Properties

Label 576.2.i.m.193.1
Level $576$
Weight $2$
Character 576.193
Analytic conductor $4.599$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(193,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 193.1
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 576.193
Dual form 576.2.i.m.385.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.41421i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(1.72474 + 2.98735i) q^{7} +(-1.00000 - 2.82843i) q^{9} +(-0.724745 - 1.25529i) q^{11} +(2.94949 - 5.10867i) q^{13} +(0.724745 + 1.57313i) q^{15} +4.89898 q^{17} +4.00000 q^{19} +(5.94949 + 0.548188i) q^{21} +(-2.72474 + 4.71940i) q^{23} +(2.00000 + 3.46410i) q^{25} +(-5.00000 - 1.41421i) q^{27} +(0.0505103 + 0.0874863i) q^{29} +(1.27526 - 2.20881i) q^{31} +(-2.50000 - 0.230351i) q^{33} -3.44949 q^{35} +0.898979 q^{37} +(-4.27526 - 9.27987i) q^{39} +(5.94949 - 10.3048i) q^{41} +(1.17423 + 2.03383i) q^{43} +(2.94949 + 0.548188i) q^{45} +(-3.17423 - 5.49794i) q^{47} +(-2.44949 + 4.24264i) q^{49} +(4.89898 - 6.92820i) q^{51} -8.89898 q^{53} +1.44949 q^{55} +(4.00000 - 5.65685i) q^{57} +(-7.17423 + 12.4261i) q^{59} +(-3.94949 - 6.84072i) q^{61} +(6.72474 - 7.86566i) q^{63} +(2.94949 + 5.10867i) q^{65} +(-6.17423 + 10.6941i) q^{67} +(3.94949 + 8.57277i) q^{69} -7.79796 q^{71} -4.89898 q^{73} +(6.89898 + 0.635674i) q^{75} +(2.50000 - 4.33013i) q^{77} +(6.72474 + 11.6476i) q^{79} +(-7.00000 + 5.65685i) q^{81} +(0.275255 + 0.476756i) q^{83} +(-2.44949 + 4.24264i) q^{85} +(0.174235 + 0.0160540i) q^{87} -12.8990 q^{89} +20.3485 q^{91} +(-1.84847 - 4.01229i) q^{93} +(-2.00000 + 3.46410i) q^{95} +(1.94949 + 3.37662i) q^{97} +(-2.82577 + 3.30518i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} + 2 q^{7} - 4 q^{9} + 2 q^{11} + 2 q^{13} - 2 q^{15} + 16 q^{19} + 14 q^{21} - 6 q^{23} + 8 q^{25} - 20 q^{27} + 10 q^{29} + 10 q^{31} - 10 q^{33} - 4 q^{35} - 16 q^{37} - 22 q^{39}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 1.41421i 0.577350 0.816497i
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) 1.72474 + 2.98735i 0.651892 + 1.12911i 0.982663 + 0.185399i \(0.0593579\pi\)
−0.330771 + 0.943711i \(0.607309\pi\)
\(8\) 0 0
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 0 0
\(11\) −0.724745 1.25529i −0.218519 0.378486i 0.735837 0.677159i \(-0.236789\pi\)
−0.954355 + 0.298674i \(0.903456\pi\)
\(12\) 0 0
\(13\) 2.94949 5.10867i 0.818041 1.41689i −0.0890821 0.996024i \(-0.528393\pi\)
0.907123 0.420865i \(-0.138273\pi\)
\(14\) 0 0
\(15\) 0.724745 + 1.57313i 0.187128 + 0.406181i
\(16\) 0 0
\(17\) 4.89898 1.18818 0.594089 0.804400i \(-0.297513\pi\)
0.594089 + 0.804400i \(0.297513\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 5.94949 + 0.548188i 1.29829 + 0.119624i
\(22\) 0 0
\(23\) −2.72474 + 4.71940i −0.568149 + 0.984062i 0.428601 + 0.903494i \(0.359007\pi\)
−0.996749 + 0.0805681i \(0.974327\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) −5.00000 1.41421i −0.962250 0.272166i
\(28\) 0 0
\(29\) 0.0505103 + 0.0874863i 0.00937952 + 0.0162458i 0.870677 0.491855i \(-0.163681\pi\)
−0.861298 + 0.508101i \(0.830348\pi\)
\(30\) 0 0
\(31\) 1.27526 2.20881i 0.229043 0.396713i −0.728482 0.685065i \(-0.759774\pi\)
0.957525 + 0.288352i \(0.0931072\pi\)
\(32\) 0 0
\(33\) −2.50000 0.230351i −0.435194 0.0400989i
\(34\) 0 0
\(35\) −3.44949 −0.583070
\(36\) 0 0
\(37\) 0.898979 0.147791 0.0738957 0.997266i \(-0.476457\pi\)
0.0738957 + 0.997266i \(0.476457\pi\)
\(38\) 0 0
\(39\) −4.27526 9.27987i −0.684589 1.48597i
\(40\) 0 0
\(41\) 5.94949 10.3048i 0.929154 1.60934i 0.144414 0.989517i \(-0.453870\pi\)
0.784740 0.619825i \(-0.212796\pi\)
\(42\) 0 0
\(43\) 1.17423 + 2.03383i 0.179069 + 0.310157i 0.941562 0.336840i \(-0.109358\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 2.94949 + 0.548188i 0.439684 + 0.0817191i
\(46\) 0 0
\(47\) −3.17423 5.49794i −0.463010 0.801956i 0.536100 0.844155i \(-0.319897\pi\)
−0.999109 + 0.0421984i \(0.986564\pi\)
\(48\) 0 0
\(49\) −2.44949 + 4.24264i −0.349927 + 0.606092i
\(50\) 0 0
\(51\) 4.89898 6.92820i 0.685994 0.970143i
\(52\) 0 0
\(53\) −8.89898 −1.22237 −0.611184 0.791488i \(-0.709307\pi\)
−0.611184 + 0.791488i \(0.709307\pi\)
\(54\) 0 0
\(55\) 1.44949 0.195449
\(56\) 0 0
\(57\) 4.00000 5.65685i 0.529813 0.749269i
\(58\) 0 0
\(59\) −7.17423 + 12.4261i −0.934006 + 1.61775i −0.157609 + 0.987502i \(0.550378\pi\)
−0.776397 + 0.630244i \(0.782955\pi\)
\(60\) 0 0
\(61\) −3.94949 6.84072i −0.505680 0.875864i −0.999978 0.00657156i \(-0.997908\pi\)
0.494298 0.869292i \(-0.335425\pi\)
\(62\) 0 0
\(63\) 6.72474 7.86566i 0.847238 0.990980i
\(64\) 0 0
\(65\) 2.94949 + 5.10867i 0.365839 + 0.633652i
\(66\) 0 0
\(67\) −6.17423 + 10.6941i −0.754303 + 1.30649i 0.191417 + 0.981509i \(0.438692\pi\)
−0.945720 + 0.324982i \(0.894642\pi\)
\(68\) 0 0
\(69\) 3.94949 + 8.57277i 0.475463 + 1.03204i
\(70\) 0 0
\(71\) −7.79796 −0.925447 −0.462724 0.886503i \(-0.653128\pi\)
−0.462724 + 0.886503i \(0.653128\pi\)
\(72\) 0 0
\(73\) −4.89898 −0.573382 −0.286691 0.958023i \(-0.592555\pi\)
−0.286691 + 0.958023i \(0.592555\pi\)
\(74\) 0 0
\(75\) 6.89898 + 0.635674i 0.796626 + 0.0734014i
\(76\) 0 0
\(77\) 2.50000 4.33013i 0.284901 0.493464i
\(78\) 0 0
\(79\) 6.72474 + 11.6476i 0.756593 + 1.31046i 0.944579 + 0.328286i \(0.106471\pi\)
−0.187986 + 0.982172i \(0.560196\pi\)
