Properties

Label 864.2.i.c.289.1
Level $864$
Weight $2$
Character 864.289
Analytic conductor $6.899$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,2,Mod(289,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 864.289
Dual form 864.2.i.c.577.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(-1.72474 + 2.98735i) q^{7} +(0.724745 - 1.25529i) q^{11} +(-2.94949 - 5.10867i) q^{13} -4.89898 q^{17} +4.00000 q^{19} +(-2.72474 - 4.71940i) q^{23} +(2.00000 - 3.46410i) q^{25} +(0.0505103 - 0.0874863i) q^{29} +(-1.27526 - 2.20881i) q^{31} +3.44949 q^{35} -0.898979 q^{37} +(-5.94949 - 10.3048i) q^{41} +(1.17423 - 2.03383i) q^{43} +(-3.17423 + 5.49794i) q^{47} +(-2.44949 - 4.24264i) q^{49} -8.89898 q^{53} -1.44949 q^{55} +(7.17423 + 12.4261i) q^{59} +(3.94949 - 6.84072i) q^{61} +(-2.94949 + 5.10867i) q^{65} +(-6.17423 - 10.6941i) q^{67} -7.79796 q^{71} -4.89898 q^{73} +(2.50000 + 4.33013i) q^{77} +(-6.72474 + 11.6476i) q^{79} +(-0.275255 + 0.476756i) q^{83} +(2.44949 + 4.24264i) q^{85} +12.8990 q^{89} +20.3485 q^{91} +(-2.00000 - 3.46410i) q^{95} +(1.94949 - 3.37662i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 2 q^{7} - 2 q^{11} - 2 q^{13} + 16 q^{19} - 6 q^{23} + 8 q^{25} + 10 q^{29} - 10 q^{31} + 4 q^{35} + 16 q^{37} - 14 q^{41} - 10 q^{43} + 2 q^{47} - 16 q^{53} + 4 q^{55} + 14 q^{59} + 6 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) −1.72474 + 2.98735i −0.651892 + 1.12911i 0.330771 + 0.943711i \(0.392691\pi\)
−0.982663 + 0.185399i \(0.940642\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.724745 1.25529i 0.218519 0.378486i −0.735837 0.677159i \(-0.763211\pi\)
0.954355 + 0.298674i \(0.0965442\pi\)
\(12\) 0 0
\(13\) −2.94949 5.10867i −0.818041 1.41689i −0.907123 0.420865i \(-0.861727\pi\)
0.0890821 0.996024i \(-0.471607\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.72474 4.71940i −0.568149 0.984062i −0.996749 0.0805681i \(-0.974327\pi\)
0.428601 0.903494i \(-0.359007\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.0505103 0.0874863i 0.00937952 0.0162458i −0.861298 0.508101i \(-0.830348\pi\)
0.870677 + 0.491855i \(0.163681\pi\)
\(30\) 0 0
\(31\) −1.27526 2.20881i −0.229043 0.396713i 0.728482 0.685065i \(-0.240226\pi\)
−0.957525 + 0.288352i \(0.906893\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.44949 0.583070
\(36\) 0 0
\(37\) −0.898979 −0.147791 −0.0738957 0.997266i \(-0.523543\pi\)
−0.0738957 + 0.997266i \(0.523543\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.94949 10.3048i −0.929154 1.60934i −0.784740 0.619825i \(-0.787204\pi\)
−0.144414 0.989517i \(-0.546130\pi\)
\(42\) 0 0
\(43\) 1.17423 2.03383i 0.179069 0.310157i −0.762493 0.646997i \(-0.776025\pi\)
0.941562 + 0.336840i \(0.109358\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.17423 + 5.49794i −0.463010 + 0.801956i −0.999109 0.0421984i \(-0.986564\pi\)
0.536100 + 0.844155i \(0.319897\pi\)
\(48\) 0 0
\(49\) −2.44949 4.24264i −0.349927 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.89898 −1.22237 −0.611184 0.791488i \(-0.709307\pi\)
−0.611184 + 0.791488i \(0.709307\pi\)
\(54\) 0 0
\(55\) −1.44949 −0.195449
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.17423 + 12.4261i 0.934006 + 1.61775i 0.776397 + 0.630244i \(0.217045\pi\)
0.157609 + 0.987502i \(0.449622\pi\)
\(60\) 0 0
\(61\) 3.94949 6.84072i 0.505680 0.875864i −0.494298 0.869292i \(-0.664575\pi\)
