350085496, 4.85814454422634889427170534330, 5.14450479600244695432608722570, 5.51521547616245808768252320713, 5.86224862027021403070764277253, 6.09613362390045556365967160179, 6.23983221875339386927075768264, 6.80747250635659838157061923861, 6.84958210846295113531646742289, 7.22137311280688918980388961774, 7.41224954358226739939056998737, 7.57300857532943257530523585071, 7.919990534893391139527431022185