\(80\) 0 0
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 0 0
\(83\) 0.275255 + 0.476756i 0.0302132 + 0.0523308i 0.880737 0.473606i \(-0.157048\pi\)
−0.850523 + 0.525937i \(0.823715\pi\)
\(84\) 0 0
\(85\) −2.44949 + 4.24264i −0.265684 + 0.460179i
\(86\) 0 0
\(87\) 0.174235 + 0.0160540i 0.0186799 + 0.00172117i
\(88\) 0 0
\(89\) −12.8990 −1.36729 −0.683645 0.729815i \(-0.739606\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(90\) 0 0
\(91\) 20.3485 2.13310
\(92\) 0 0
\(93\) −1.84847 4.01229i −0.191677 0.416055i
\(94\) 0 0
\(95\) −2.00000 + 3.46410i −0.205196 + 0.355409i
\(96\) 0 0
\(97\) 1.94949 + 3.37662i 0.197941 + 0.342843i 0.947861 0.318685i \(-0.103241\pi\)
−0.749920 + 0.661529i \(0.769908\pi\)
\(98\) 0 0
\(99\) −2.82577 + 3.30518i −0.284000 + 0.332183i
\(100\) 0 0
\(101\) 6.39898 + 11.0834i 0.636722 + 1.10284i 0.986147 + 0.165871i \(0.0530435\pi\)
−0.349425 + 0.936964i \(0.613623\pi\)
\(102\) 0 0
\(103\) 6.27526 10.8691i 0.618319 1.07096i −0.371473 0.928444i \(-0.621147\pi\)
0.989792 0.142517i \(-0.0455195\pi\)
\(104\) 0 0
\(105\) −3.44949 + 4.87832i −0.336636 + 0.476075i
\(106\) 0 0
\(107\) −5.79796 −0.560510 −0.280255 0.959926i \(-0.590419\pi\)
−0.280255 + 0.959926i \(0.590419\pi\)
\(108\) 0 0
\(109\) −0.898979 −0.0861066 −0.0430533 0.999073i \(-0.513709\pi\)
−0.0430533 + 0.999073i \(0.513709\pi\)
\(110\) 0 0
\(111\) 0.898979 1.27135i 0.0853274 0.120671i
\(112\) 0 0
\(113\) −4.39898 + 7.61926i −0.413821 + 0.716759i −0.995304 0.0967994i \(-0.969139\pi\)
0.581483 + 0.813559i \(0.302473\pi\)
\(114\) 0 0
\(115\) −2.72474 4.71940i −0.254084 0.440086i
\(116\) 0 0
\(117\) −17.3990 3.23375i −1.60854 0.298960i
\(118\) 0 0
\(119\) 8.44949 + 14.6349i 0.774563 + 1.34158i
\(120\) 0 0
\(121\) 4.44949 7.70674i 0.404499 0.700613i
\(122\) 0 0
\(123\) −8.62372 18.7187i −0.777575 1.68781i
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 4.05051 + 0.373215i 0.356628 + 0.0328598i
\(130\) 0 0
\(131\) 6.62372 11.4726i 0.578717 1.00237i −0.416909 0.908948i \(-0.636887\pi\)
0.995627 0.0934200i \(-0.0297799\pi\)
\(132\) 0 0
\(133\) 6.89898 + 11.9494i 0.598217 + 1.03614i
\(134\) 0 0
\(135\) 3.72474 3.62302i 0.320575 0.311820i
\(136\) 0 0
\(137\) 5.05051 + 8.74774i 0.431494 + 0.747370i 0.997002 0.0773729i \(-0.0246532\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(138\) 0 0
\(139\) 1.72474 2.98735i 0.146291 0.253383i −0.783563 0.621312i \(-0.786600\pi\)
0.929854 + 0.367929i \(0.119933\pi\)
\(140\) 0 0
\(141\) −10.9495 1.00889i −0.922113 0.0849639i
\(142\) 0 0
\(143\) −8.55051 −0.715030
\(144\) 0 0
\(145\) −0.101021 −0.00838930
\(146\) 0 0
\(147\) 3.55051 + 7.70674i 0.292841 + 0.635641i
\(148\) 0 0
\(149\) 2.05051 3.55159i 0.167984 0.290957i −0.769727 0.638374i \(-0.779608\pi\)
0.937711 + 0.347416i \(0.112941\pi\)
\(150\) 0 0
\(151\) 7.62372 + 13.2047i 0.620410 + 1.07458i 0.989409 + 0.145152i \(0.0463671\pi\)
−0.368999 + 0.929430i \(0.620300\pi\)
\(152\) 0 0
\(153\) −4.89898 13.8564i −0.396059 1.12022i
\(154\) 0 0
\(155\) 1.27526 + 2.20881i 0.102431 + 0.177416i
\(156\) 0 0
\(157\) −5.39898 + 9.35131i −0.430885 + 0.746316i −0.996950 0.0780455i \(-0.975132\pi\)
0.566064 + 0.824361i \(0.308465\pi\)
\(158\) 0 0
\(159\) −8.89898 + 12.5851i −0.705735 + 0.998060i
\(160\) 0 0
\(161\) −18.7980 −1.48149
\(162\) 0 0
\(163\) −5.79796 −0.454131 −0.227066 0.973879i \(-0.572913\pi\)
−0.227066 + 0.973879i \(0.572913\pi\)
\(164\) 0 0
\(165\) 1.44949 2.04989i 0.112843 0.159584i
\(166\) 0 0
\(167\) 2.27526 3.94086i 0.176065 0.304953i −0.764465 0.644666i \(-0.776997\pi\)
0.940529 + 0.339713i \(0.110330\pi\)
\(168\) 0 0
\(169\) −10.8990 18.8776i −0.838383 1.45212i
\(170\) 0 0
\(171\) −4.00000 11.3137i −0.305888 0.865181i
\(172\) 0 0
\(173\) 1.50000 + 2.59808i 0.114043 + 0.197528i 0.917397 0.397974i \(-0.130287\pi\)
−0.803354 + 0.595502i \(0.796953\pi\)
\(174\) 0 0
\(175\) −6.89898 + 11.9494i −0.521514 + 0.903288i
\(176\) 0 0
\(177\) 10.3990 + 22.5720i 0.781635 + 1.69662i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.6969 −0.795097 −0.397549 0.917581i \(-0.630139\pi\)
−0.397549 + 0.917581i \(0.630139\pi\)
\(182\) 0 0
\(183\) −13.6237 1.25529i −1.00709 0.0927941i
\(184\) 0 0
\(185\) −0.449490 + 0.778539i −0.0330471 + 0.0572393i
\(186\) 0 0
\(187\) −3.55051 6.14966i −0.259639 0.449708i
\(188\) 0 0
\(189\) −4.39898 17.3759i −0.319979 1.26391i
\(190\) 0 0
\(191\) −6.27526 10.8691i −0.454062 0.786458i 0.544572 0.838714i \(-0.316692\pi\)
−0.998634 + 0.0522563i \(0.983359\pi\)
\(192\) 0 0
\(193\) −2.05051 + 3.55159i −0.147599 + 0.255649i −0.930340 0.366699i \(-0.880488\pi\)
0.782741 + 0.622348i \(0.213821\pi\)
\(194\) 0 0
\(195\) 10.1742 + 0.937458i 0.728592 + 0.0671327i
\(196\) 0 0
\(197\) 17.5959 1.25366 0.626829 0.779157i \(-0.284353\pi\)
0.626829 + 0.779157i \(0.284353\pi\)
\(198\) 0 0
\(199\) 7.79796 0.552783 0.276391 0.961045i \(-0.410861\pi\)
0.276391 + 0.961045i \(0.410861\pi\)
\(200\) 0 0
\(201\) 8.94949 + 19.4258i 0.631248 + 1.37019i
\(202\) 0 0
\(203\) −0.174235 + 0.301783i −0.0122289 + 0.0211810i
\(204\) 0 0
\(205\) 5.94949 + 10.3048i 0.415530 + 0.719720i
\(206\) 0 0
\(207\) 16.0732 + 2.98735i 1.11717 + 0.207635i
\(208\) 0 0
\(209\) −2.89898 5.02118i −0.200527 0.347322i
\(210\) 0 0
\(211\) −5.27526 + 9.13701i −0.363164 + 0.629018i −0.988480 0.151354i \(-0.951637\pi\)