0.999978 0.00657156i \(-0.00209181\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.94949 + 5.10867i −0.365839 + 0.633652i
\(66\) 0 0
\(67\) −6.17423 10.6941i −0.754303 1.30649i −0.945720 0.324982i \(-0.894642\pi\)
0.191417 0.981509i \(-0.438692\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.79796 −0.925447 −0.462724 0.886503i \(-0.653128\pi\)
−0.462724 + 0.886503i \(0.653128\pi\)
\(72\) 0 0
\(73\) −4.89898 −0.573382 −0.286691 0.958023i \(-0.592555\pi\)
−0.286691 + 0.958023i \(0.592555\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.50000 + 4.33013i 0.284901 + 0.493464i
\(78\) 0 0
\(79\) −6.72474 + 11.6476i −0.756593 + 1.31046i 0.187986 + 0.982172i \(0.439804\pi\)
−0.944579 + 0.328286i \(0.893529\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.275255 + 0.476756i −0.0302132 + 0.0523308i −0.880737 0.473606i \(-0.842952\pi\)
0.850523 + 0.525937i \(0.176285\pi\)
\(84\) 0 0
\(85\) 2.44949 + 4.24264i 0.265684 + 0.460179i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.8990 1.36729 0.683645 0.729815i \(-0.260394\pi\)
0.683645 + 0.729815i \(0.260394\pi\)
\(90\) 0 0
\(91\) 20.3485 2.13310
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.00000 3.46410i −0.205196 0.355409i
\(96\) 0 0
\(97\) 1.94949 3.37662i 0.197941 0.342843i −0.749920 0.661529i \(-0.769908\pi\)
0.947861 + 0.318685i \(0.103241\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.39898 11.0834i 0.636722 1.10284i −0.349425 0.936964i \(-0.613623\pi\)
0.986147 0.165871i \(-0.0530435\pi\)
\(102\) 0 0
\(103\) −6.27526 10.8691i −0.618319 1.07096i −0.989792 0.142517i \(-0.954481\pi\)
0.371473 0.928444i \(-0.378853\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.79796 0.560510 0.280255 0.959926i \(-0.409581\pi\)
0.280255 + 0.959926i \(0.409581\pi\)
\(108\) 0 0
\(109\) 0.898979 0.0861066 0.0430533 0.999073i \(-0.486291\pi\)
0.0430533 + 0.999073i \(0.486291\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.39898 + 7.61926i 0.413821 + 0.716759i 0.995304 0.0967994i \(-0.0308605\pi\)
−0.581483 + 0.813559i \(0.697527\pi\)
\(114\) 0 0
\(115\) −2.72474 + 4.71940i −0.254084 + 0.440086i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.44949 14.6349i 0.774563 1.34158i
\(120\) 0 0
\(121\) 4.44949 + 7.70674i 0.404499 + 0.700613i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.62372 11.4726i −0.578717 1.00237i −0.995627 0.0934200i \(-0.970220\pi\)
0.416909 0.908948i \(-0.363113\pi\)
\(132\) 0 0
\(133\) −6.89898 + 11.9494i −0.598217 + 1.03614i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.05051 + 8.74774i −0.431494 + 0.747370i −0.997002 0.0773729i \(-0.975347\pi\)
0.565508 + 0.824743i \(0.308680\pi\)
\(138\) 0 0
\(139\) 1.72474 + 2.98735i 0.146291 + 0.253383i 0.929854 0.367929i \(-0.119933\pi\)
−0.783563 + 0.621312i \(0.786600\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.55051 −0.715030
\(144\) 0 0
\(145\) −0.101021 −0.00838930
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.05051 + 3.55159i 0.167984 + 0.290957i 0.937711 0.347416i \(-0.112941\pi\)
−0.769727 + 0.638374i \(0.779608\pi\)
\(150\) 0 0
\(151\) −7.62372 + 13.2047i −0.620410 + 1.07458i 0.368999 + 0.929430i \(0.379700\pi\)
−0.989409 + 0.145152i \(0.953633\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.27526 + 2.20881i −0.102431 + 0.177416i
\(156\) 0 0
\(157\) 5.39898 + 9.35131i 0.430885 + 0.746316i 0.996950 0.0780455i \(-0.0248680\pi\)