0.625316 + 0.780372i \(0.284970\pi\)
\(212\) 0 0
\(213\) −7.79796 + 11.0280i −0.534307 + 0.755625i
\(214\) 0 0
\(215\) −2.34847 −0.160164
\(216\) 0 0
\(217\) 8.79796 0.597244
\(218\) 0 0
\(219\) −4.89898 + 6.92820i −0.331042 + 0.468165i
\(220\) 0 0
\(221\) 14.4495 25.0273i 0.971978 1.68352i
\(222\) 0 0
\(223\) −8.07321 13.9832i −0.540622 0.936385i −0.998868 0.0475601i \(-0.984855\pi\)
0.458246 0.888825i \(-0.348478\pi\)
\(224\) 0 0
\(225\) 7.79796 9.12096i 0.519864 0.608064i
\(226\) 0 0
\(227\) −3.82577 6.62642i −0.253925 0.439811i 0.710678 0.703517i \(-0.248388\pi\)
−0.964603 + 0.263706i \(0.915055\pi\)
\(228\) 0 0
\(229\) −0.500000 + 0.866025i −0.0330409 + 0.0572286i −0.882073 0.471113i \(-0.843853\pi\)
0.849032 + 0.528341i \(0.177186\pi\)
\(230\) 0 0
\(231\) −3.62372 7.86566i −0.238424 0.517522i
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 6.34847 0.414128
\(236\) 0 0
\(237\) 23.1969 + 2.13737i 1.50680 + 0.138837i
\(238\) 0 0
\(239\) 7.07321 12.2512i 0.457528 0.792462i −0.541301 0.840829i \(-0.682068\pi\)
0.998830 + 0.0483665i \(0.0154016\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 0 0
\(243\) 1.00000 + 15.5563i 0.0641500 + 0.997940i
\(244\) 0 0
\(245\) −2.44949 4.24264i −0.156492 0.271052i
\(246\) 0 0
\(247\) 11.7980 20.4347i 0.750686 1.30023i
\(248\) 0 0
\(249\) 0.949490 + 0.0874863i 0.0601715 + 0.00554422i
\(250\) 0 0
\(251\) 21.7980 1.37587 0.687937 0.725770i \(-0.258516\pi\)
0.687937 + 0.725770i \(0.258516\pi\)
\(252\) 0 0
\(253\) 7.89898 0.496605
\(254\) 0 0
\(255\) 3.55051 + 7.70674i 0.222342 + 0.482615i
\(256\) 0 0
\(257\) 5.39898 9.35131i 0.336779 0.583318i −0.647046 0.762451i \(-0.723996\pi\)
0.983825 + 0.179133i \(0.0573291\pi\)
\(258\) 0 0
\(259\) 1.55051 + 2.68556i 0.0963440 + 0.166873i
\(260\) 0 0
\(261\) 0.196938 0.230351i 0.0121902 0.0142584i
\(262\) 0 0
\(263\) 2.72474 + 4.71940i 0.168015 + 0.291010i 0.937722 0.347387i \(-0.112931\pi\)
−0.769707 + 0.638397i \(0.779598\pi\)
\(264\) 0 0
\(265\) 4.44949 7.70674i 0.273330 0.473421i
\(266\) 0 0
\(267\) −12.8990 + 18.2419i −0.789405 + 1.11639i
\(268\) 0 0
\(269\) −7.10102 −0.432957 −0.216478 0.976287i \(-0.569457\pi\)
−0.216478 + 0.976287i \(0.569457\pi\)
\(270\) 0 0
\(271\) −29.3939 −1.78555 −0.892775 0.450502i \(-0.851245\pi\)
−0.892775 + 0.450502i \(0.851245\pi\)
\(272\) 0 0
\(273\) 20.3485 28.7771i 1.23155 1.74167i
\(274\) 0 0
\(275\) 2.89898 5.02118i 0.174815 0.302789i
\(276\) 0 0
\(277\) −7.39898 12.8154i −0.444562 0.770003i 0.553460 0.832876i \(-0.313307\pi\)
−0.998022 + 0.0628725i \(0.979974\pi\)
\(278\) 0 0
\(279\) −7.52270 1.39816i −0.450372 0.0837056i
\(280\) 0 0
\(281\) 5.05051 + 8.74774i 0.301288 + 0.521846i 0.976428 0.215843i \(-0.0692501\pi\)
−0.675140 + 0.737690i \(0.735917\pi\)
\(282\) 0 0
\(283\) 1.72474 2.98735i 0.102525 0.177579i −0.810199 0.586155i \(-0.800641\pi\)
0.912725 + 0.408576i \(0.133974\pi\)
\(284\) 0 0
\(285\) 2.89898 + 6.29253i 0.171721 + 0.372737i
\(286\) 0 0
\(287\) 41.0454 2.42283
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 6.72474 + 0.619620i 0.394212 + 0.0363228i
\(292\) 0 0
\(293\) 0.398979 0.691053i 0.0233086 0.0403717i −0.854136 0.520050i \(-0.825913\pi\)
0.877444 + 0.479678i \(0.159247\pi\)
\(294\) 0 0
\(295\) −7.17423 12.4261i −0.417700 0.723478i
\(296\) 0 0
\(297\) 1.84847 + 7.30142i 0.107259 + 0.423671i
\(298\) 0 0
\(299\) 16.0732 + 27.8396i 0.929538 + 1.61001i
\(300\) 0 0
\(301\) −4.05051 + 7.01569i −0.233468 + 0.404378i
\(302\) 0 0
\(303\) 22.0732 + 2.03383i 1.26807 + 0.116841i
\(304\) 0 0
\(305\) 7.89898 0.452294
\(306\) 0 0
\(307\) −21.7980 −1.24408 −0.622038 0.782987i \(-0.713695\pi\)
−0.622038 + 0.782987i \(0.713695\pi\)
\(308\) 0 0
\(309\) −9.09592 19.7436i −0.517449 1.12317i
\(310\) 0 0
\(311\) −7.62372 + 13.2047i −0.432302 + 0.748769i −0.997071 0.0764802i \(-0.975632\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(312\) 0 0
\(313\) 8.50000 + 14.7224i 0.480448 + 0.832161i 0.999748 0.0224310i \(-0.00714060\pi\)
−0.519300 + 0.854592i \(0.673807\pi\)
\(314\) 0 0
\(315\) 3.44949 + 9.75663i 0.194357 + 0.549724i
\(316\) 0 0
\(317\) 12.9495 + 22.4292i 0.727316 + 1.25975i 0.958014 + 0.286722i \(0.0925658\pi\)
−0.230698 + 0.973025i \(0.574101\pi\)
\(318\) 0 0
\(319\) 0.0732141 0.126811i 0.00409920 0.00710003i
\(320\) 0 0
\(321\) −5.79796 + 8.19955i −0.323611 + 0.457654i
\(322\) 0 0
\(323\) 19.5959 1.09035
\(324\) 0 0
\(325\) 23.5959 1.30887
\(326\) 0 0
\(327\) −0.898979 + 1.27135i −0.0497137 + 0.0703058i
\(328\) 0 0
\(329\) 10.9495 18.9651i 0.603665 1.04558i
\(330\) 0 0
\(331\) −5.62372 9.74058i −0.309108 0.535390i 0.669060 0.743209i \(-0.266697\pi\)
−0.978167 + 0.207818i \(0.933364\pi\)
\(332\) 0 0
\(333\) −0.898979 2.54270i −0.0492638 0.139339i
\(334\) 0 0
\(335\) −6.17423 10.6941i −0.337334 0.584280i
\(336\) 0 0
\(337\) 5.39898 9.35131i 0.294101 0.509398i −0.680674 0.732586i \(-0.738313\pi\)
0.974775 + 0.223188i \(0.0716464\pi\)
\(338\) 0 0
\(339\) 6.37628 + 13.8404i 0.346312 + 0.751705i
\(340\) 0 0
\(341\) −3.69694 −0.200200
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 0 0
\(345\) −9.39898 0.866025i −0.506024 0.0466252i
\(346\) 0 0
\(347\) −3.07321 + 5.32296i −0.164979 + 0.285752i −0.936648 0.350273i \(-0.886089\pi\)
0.771669 + 0.636024i \(0.219422\pi\)
\(348\) 0 0