−0.566064 + 0.824361i \(0.691535\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.7980 1.48149
\(162\) 0 0
\(163\) −5.79796 −0.454131 −0.227066 0.973879i \(-0.572913\pi\)
−0.227066 + 0.973879i \(0.572913\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.27526 + 3.94086i 0.176065 + 0.304953i 0.940529 0.339713i \(-0.110330\pi\)
−0.764465 + 0.644666i \(0.776997\pi\)
\(168\) 0 0
\(169\) −10.8990 + 18.8776i −0.838383 + 1.45212i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.50000 2.59808i 0.114043 0.197528i −0.803354 0.595502i \(-0.796953\pi\)
0.917397 + 0.397974i \(0.130287\pi\)
\(174\) 0 0
\(175\) 6.89898 + 11.9494i 0.521514 + 0.903288i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.6969 0.795097 0.397549 0.917581i \(-0.369861\pi\)
0.397549 + 0.917581i \(0.369861\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.449490 + 0.778539i 0.0330471 + 0.0572393i
\(186\) 0 0
\(187\) −3.55051 + 6.14966i −0.259639 + 0.449708i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.27526 + 10.8691i −0.454062 + 0.786458i −0.998634 0.0522563i \(-0.983359\pi\)
0.544572 + 0.838714i \(0.316692\pi\)
\(192\) 0 0
\(193\) −2.05051 3.55159i −0.147599 0.255649i 0.782741 0.622348i \(-0.213821\pi\)
−0.930340 + 0.366699i \(0.880488\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.5959 1.25366 0.626829 0.779157i \(-0.284353\pi\)
0.626829 + 0.779157i \(0.284353\pi\)
\(198\) 0 0
\(199\) −7.79796 −0.552783 −0.276391 0.961045i \(-0.589139\pi\)
−0.276391 + 0.961045i \(0.589139\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.174235 + 0.301783i 0.0122289 + 0.0211810i
\(204\) 0 0
\(205\) −5.94949 + 10.3048i −0.415530 + 0.719720i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.89898 5.02118i 0.200527 0.347322i
\(210\) 0 0
\(211\) −5.27526 9.13701i −0.363164 0.629018i 0.625316 0.780372i \(-0.284970\pi\)
−0.988480 + 0.151354i \(0.951637\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.34847 −0.160164
\(216\) 0 0
\(217\) 8.79796 0.597244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.4495 + 25.0273i 0.971978 + 1.68352i
\(222\) 0 0
\(223\) 8.07321 13.9832i 0.540622 0.936385i −0.458246 0.888825i \(-0.651522\pi\)
0.998868 0.0475601i \(-0.0151445\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.82577 6.62642i 0.253925 0.439811i −0.710678 0.703517i \(-0.751612\pi\)
0.964603 + 0.263706i \(0.0849450\pi\)
\(228\) 0 0
\(229\) 0.500000 + 0.866025i 0.0330409 + 0.0572286i 0.882073 0.471113i \(-0.156147\pi\)
−0.849032 + 0.528341i \(0.822814\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 6.34847 0.414128
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.07321 + 12.2512i 0.457528 + 0.792462i 0.998830 0.0483665i \(-0.0154016\pi\)
−0.541301 + 0.840829i \(0.682068\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.44949 + 4.24264i −0.156492 + 0.271052i
\(246\) 0 0
\(247\) −11.7980 20.4347i −0.750686 1.30023i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.7980 −1.37587 −0.687937 0.725770i \(-0.741484\pi\)
−0.687937 + 0.725770i \(0.741484\pi\)
\(252\) 0 0
\(253\) −7.89898 −0.496605
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.39898 9.35131i −0.336779 0.583318i 0.647046 0.762451i \(-0.276004\pi\)
−0.983825 + 0.179133i \(0.942671\pi\)
\(258\) 0 0
\(259\) 1.55051 2.68556i 0.0963440 0.166873i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.72474 4.71940i 0.168015 0.291010i −0.769707 0.638397i \(-0.779598\pi\)
0.937722 + 0.347387i \(0.112931\pi\)