\(349\) −7.39898 12.8154i −0.396058 0.685993i 0.597177 0.802109i \(-0.296289\pi\)
−0.993236 + 0.116116i \(0.962956\pi\)
\(350\) 0 0
\(351\) −21.9722 + 21.3721i −1.17279 + 1.14076i
\(352\) 0 0
\(353\) 6.84847 + 11.8619i 0.364507 + 0.631345i 0.988697 0.149928i \(-0.0479041\pi\)
−0.624190 + 0.781273i \(0.714571\pi\)
\(354\) 0 0
\(355\) 3.89898 6.75323i 0.206936 0.358424i
\(356\) 0 0
\(357\) 29.1464 + 2.68556i 1.54259 + 0.142135i
\(358\) 0 0
\(359\) 1.79796 0.0948926 0.0474463 0.998874i \(-0.484892\pi\)
0.0474463 + 0.998874i \(0.484892\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −6.44949 13.9993i −0.338510 0.734771i
\(364\) 0 0
\(365\) 2.44949 4.24264i 0.128212 0.222070i
\(366\) 0 0
\(367\) −2.17423 3.76588i −0.113494 0.196578i 0.803683 0.595058i \(-0.202871\pi\)
−0.917177 + 0.398481i \(0.869538\pi\)
\(368\) 0 0
\(369\) −35.0959 6.52288i −1.82702 0.339568i
\(370\) 0 0
\(371\) −15.3485 26.5843i −0.796853 1.38019i
\(372\) 0 0
\(373\) 15.8485 27.4504i 0.820603 1.42133i −0.0846315 0.996412i \(-0.526971\pi\)
0.905234 0.424913i \(-0.139695\pi\)
\(374\) 0 0
\(375\) −9.00000 + 12.7279i −0.464758 + 0.657267i
\(376\) 0 0
\(377\) 0.595918 0.0306913
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) 0 0
\(381\) −8.00000 + 11.3137i −0.409852 + 0.579619i
\(382\) 0 0
\(383\) 14.2753 24.7255i 0.729431 1.26341i −0.227692 0.973733i \(-0.573118\pi\)
0.957124 0.289679i \(-0.0935486\pi\)
\(384\) 0 0
\(385\) 2.50000 + 4.33013i 0.127412 + 0.220684i
\(386\) 0 0
\(387\) 4.57832 5.35507i 0.232729 0.272214i
\(388\) 0 0
\(389\) −3.39898 5.88721i −0.172335 0.298493i 0.766901 0.641766i \(-0.221798\pi\)
−0.939236 + 0.343273i \(0.888465\pi\)
\(390\) 0 0
\(391\) −13.3485 + 23.1202i −0.675061 + 1.16924i
\(392\) 0 0
\(393\) −9.60102 20.8400i −0.484307 1.05124i
\(394\) 0 0
\(395\) −13.4495 −0.676717
\(396\) 0 0
\(397\) 10.6969 0.536864 0.268432 0.963299i \(-0.413495\pi\)
0.268432 + 0.963299i \(0.413495\pi\)
\(398\) 0 0
\(399\) 23.7980 + 2.19275i 1.19139 + 0.109775i
\(400\) 0 0
\(401\) 6.84847 11.8619i 0.341996 0.592355i −0.642807 0.766028i \(-0.722230\pi\)
0.984803 + 0.173673i \(0.0555637\pi\)
\(402\) 0 0
\(403\) −7.52270 13.0297i −0.374733 0.649056i
\(404\) 0 0
\(405\) −1.39898 8.89060i −0.0695158 0.441778i
\(406\) 0 0
\(407\) −0.651531 1.12848i −0.0322952 0.0559369i
\(408\) 0 0
\(409\) −13.2980 + 23.0327i −0.657542 + 1.13890i 0.323708 + 0.946157i \(0.395070\pi\)
−0.981250 + 0.192739i \(0.938263\pi\)
\(410\) 0 0
\(411\) 17.4217 + 1.60524i 0.859348 + 0.0791807i
\(412\) 0 0
\(413\) −49.4949 −2.43548
\(414\) 0 0
\(415\) −0.550510 −0.0270235
\(416\) 0 0
\(417\) −2.50000 5.42650i −0.122426 0.265737i
\(418\) 0 0
\(419\) 15.6237 27.0611i 0.763269 1.32202i −0.177888 0.984051i \(-0.556927\pi\)
0.941157 0.337970i \(-0.109740\pi\)
\(420\) 0 0
\(421\) 0.0505103 + 0.0874863i 0.00246172 + 0.00426382i 0.867254 0.497867i \(-0.165883\pi\)
−0.864792 + 0.502130i \(0.832550\pi\)
\(422\) 0 0
\(423\) −12.3763 + 14.4760i −0.601755 + 0.703849i
\(424\) 0 0
\(425\) 9.79796 + 16.9706i 0.475271 + 0.823193i
\(426\) 0 0
\(427\) 13.6237 23.5970i 0.659298 1.14194i
\(428\) 0 0
\(429\) −8.55051 + 12.0922i −0.412823 + 0.583819i
\(430\) 0 0
\(431\) −14.2020 −0.684088 −0.342044 0.939684i \(-0.611119\pi\)
−0.342044 + 0.939684i \(0.611119\pi\)
\(432\) 0 0
\(433\) −8.49490 −0.408239 −0.204119 0.978946i \(-0.565433\pi\)
−0.204119 + 0.978946i \(0.565433\pi\)
\(434\) 0 0
\(435\) −0.101021 + 0.142865i −0.00484356 + 0.00684983i
\(436\) 0 0
\(437\) −10.8990 + 18.8776i −0.521369 + 0.903037i
\(438\) 0 0
\(439\) −18.1742 31.4787i −0.867409 1.50240i −0.864635 0.502400i \(-0.832450\pi\)
−0.00277364 0.999996i \(-0.500883\pi\)
\(440\) 0 0
\(441\) 14.4495 + 2.68556i 0.688071 + 0.127884i
\(442\) 0 0
\(443\) −11.7247 20.3079i −0.557059 0.964855i −0.997740 0.0671913i \(-0.978596\pi\)
0.440681 0.897664i \(-0.354737\pi\)
\(444\) 0 0
\(445\) 6.44949 11.1708i 0.305735 0.529549i
\(446\) 0 0
\(447\) −2.97219 6.45145i −0.140580 0.305143i
\(448\) 0 0
\(449\) 11.1010 0.523890 0.261945 0.965083i \(-0.415636\pi\)
0.261945 + 0.965083i \(0.415636\pi\)
\(450\) 0 0
\(451\) −17.2474 −0.812151
\(452\) 0 0
\(453\) 26.2980 + 2.42310i 1.23559 + 0.113847i
\(454\) 0 0
\(455\) −10.1742 + 17.6223i −0.476975 + 0.826146i
\(456\) 0 0
\(457\) 15.7474 + 27.2754i 0.736635 + 1.27589i 0.954002 + 0.299799i \(0.0969195\pi\)
−0.217368 + 0.976090i \(0.569747\pi\)
\(458\) 0 0
\(459\) −24.4949 6.92820i −1.14332 0.323381i
\(460\) 0 0
\(461\) 17.8485 + 30.9145i 0.831286 + 1.43983i 0.897019 + 0.441992i \(0.145728\pi\)
−0.0657327 + 0.997837i \(0.520938\pi\)
\(462\) 0 0
\(463\) −15.6237 + 27.0611i −0.726096 + 1.25764i 0.232425 + 0.972614i \(0.425334\pi\)
−0.958521 + 0.285021i \(0.907999\pi\)
\(464\) 0 0
\(465\) 4.39898 + 0.405324i 0.203998 + 0.0187964i
\(466\) 0 0
\(467\) 39.5959 1.83228 0.916140 0.400858i \(-0.131288\pi\)
0.916140 + 0.400858i \(0.131288\pi\)
\(468\) 0 0
\(469\) −42.5959 −1.96690
\(470\) 0 0
\(471\) 7.82577 + 16.9866i 0.360592 + 0.782702i
\(472\) 0 0
\(473\) 1.70204 2.94802i 0.0782599 0.135550i
\(474\) 0 0
\(475\) 8.00000 + 13.8564i 0.367065 + 0.635776i
\(476\) 0 0
\(477\) 8.89898 + 25.1701i 0.407456 + 1.15246i
\(478\) 0 0
\(479\) 12.5227 + 21.6900i 0.572177 + 0.991040i 0.996342 + 0.0854547i \(0.0272343\pi\)
−0.424165 + 0.905585i \(0.639432\pi\)
\(480\) 0 0
\(481\) 2.65153 4.59259i 0.120899 0.209404i