\(264\) 0 0
\(265\) 4.44949 + 7.70674i 0.273330 + 0.473421i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.10102 −0.432957 −0.216478 0.976287i \(-0.569457\pi\)
−0.216478 + 0.976287i \(0.569457\pi\)
\(270\) 0 0
\(271\) 29.3939 1.78555 0.892775 0.450502i \(-0.148755\pi\)
0.892775 + 0.450502i \(0.148755\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.89898 5.02118i −0.174815 0.302789i
\(276\) 0 0
\(277\) 7.39898 12.8154i 0.444562 0.770003i −0.553460 0.832876i \(-0.686693\pi\)
0.998022 + 0.0628725i \(0.0200262\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.05051 + 8.74774i −0.301288 + 0.521846i −0.976428 0.215843i \(-0.930750\pi\)
0.675140 + 0.737690i \(0.264083\pi\)
\(282\) 0 0
\(283\) 1.72474 + 2.98735i 0.102525 + 0.177579i 0.912725 0.408576i \(-0.133974\pi\)
−0.810199 + 0.586155i \(0.800641\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 41.0454 2.42283
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.398979 + 0.691053i 0.0233086 + 0.0403717i 0.877444 0.479678i \(-0.159247\pi\)
−0.854136 + 0.520050i \(0.825913\pi\)
\(294\) 0 0
\(295\) 7.17423 12.4261i 0.417700 0.723478i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.0732 + 27.8396i −0.929538 + 1.61001i
\(300\) 0 0
\(301\) 4.05051 + 7.01569i 0.233468 + 0.404378i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.89898 −0.452294
\(306\) 0 0
\(307\) −21.7980 −1.24408 −0.622038 0.782987i \(-0.713695\pi\)
−0.622038 + 0.782987i \(0.713695\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.62372 13.2047i −0.432302 0.748769i 0.564769 0.825249i \(-0.308965\pi\)
−0.997071 + 0.0764802i \(0.975632\pi\)
\(312\) 0 0
\(313\) 8.50000 14.7224i 0.480448 0.832161i −0.519300 0.854592i \(-0.673807\pi\)
0.999748 + 0.0224310i \(0.00714060\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.9495 22.4292i 0.727316 1.25975i −0.230698 0.973025i \(-0.574101\pi\)
0.958014 0.286722i \(-0.0925658\pi\)
\(318\) 0 0
\(319\) −0.0732141 0.126811i −0.00409920 0.00710003i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −19.5959 −1.09035
\(324\) 0 0
\(325\) −23.5959 −1.30887
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.9495 18.9651i −0.603665 1.04558i
\(330\) 0 0
\(331\) −5.62372 + 9.74058i −0.309108 + 0.535390i −0.978167 0.207818i \(-0.933364\pi\)
0.669060 + 0.743209i \(0.266697\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.17423 + 10.6941i −0.337334 + 0.584280i
\(336\) 0 0
\(337\) 5.39898 + 9.35131i 0.294101 + 0.509398i 0.974775 0.223188i \(-0.0716464\pi\)
−0.680674 + 0.732586i \(0.738313\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.69694 −0.200200
\(342\) 0 0
\(343\) −7.24745 −0.391325
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.07321 + 5.32296i 0.164979 + 0.285752i 0.936648 0.350273i \(-0.113911\pi\)
−0.771669 + 0.636024i \(0.780578\pi\)
\(348\) 0 0
\(349\) 7.39898 12.8154i 0.396058 0.685993i −0.597177 0.802109i \(-0.703711\pi\)
0.993236 + 0.116116i \(0.0370445\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.84847 + 11.8619i −0.364507 + 0.631345i −0.988697 0.149928i \(-0.952096\pi\)
0.624190 + 0.781273i \(0.285429\pi\)
\(354\) 0 0
\(355\) 3.89898 + 6.75323i 0.206936 + 0.358424i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.79796 0.0948926 0.0474463 0.998874i \(-0.484892\pi\)
0.0474463 + 0.998874i \(0.484892\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.44949 + 4.24264i 0.128212 + 0.222070i
\(366\) 0 0
\(367\) 2.17423 3.76588i 0.113494 0.196578i −0.803683 0.595058i \(-0.797129\pi\)
0.917177 + 0.398481i \(0.130462\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.3485 26.5843i 0.796853 1.38019i
\(372\) 0 0
\(373\) −15.8485 27.4504i −0.820603 1.42133i −0.905234 0.424913i \(-0.860305\pi\)
0.0846315 0.996412i \(-0.473029\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.595918 −0.0306913
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.2753 + 24.7255i 0.729431 + 1.26341i 0.957124 + 0.289679i \(0.0935486\pi\)
−0.227692 + 0.973733i \(0.573118\pi\)
\(384\) 0 0
\(385\) 2.50000 4.33013i 0.127412 0.220684i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.39898 + 5.88721i −0.172335 + 0.298493i −0.939236 0.343273i \(-0.888465\pi\)
0.766901 + 0.641766i \(0.221798\pi\)
\(390\) 0 0
\(391\) 13.3485 + 23.1202i 0.675061 + 1.16924i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.4495 0.676717
\(396\) 0 0
\(397\) −10.6969 −0.536864 −0.268432 0.963299i \(-0.586505\pi\)
−0.268432 + 0.963299i \(0.586505\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.84847 11.8619i −0.341996 0.592355i 0.642807 0.766028i \(-0.277770\pi\)
−0.984803 + 0.173673i \(0.944436\pi\)
\(402\) 0 0
\(403\) −7.52270 + 13.0297i −0.374733 + 0.649056i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.651531 + 1.12848i −0.0322952 + 0.0559369i
\(408\) 0 0
\(409\) −13.2980 23.0327i −0.657542 1.13890i −0.981250 0.192739i \(-0.938263\pi\)
0.323708 0.946157i \(-0.395070\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −49.4949 −2.43548
\(414\) 0 0
\(415\) 0.550510 0.0270235
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.6237 27.0611i −0.763269 1.32202i −0.941157 0.337970i \(-0.890260\pi\)
0.177888 0.984051i \(-0.443073\pi\)
\(420\) 0 0
\(421\) −0.0505103 + 0.0874863i −0.00246172 + 0.00426382i −0.867254 0.497867i \(-0.834117\pi\)
0.864792 + 0.502130i \(0.167450\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.79796 + 16.9706i −0.475271 + 0.823193i
\(426\) 0 0
\(427\) 13.6237 + 23.5970i 0.659298 + 1.14194i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.2020 −0.684088 −0.342044 0.939684i \(-0.611119\pi\)
−0.342044 + 0.939684i \(0.611119\pi\)
\(432\) 0 0
\(433\) −8.49490 −0.408239 −0.204119 0.978946i \(-0.565433\pi\)
−0.204119 + 0.978946i \(0.565433\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.8990 18.8776i −0.521369 0.903037i
\(438\) 0 0
\(439\) 18.1742 31.4787i 0.867409 1.50240i 0.00277364 0.999996i \(-0.499117\pi\)
0.864635 0.502400i \(-0.167550\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.7247 20.3079i 0.557059 0.964855i −0.440681 0.897664i \(-0.645263\pi\)
0.997740 0.0671913i \(-0.0214038\pi\)
\(444\) 0 0
\(445\) −6.44949 11.1708i −0.305735 0.529549i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −11.1010 −0.523890 −0.261945 0.965083i \(-0.584364\pi\)
−0.261945 + 0.965083i \(0.584364\pi\)
\(450\) 0 0
\(451\) −17.2474 −0.812151
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.1742 17.6223i −0.476975 0.826146i
\(456\) 0 0
\(457\) 15.7474 27.2754i 0.736635 1.27589i −0.217368 0.976090i \(-0.569747\pi\)
0.954002 0.299799i \(-0.0969195\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.8485 30.9145i 0.831286 1.43983i −0.0657327 0.997837i \(-0.520938\pi\)
0.897019 0.441992i \(-0.145728\pi\)
\(462\) 0 0
\(463\) 15.6237 + 27.0611i 0.726096 + 1.25764i 0.958521 + 0.285021i \(0.0920006\pi\)