\(482\) 0 0
\(483\) −18.7980 + 26.5843i −0.855337 + 1.20963i
\(484\) 0 0
\(485\) −3.89898 −0.177044
\(486\) 0 0
\(487\) 17.7980 0.806503 0.403251 0.915089i \(-0.367880\pi\)
0.403251 + 0.915089i \(0.367880\pi\)
\(488\) 0 0
\(489\) −5.79796 + 8.19955i −0.262193 + 0.370797i
\(490\) 0 0
\(491\) −5.37628 + 9.31198i −0.242628 + 0.420244i −0.961462 0.274938i \(-0.911343\pi\)
0.718834 + 0.695182i \(0.244676\pi\)
\(492\) 0 0
\(493\) 0.247449 + 0.428594i 0.0111445 + 0.0193029i
\(494\) 0 0
\(495\) −1.44949 4.09978i −0.0651497 0.184271i
\(496\) 0 0
\(497\) −13.4495 23.2952i −0.603292 1.04493i
\(498\) 0 0
\(499\) 0.825765 1.43027i 0.0369663 0.0640276i −0.846950 0.531672i \(-0.821564\pi\)
0.883917 + 0.467644i \(0.154897\pi\)
\(500\) 0 0
\(501\) −3.29796 7.15855i −0.147342 0.319821i
\(502\) 0 0
\(503\) 39.7980 1.77450 0.887252 0.461286i \(-0.152612\pi\)
0.887252 + 0.461286i \(0.152612\pi\)
\(504\) 0 0
\(505\) −12.7980 −0.569502
\(506\) 0 0
\(507\) −37.5959 3.46410i −1.66969 0.153846i
\(508\) 0 0
\(509\) −7.74745 + 13.4190i −0.343400 + 0.594786i −0.985062 0.172202i \(-0.944912\pi\)
0.641662 + 0.766987i \(0.278245\pi\)
\(510\) 0 0
\(511\) −8.44949 14.6349i −0.373783 0.647412i
\(512\) 0 0
\(513\) −20.0000 5.65685i −0.883022 0.249756i
\(514\) 0 0
\(515\) 6.27526 + 10.8691i 0.276521 + 0.478948i
\(516\) 0 0
\(517\) −4.60102 + 7.96920i −0.202353 + 0.350485i
\(518\) 0 0
\(519\) 5.17423 + 0.476756i 0.227124 + 0.0209273i
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 13.5959 0.594508 0.297254 0.954798i \(-0.403929\pi\)
0.297254 + 0.954798i \(0.403929\pi\)
\(524\) 0 0
\(525\) 10.0000 + 21.7060i 0.436436 + 0.947328i
\(526\) 0 0
\(527\) 6.24745 10.8209i 0.272143 0.471366i
\(528\) 0 0
\(529\) −3.34847 5.79972i −0.145586 0.252162i
\(530\) 0 0
\(531\) 42.3207 + 7.86566i 1.83656 + 0.341341i
\(532\) 0 0
\(533\) −35.0959 60.7879i −1.52017 2.63302i
\(534\) 0 0
\(535\) 2.89898 5.02118i 0.125334 0.217085i
\(536\) 0 0
\(537\) −12.0000 + 16.9706i −0.517838 + 0.732334i
\(538\) 0 0
\(539\) 7.10102 0.305863
\(540\) 0 0
\(541\) −29.5959 −1.27243 −0.636214 0.771513i \(-0.719500\pi\)
−0.636214 + 0.771513i \(0.719500\pi\)
\(542\) 0 0
\(543\) −10.6969 + 15.1278i −0.459050 + 0.649194i
\(544\) 0 0
\(545\) 0.449490 0.778539i 0.0192540 0.0333489i
\(546\) 0 0
\(547\) 3.27526 + 5.67291i 0.140040 + 0.242556i 0.927511 0.373795i \(-0.121944\pi\)
−0.787472 + 0.616351i \(0.788610\pi\)
\(548\) 0 0
\(549\) −15.3990 + 18.0116i −0.657212 + 0.768715i
\(550\) 0 0
\(551\) 0.202041 + 0.349945i 0.00860724 + 0.0149082i
\(552\) 0 0
\(553\) −23.1969 + 40.1783i −0.986434 + 1.70855i
\(554\) 0 0
\(555\) 0.651531 + 1.41421i 0.0276559 + 0.0600300i
\(556\) 0 0
\(557\) 18.6969 0.792215 0.396107 0.918204i \(-0.370361\pi\)
0.396107 + 0.918204i \(0.370361\pi\)
\(558\) 0 0
\(559\) 13.8536 0.585944
\(560\) 0 0
\(561\) −12.2474 1.12848i −0.517088 0.0476446i
\(562\) 0 0
\(563\) −2.17423 + 3.76588i −0.0916331 + 0.158713i −0.908198 0.418540i \(-0.862542\pi\)
0.816565 + 0.577253i \(0.195875\pi\)
\(564\) 0 0
\(565\) −4.39898 7.61926i −0.185066 0.320545i
\(566\) 0 0
\(567\) −28.9722 11.1548i −1.21672 0.468457i
\(568\) 0 0
\(569\) 0.500000 + 0.866025i 0.0209611 + 0.0363057i 0.876316 0.481737i \(-0.159994\pi\)
−0.855355 + 0.518043i \(0.826661\pi\)
\(570\) 0 0
\(571\) 1.82577 3.16232i 0.0764059 0.132339i −0.825291 0.564708i \(-0.808989\pi\)
0.901697 + 0.432369i \(0.142322\pi\)
\(572\) 0 0
\(573\) −21.6464 1.99451i −0.904293 0.0833218i
\(574\) 0 0
\(575\) −21.7980 −0.909038
\(576\) 0 0
\(577\) −19.1010 −0.795186 −0.397593 0.917562i \(-0.630154\pi\)
−0.397593 + 0.917562i \(0.630154\pi\)
\(578\) 0 0
\(579\) 2.97219 + 6.45145i 0.123520 + 0.268113i
\(580\) 0 0
\(581\) −0.949490 + 1.64456i −0.0393915 + 0.0682280i
\(582\) 0 0
\(583\) 6.44949 + 11.1708i 0.267111 + 0.462649i
\(584\) 0 0
\(585\) 11.5000 13.4511i 0.475466 0.556134i
\(586\) 0 0
\(587\) 14.9722 + 25.9326i 0.617969 + 1.07035i 0.989856 + 0.142075i \(0.0453774\pi\)
−0.371887 + 0.928278i \(0.621289\pi\)
\(588\) 0 0
\(589\) 5.10102 8.83523i 0.210184 0.364049i
\(590\) 0 0
\(591\) 17.5959 24.8844i 0.723799 1.02361i
\(592\) 0 0
\(593\) 28.8990 1.18674 0.593369 0.804930i \(-0.297797\pi\)
0.593369 + 0.804930i \(0.297797\pi\)
\(594\) 0 0
\(595\) −16.8990 −0.692791
\(596\) 0 0
\(597\) 7.79796 11.0280i 0.319149 0.451345i
\(598\) 0 0
\(599\) 14.2753 24.7255i 0.583271 1.01026i −0.411817 0.911266i \(-0.635106\pi\)
0.995089 0.0989888i \(-0.0315608\pi\)
\(600\) 0 0
\(601\) −5.15153 8.92271i −0.210135 0.363965i 0.741621 0.670819i \(-0.234057\pi\)
−0.951757 + 0.306854i \(0.900724\pi\)
\(602\) 0 0
\(603\) 36.4217 + 6.76928i 1.48321 + 0.275667i
\(604\) 0 0
\(605\) 4.44949 + 7.70674i 0.180897 + 0.313324i
\(606\) 0 0
\(607\) 12.9722 22.4685i 0.526525 0.911968i −0.472997 0.881064i \(-0.656828\pi\)
0.999522 0.0309043i \(-0.00983872\pi\)
\(608\) 0 0
\(609\) 0.252551 + 0.548188i 0.0102339 + 0.0222137i
\(610\) 0 0
\(611\) −37.4495 −1.51504
\(612\) 0 0
\(613\) 26.6969 1.07828 0.539140 0.842216i \(-0.318750\pi\)
0.539140 + 0.842216i \(0.318750\pi\)
\(614\) 0 0
\(615\) 20.5227 + 1.89097i 0.827555 + 0.0762512i
\(616\) 0 0
\(617\) −11.8485 + 20.5222i −0.477001 + 0.826191i −0.999653 0.0263559i \(-0.991610\pi\)
0.522651 + 0.852547i \(0.324943\pi\)
\(618\) 0 0
\(619\) 13.0732 + 22.6435i 0.525457 + 0.910118i 0.999560 + 0.0296488i \(0.00943890\pi\)
−0.474104 + 0.880469i \(0.657228\pi\)
\(620\) 0 0
\(621\) 20.2980 19.7436i 0.814529 0.792284i
\(622\) 0 0
\(623\) −22.2474 38.5337i −0.891325 1.54382i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) −10.0000 0.921404i −0.399362 0.0367973i
\(628\) 0 0
\(629\) 4.40408 0.175602
\(630\) 0 0
\(631\) 6.20204 0.246899 0.123450 0.992351i \(-0.460604\pi\)
0.123450 + 0.992351i \(0.460604\pi\)
\(632\) 0 0
\(633\) 7.64643 + 16.5973i 0.303918 + 0.659685i
\(634\) 0 0
\(635\) 4.00000 6.92820i 0.158735 0.274937i
\(636\) 0 0
\(637\) 14.4495 + 25.0273i 0.572510 + 0.991616i
\(638\) 0 0
\(639\) 7.79796 + 22.0560i 0.308482 + 0.872520i
\(640\) 0 0
\(641\) −13.2980 23.0327i −0.525238 0.909739i −0.999568 0.0293915i \(-0.990643\pi\)
0.474330 0.880347i \(-0.342690\pi\)
\(642\) 0 0
\(643\) −2.17423 + 3.76588i −0.0857434 + 0.148512i −0.905708 0.423903i \(-0.860660\pi\)
0.819964 + 0.572415i \(0.193993\pi\)
\(644\) 0 0
\(645\) −2.34847 + 3.32124i −0.0924709 + 0.130774i
\(646\) 0 0
\(647\) −9.79796 −0.385198 −0.192599 0.981278i \(-0.561692\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(648\) 0 0
\(649\) 20.7980 0.816391
\(650\) 0 0
\(651\) 8.79796 12.4422i 0.344819 0.487648i
\(652\) 0 0
\(653\) −8.50000 + 14.7224i −0.332631 + 0.576133i −0.983027 0.183462i \(-0.941270\pi\)
0.650396 + 0.759595i \(0.274603\pi\)
\(654\) 0 0
\(655\) 6.62372 + 11.4726i 0.258810 + 0.448273i
\(656\) 0 0
\(657\) 4.89898 + 13.8564i 0.191127 + 0.540590i
\(658\) 0 0
\(659\) −3.82577 6.62642i −0.149031 0.258129i 0.781839 0.623481i \(-0.214282\pi\)
−0.930869 + 0.365352i \(0.880949\pi\)
\(660\) 0 0
\(661\) −15.1969 + 26.3219i −0.591092 + 1.02380i 0.402993 + 0.915203i \(0.367970\pi\)
−0.994086 + 0.108599i \(0.965364\pi\)
\(662\) 0 0
\(663\) −20.9444 45.4619i −0.813413 1.76559i
\(664\) 0 0
\(665\) −13.7980 −0.535062
\(666\) 0 0
\(667\) −0.550510 −0.0213158
\(668\) 0 0
\(669\) −27.8485 2.56597i −1.07668 0.0992061i
\(670\) 0 0
\(671\) −5.72474 + 9.91555i −0.221001 + 0.382786i
\(672\) 0 0
\(673\) −13.6464 23.6363i −0.526031 0.911113i −0.999540 0.0303237i \(-0.990346\pi\)
0.473509 0.880789i \(-0.342987\pi\)
\(674\) 0 0
\(675\) −5.10102 20.1489i −0.196338 0.775533i
\(676\) 0 0
\(677\) 12.1969 + 21.1257i 0.468766 + 0.811927i 0.999363 0.0356974i \(-0.0113653\pi\)
−0.530596 + 0.847625i \(0.678032\pi\)
\(678\) 0 0
\(679\) −6.72474 + 11.6476i −0.258072 + 0.446994i
\(680\) 0 0
\(681\) −13.1969 1.21597i −0.505708 0.0465961i
\(682\) 0 0
\(683\) −17.3939 −0.665558 −0.332779 0.943005i \(-0.607986\pi\)
−0.332779 + 0.943005i \(0.607986\pi\)
\(684\) 0 0
\(685\) −10.1010 −0.385940
\(686\) 0 0
\(687\) 0.724745 + 1.57313i 0.0276507 + 0.0600187i
\(688\) 0 0
\(689\) −26.2474 + 45.4619i −0.999948 + 1.73196i
\(690\) 0 0
\(691\) 18.9722 + 32.8608i 0.721736 + 1.25008i 0.960303 + 0.278958i \(0.0899890\pi\)
−0.238567 + 0.971126i \(0.576678\pi\)
\(692\) 0 0
\(693\) −14.7474 2.74094i −0.560209 0.104120i
\(694\) 0 0
\(695\) 1.72474 + 2.98735i 0.0654233 + 0.113316i
\(696\) 0 0
\(697\) 29.1464 50.4831i 1.10400 1.91218i
\(698\) 0 0
\(699\) −6.00000 + 8.48528i −0.226941 + 0.320943i
\(700\) 0 0
\(701\) 12.4949 0.471926 0.235963 0.971762i \(-0.424176\pi\)
0.235963 + 0.971762i \(0.424176\pi\)
\(702\) 0 0
\(703\) 3.59592 0.135623
\(704\) 0 0
\(705\) 6.34847 8.97809i 0.239097 0.338134i
\(706\) 0 0
\(707\) −22.0732 + 38.2319i −0.830149 + 1.43786i
\(708\) 0 0
\(709\) −2.50000 4.33013i −0.0938895 0.162621i 0.815255 0.579102i \(-0.196597\pi\)
−0.909145 + 0.416481i \(0.863263\pi\)
\(710\) 0 0
\(711\) 26.2196 30.6681i 0.983313 1.15014i
\(712\) 0 0
\(713\) 6.94949 + 12.0369i 0.260260 + 0.450784i
\(714\) 0 0
\(715\) 4.27526 7.40496i 0.159885 0.276930i
\(716\) 0 0
\(717\) −10.2526 22.2542i −0.382889 0.831098i
\(718\) 0 0
\(719\) −31.1918 −1.16326 −0.581630 0.813454i \(-0.697585\pi\)
−0.581630 + 0.813454i \(0.697585\pi\)
\(720\) 0 0
\(721\) 43.2929 1.61231
\(722\) 0 0
\(723\) −12.0732 1.11243i −0.449008 0.0413717i
\(724\) 0 0
\(725\) −0.202041 + 0.349945i −0.00750362 + 0.0129966i
\(726\) 0 0
\(727\) −9.27526 16.0652i −0.344000 0.595826i 0.641171 0.767398i \(-0.278449\pi\)
−0.985172 + 0.171572i \(0.945115\pi\)
\(728\) 0 0
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) 5.75255 + 9.96371i 0.212766 + 0.368521i
\(732\) 0 0
\(733\) −5.94949 + 10.3048i −0.219749 + 0.380617i −0.954731 0.297470i \(-0.903857\pi\)
0.734982 + 0.678087i \(0.237191\pi\)
\(734\) 0 0
\(735\) −8.44949 0.778539i −0.311664 0.0287168i
\(736\) 0 0
\(737\) 17.8990 0.659317
\(738\) 0 0
\(739\) −14.0000 −0.514998 −0.257499 0.966279i \(-0.582898\pi\)
−0.257499 + 0.966279i \(0.582898\pi\)
\(740\) 0 0
\(741\) −17.1010 37.1195i −0.628222 1.36362i
\(742\) 0 0
\(743\) −17.7247 + 30.7002i −0.650258 + 1.12628i 0.332802 + 0.942997i \(0.392006\pi\)
−0.983060 + 0.183283i \(0.941328\pi\)
\(744\) 0 0
\(745\) 2.05051 + 3.55159i 0.0751249 + 0.130120i
\(746\) 0 0
\(747\) 1.07321 1.25529i 0.0392669 0.0459288i
\(748\) 0 0
\(749\) −10.0000 17.3205i −0.365392 0.632878i
\(750\) 0 0
\(751\) −21.3207 + 36.9285i −0.778002 + 1.34754i 0.155090 + 0.987900i \(0.450433\pi\)
−0.933092 + 0.359639i \(0.882900\pi\)
\(752\) 0 0
\(753\) 21.7980 30.8270i 0.794362 1.12340i
\(754\) 0 0
\(755\) −15.2474 −0.554911
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) 0 0
\(759\) 7.89898 11.1708i 0.286715 0.405476i
\(760\) 0 0
\(761\) 12.6464 21.9043i 0.458433 0.794029i −0.540446 0.841379i \(-0.681744\pi\)
0.998878 + 0.0473502i \(0.0150777\pi\)
\(762\) 0 0
\(763\) −1.55051 2.68556i −0.0561322 0.0972239i
\(764\) 0 0
\(765\) 14.4495 + 2.68556i 0.522422 + 0.0970967i
\(766\) 0 0
\(767\) 42.3207 + 73.3015i 1.52811 + 2.64677i
\(768\) 0 0
\(769\) 18.2980 31.6930i 0.659841 1.14288i −0.320815 0.947142i \(-0.603957\pi\)
0.980656 0.195737i \(-0.0627098\pi\)
\(770\) 0 0
\(771\) −7.82577 16.9866i −0.281838 0.611758i
\(772\) 0 0
\(773\) 36.4949 1.31263 0.656315 0.754487i \(-0.272114\pi\)
0.656315 + 0.754487i \(0.272114\pi\)
\(774\) 0 0
\(775\) 10.2020 0.366468
\(776\) 0 0
\(777\) 5.34847 + 0.492810i 0.191875 + 0.0176795i
\(778\) 0 0
\(779\) 23.7980 41.2193i 0.852650 1.47683i
\(780\) 0 0
\(781\) 5.65153 + 9.78874i 0.202228 + 0.350269i
\(782\) 0 0
\(783\) −0.128827 0.508864i −0.00460390 0.0181853i
\(784\) 0 0
\(785\) −5.39898 9.35131i −0.192698 0.333762i
\(786\) 0 0
\(787\) 10.6237 18.4008i 0.378695 0.655919i −0.612178 0.790720i \(-0.709706\pi\)
0.990873 + 0.134801i \(0.0430396\pi\)
\(788\) 0 0
\(789\) 9.39898 + 0.866025i 0.334613 + 0.0308313i
\(790\) 0 0
\(791\) −30.3485 −1.07907
\(792\) 0 0
\(793\) −46.5959 −1.65467
\(794\) 0 0
\(795\) −6.44949 13.9993i −0.228740 0.496503i
\(796\) 0 0
\(797\) 23.8485 41.3068i 0.844756 1.46316i −0.0410767 0.999156i \(-0.513079\pi\)
0.885833 0.464005i \(-0.153588\pi\)
\(798\) 0 0
\(799\) −15.5505 26.9343i −0.550138 0.952866i
\(800\) 0 0
\(801\) 12.8990 + 36.4838i 0.455763 + 1.28909i
\(802\) 0 0
\(803\) 3.55051 + 6.14966i 0.125295 + 0.217017i
\(804\) 0 0
\(805\) 9.39898 16.2795i 0.331270 0.573777i
\(806\) 0 0
\(807\) −7.10102 + 10.0424i −0.249968 + 0.353508i
\(808\) 0 0
\(809\) −32.4949 −1.14246 −0.571230 0.820790i \(-0.693534\pi\)
−0.571230 + 0.820790i \(0.693534\pi\)
\(810\) 0 0
\(811\) 8.40408 0.295107 0.147554 0.989054i \(-0.452860\pi\)
0.147554 + 0.989054i \(0.452860\pi\)
\(812\) 0 0
\(813\) −29.3939 + 41.5692i −1.03089 + 1.45790i
\(814\) 0 0
\(815\) 2.89898 5.02118i 0.101547 0.175884i
\(816\) 0 0
\(817\) 4.69694 + 8.13534i 0.164325 + 0.284619i
\(818\) 0 0
\(819\) −20.3485 57.5542i −0.711033 2.01111i
\(820\) 0 0
\(821\) 7.64643 + 13.2440i 0.266862 + 0.462219i 0.968050 0.250758i \(-0.0806798\pi\)
−0.701188 + 0.712977i \(0.747346\pi\)
\(822\) 0 0
\(823\) 5.27526 9.13701i 0.183884 0.318496i −0.759316 0.650722i \(-0.774466\pi\)
0.943200 + 0.332226i \(0.107800\pi\)
\(824\) 0 0
\(825\) −4.20204 9.12096i −0.146296 0.317551i
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) 23.1010 0.802332 0.401166 0.916005i \(-0.368605\pi\)
0.401166 + 0.916005i \(0.368605\pi\)
\(830\) 0 0
\(831\) −25.5227 2.35167i −0.885373 0.0815786i
\(832\) 0 0
\(833\) −12.0000 + 20.7846i −0.415775 + 0.720144i
\(834\) 0 0
\(835\) 2.27526 + 3.94086i 0.0787385 + 0.136379i
\(836\) 0 0
\(837\) −9.50000 + 9.24055i −0.328368 + 0.319400i
\(838\) 0 0
\(839\) −15.1742 26.2825i −0.523873 0.907374i −0.999614 0.0277888i \(-0.991153\pi\)
0.475741 0.879585i \(-0.342180\pi\)
\(840\) 0 0
\(841\) 14.4949 25.1059i 0.499824 0.865721i
\(842\) 0 0
\(843\) 17.4217 + 1.60524i 0.600035 + 0.0552874i
\(844\) 0 0
\(845\) 21.7980 0.749873
\(846\) 0 0
\(847\) 30.6969 1.05476
\(848\) 0 0
\(849\) −2.50000 5.42650i −0.0857998 0.186237i
\(850\) 0 0
\(851\) −2.44949 + 4.24264i −0.0839674 + 0.145436i
\(852\) 0 0
\(853\) −3.94949 6.84072i −0.135228 0.234222i 0.790457 0.612518i \(-0.209843\pi\)
−0.925685 + 0.378296i \(0.876510\pi\)
\(854\) 0 0
\(855\) 11.7980 + 2.19275i 0.403482 + 0.0749906i
\(856\) 0 0
\(857\) 13.9495 + 24.1612i 0.476505 + 0.825332i 0.999638 0.0269199i \(-0.00856990\pi\)
−0.523132 + 0.852252i \(0.675237\pi\)
\(858\) 0 0
\(859\) 10.7247 18.5758i 0.365924 0.633798i −0.623000 0.782222i \(-0.714086\pi\)
0.988924 + 0.148423i \(0.0474198\pi\)
\(860\) 0 0
\(861\) 41.0454 58.0470i 1.39882 1.97824i
\(862\) 0 0
\(863\) 17.7980 0.605850 0.302925 0.953014i \(-0.402037\pi\)
0.302925 + 0.953014i \(0.402037\pi\)
\(864\) 0 0
\(865\) −3.00000 −0.102003
\(866\) 0 0
\(867\) 7.00000 9.89949i 0.237732 0.336204i
\(868\) 0 0
\(869\) 9.74745 16.8831i 0.330660 0.572719i
\(870\) 0 0
\(871\) 36.4217 + 63.0842i 1.23410 + 2.13753i
\(872\) 0 0
\(873\) 7.60102 8.89060i 0.257256 0.300901i
\(874\) 0 0
\(875\) −15.5227 26.8861i −0.524763 0.908916i
\(876\) 0 0
\(877\) −13.9495 + 24.1612i −0.471041 + 0.815867i −0.999451 0.0331224i \(-0.989455\pi\)
0.528411 + 0.848989i \(0.322788\pi\)
\(878\) 0 0
\(879\) −0.578317 1.25529i −0.0195061 0.0423400i
\(880\) 0 0
\(881\) −24.4949 −0.825254 −0.412627 0.910900i \(-0.635389\pi\)
−0.412627 + 0.910900i \(0.635389\pi\)
\(882\) 0 0
\(883\) 39.5959 1.33251 0.666254 0.745725i \(-0.267897\pi\)
0.666254 + 0.745725i \(0.267897\pi\)
\(884\) 0 0
\(885\) −24.7474 2.28024i −0.831876 0.0766494i
\(886\) 0 0
\(887\) −17.4217 + 30.1752i −0.584963 + 1.01319i 0.409917 + 0.912123i \(0.365558\pi\)
−0.994880 + 0.101063i \(0.967776\pi\)
\(888\) 0 0
\(889\) −13.7980 23.8988i −0.462769 0.801539i
\(890\) 0 0
\(891\) 12.1742 + 4.68729i 0.407852 + 0.157030i
\(892\) 0 0
\(893\) −12.6969 21.9917i −0.424887 0.735926i
\(894\) 0 0
\(895\) 6.00000 10.3923i 0.200558 0.347376i
\(896\) 0 0
\(897\) 55.4444 + 5.10867i 1.85123 + 0.170573i
\(898\) 0 0
\(899\) 0.257654 0.00859324
\(900\) 0 0
\(901\) −43.5959 −1.45239
\(902\) 0 0
\(903\) 5.87117 + 12.7440i 0.195380 + 0.424093i
\(904\) 0 0
\(905\) 5.34847 9.26382i 0.177789 0.307940i
\(906\) 0 0
\(907\) −12.6237 21.8649i −0.419164 0.726013i 0.576692 0.816962i \(-0.304343\pi\)
−0.995856 + 0.0909487i \(0.971010\pi\)
\(908\) 0 0
\(909\) 24.9495 29.1824i 0.827522 0.967919i
\(910\) 0 0
\(911\) −21.7702 37.7070i −0.721277 1.24929i −0.960488 0.278321i \(-0.910222\pi\)
0.239211 0.970968i \(-0.423111\pi\)
\(912\) 0 0
\(913\) 0.398979 0.691053i 0.0132043 0.0228705i
\(914\) 0 0
\(915\) 7.89898 11.1708i 0.261132 0.369297i
\(916\) 0 0
\(917\) 45.6969 1.50905
\(918\) 0 0
\(919\) 9.79796 0.323205 0.161602 0.986856i \(-0.448334\pi\)
0.161602 + 0.986856i \(0.448334\pi\)
\(920\) 0 0
\(921\) −21.7980 + 30.8270i −0.718267 + 1.01578i
\(922\) 0 0
\(923\) −23.0000 + 39.8372i −0.757054 + 1.31126i
\(924\) 0 0
\(925\) 1.79796 + 3.11416i 0.0591165 + 0.102393i
\(926\) 0 0
\(927\) −37.0176 6.88004i −1.21582 0.225970i
\(928\) 0 0
\(929\) −23.8485 41.3068i −0.782443 1.35523i −0.930515 0.366254i \(-0.880640\pi\)
0.148072 0.988977i \(-0.452693\pi\)
\(930\) 0 0
\(931\) −9.79796 + 16.9706i −0.321115 + 0.556188i
\(932\) 0 0
\(933\) 11.0505 + 23.9863i 0.361777 + 0.785275i
\(934\) 0 0
\(935\) 7.10102 0.232228
\(936\) 0 0
\(937\) 56.4949 1.84561 0.922804 0.385270i \(-0.125892\pi\)
0.922804 + 0.385270i \(0.125892\pi\)
\(938\) 0 0
\(939\) 29.3207 + 2.70162i 0.956844 + 0.0881639i
\(940\) 0 0
\(941\) 3.50000 6.06218i 0.114097 0.197621i −0.803322 0.595545i \(-0.796936\pi\)
0.917418 + 0.397924i \(0.130269\pi\)
\(942\) 0 0
\(943\) 32.4217 + 56.1560i 1.05580 + 1.82869i
\(944\) 0 0
\(945\) 17.2474 + 4.87832i 0.561060 + 0.158692i
\(946\) 0 0
\(947\) 10.3763 + 17.9722i 0.337184 + 0.584019i 0.983902 0.178710i \(-0.0571923\pi\)
−0.646718 + 0.762729i \(0.723859\pi\)
\(948\) 0 0
\(949\) −14.4495 + 25.0273i −0.469050 + 0.812419i
\(950\) 0 0
\(951\) 44.6691 + 4.11583i 1.44850 + 0.133465i
\(952\) 0 0
\(953\) 43.1010 1.39618 0.698090 0.716011i \(-0.254034\pi\)
0.698090 + 0.716011i \(0.254034\pi\)
\(954\) 0 0
\(955\) 12.5505 0.406125
\(956\) 0 0
\(957\) −0.106123 0.230351i −0.00343047 0.00744619i
\(958\) 0 0
\(959\) −17.4217 + 30.1752i −0.562575 + 0.974409i
\(960\) 0 0
\(961\) 12.2474 + 21.2132i 0.395079 + 0.684297i
\(962\) 0 0
\(963\) 5.79796 + 16.3991i 0.186837 + 0.528454i
\(964\) 0 0
\(965\) −2.05051 3.55159i −0.0660083 0.114330i
\(966\) 0 0
\(967\) −7.62372 + 13.2047i −0.245162 + 0.424634i −0.962177 0.272424i \(-0.912175\pi\)
0.717015 + 0.697058i \(0.245508\pi\)
\(968\) 0 0
\(969\) 19.5959 27.7128i 0.629512 0.890264i
\(970\) 0 0
\(971\) −10.0000 −0.320915 −0.160458 0.987043i \(-0.551297\pi\)
−0.160458 + 0.987043i \(0.551297\pi\)
\(972\) 0 0
\(973\) 11.8990 0.381464
\(974\) 0 0
\(975\) 23.5959 33.3697i 0.755674 1.06868i
\(976\) 0 0
\(977\) −6.60102 + 11.4333i −0.211185 + 0.365784i −0.952086 0.305831i \(-0.901066\pi\)
0.740900 + 0.671615i \(0.234399\pi\)
\(978\) 0 0
\(979\) 9.34847 + 16.1920i 0.298778 + 0.517499i
\(980\) 0 0
\(981\) 0.898979 + 2.54270i 0.0287022 + 0.0811821i
\(982\) 0 0
\(983\) 9.82577 + 17.0187i 0.313393 + 0.542813i 0.979095 0.203405i \(-0.0652009\pi\)
−0.665701 + 0.746218i \(0.731868\pi\)
\(984\) 0 0
\(985\) −8.79796 + 15.2385i −0.280326 + 0.485539i
\(986\) 0 0
\(987\) −15.8712 34.4500i −0.505185 1.09656i
\(988\) 0 0
\(989\) −12.7980 −0.406951
\(990\) 0 0
\(991\) 21.3939 0.679599 0.339799 0.940498i \(-0.389641\pi\)
0.339799 + 0.940498i \(0.389641\pi\)
\(992\) 0 0
\(993\) −19.3990 1.78743i −0.615608 0.0567223i
\(994\) 0 0
\(995\) −3.89898 + 6.75323i −0.123606 + 0.214092i
\(996\) 0 0
\(997\) 16.1969 + 28.0539i 0.512962 + 0.888477i 0.999887 + 0.0150327i \(0.00478523\pi\)
−0.486925 + 0.873444i \(0.661881\pi\)
\(998\) 0 0
\(999\) −4.49490 1.27135i −0.142212 0.0402237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.i.m.193.1 4
3.2 odd 2 1728.2.i.m.577.2 4
4.3 odd 2 576.2.i.i.193.2 4
8.3 odd 2 288.2.i.e.193.1 yes 4
8.5 even 2 288.2.i.c.193.2 yes 4
9.2 odd 6 1728.2.i.m.1153.2 4
9.4 even 3 5184.2.a.bu.1.1 2
9.5 odd 6 5184.2.a.bj.1.1 2
9.7 even 3 inner 576.2.i.m.385.2 4
12.11 even 2 1728.2.i.k.577.1 4
24.5 odd 2 864.2.i.e.577.2 4
24.11 even 2 864.2.i.c.577.1 4
36.7 odd 6 576.2.i.i.385.1 4
36.11 even 6 1728.2.i.k.1153.1 4
36.23 even 6 5184.2.a.bn.1.2 2
36.31 odd 6 5184.2.a.by.1.2 2
72.5 odd 6 2592.2.a.o.1.1 2
72.11 even 6 864.2.i.c.289.1 4
72.13 even 6 2592.2.a.j.1.1 2
72.29 odd 6 864.2.i.e.289.2 4
72.43 odd 6 288.2.i.e.97.2 yes 4
72.59 even 6 2592.2.a.s.1.2 2
72.61 even 6 288.2.i.c.97.1 4
72.67 odd 6 2592.2.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.i.c.97.1 4 72.61 even 6
288.2.i.c.193.2 yes 4 8.5 even 2
288.2.i.e.97.2 yes 4 72.43 odd 6
288.2.i.e.193.1 yes 4 8.3 odd 2
576.2.i.i.193.2 4 4.3 odd 2
576.2.i.i.385.1 4 36.7 odd 6
576.2.i.m.193.1 4 1.1 even 1 trivial
576.2.i.m.385.2 4 9.7 even 3 inner
864.2.i.c.289.1 4 72.11 even 6
864.2.i.c.577.1 4 24.11 even 2
864.2.i.e.289.2 4 72.29 odd 6
864.2.i.e.577.2 4 24.5 odd 2
1728.2.i.k.577.1 4 12.11 even 2
1728.2.i.k.1153.1 4 36.11 even 6
1728.2.i.m.577.2 4 3.2 odd 2
1728.2.i.m.1153.2 4 9.2 odd 6
2592.2.a.j.1.1 2 72.13 even 6
2592.2.a.n.1.2 2 72.67 odd 6
2592.2.a.o.1.1 2 72.5 odd 6
2592.2.a.s.1.2 2 72.59 even 6
5184.2.a.bj.1.1 2 9.5 odd 6
5184.2.a.bn.1.2 2 36.23 even 6
5184.2.a.bu.1.1 2 9.4 even 3
5184.2.a.by.1.2 2 36.31 odd 6