−0.232425 + 0.972614i \(0.574666\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −39.5959 −1.83228 −0.916140 0.400858i \(-0.868712\pi\)
−0.916140 + 0.400858i \(0.868712\pi\)
\(468\) 0 0
\(469\) 42.5959 1.96690
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.70204 2.94802i −0.0782599 0.135550i
\(474\) 0 0
\(475\) 8.00000 13.8564i 0.367065 0.635776i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.5227 21.6900i 0.572177 0.991040i −0.424165 0.905585i \(-0.639432\pi\)
0.996342 0.0854547i \(-0.0272343\pi\)
\(480\) 0 0
\(481\) 2.65153 + 4.59259i 0.120899 + 0.209404i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.89898 −0.177044
\(486\) 0 0
\(487\) −17.7980 −0.806503 −0.403251 0.915089i \(-0.632120\pi\)
−0.403251 + 0.915089i \(0.632120\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.37628 + 9.31198i 0.242628 + 0.420244i 0.961462 0.274938i \(-0.0886573\pi\)
−0.718834 + 0.695182i \(0.755324\pi\)
\(492\) 0 0
\(493\) −0.247449 + 0.428594i −0.0111445 + 0.0193029i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.4495 23.2952i 0.603292 1.04493i
\(498\) 0 0
\(499\) 0.825765 + 1.43027i 0.0369663 + 0.0640276i 0.883917 0.467644i \(-0.154897\pi\)
−0.846950 + 0.531672i \(0.821564\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.7980 1.77450 0.887252 0.461286i \(-0.152612\pi\)
0.887252 + 0.461286i \(0.152612\pi\)
\(504\) 0 0
\(505\) −12.7980 −0.569502
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.74745 13.4190i −0.343400 0.594786i 0.641662 0.766987i \(-0.278245\pi\)
−0.985062 + 0.172202i \(0.944912\pi\)
\(510\) 0 0
\(511\) 8.44949 14.6349i 0.373783 0.647412i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.27526 + 10.8691i −0.276521 + 0.478948i
\(516\) 0 0
\(517\) 4.60102 + 7.96920i 0.202353 + 0.350485i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 13.5959 0.594508 0.297254 0.954798i \(-0.403929\pi\)
0.297254 + 0.954798i \(0.403929\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.24745 + 10.8209i 0.272143 + 0.471366i
\(528\) 0 0
\(529\) −3.34847 + 5.79972i −0.145586 + 0.252162i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −35.0959 + 60.7879i −1.52017 + 2.63302i
\(534\) 0 0
\(535\) −2.89898 5.02118i −0.125334 0.217085i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.10102 −0.305863
\(540\) 0 0
\(541\) 29.5959 1.27243 0.636214 0.771513i \(-0.280500\pi\)
0.636214 + 0.771513i \(0.280500\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.449490 0.778539i −0.0192540 0.0333489i
\(546\) 0 0
\(547\) 3.27526 5.67291i 0.140040 0.242556i −0.787472 0.616351i \(-0.788610\pi\)
0.927511 + 0.373795i \(0.121944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.202041 0.349945i 0.00860724 0.0149082i
\(552\) 0 0
\(553\) −23.1969 40.1783i −0.986434 1.70855i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.6969 0.792215 0.396107 0.918204i \(-0.370361\pi\)
0.396107 + 0.918204i \(0.370361\pi\)
\(558\) 0 0
\(559\) −13.8536 −0.585944
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.17423 + 3.76588i 0.0916331 + 0.158713i 0.908198 0.418540i \(-0.137458\pi\)
−0.816565 + 0.577253i \(0.804125\pi\)
\(564\) 0 0
\(565\) 4.39898 7.61926i 0.185066 0.320545i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.500000 + 0.866025i −0.0209611 + 0.0363057i −0.876316 0.481737i \(-0.840006\pi\)
0.855355 + 0.518043i \(0.173339\pi\)
\(570\) 0 0
\(571\) 1.82577 + 3.16232i 0.0764059 + 0.132339i 0.901697 0.432369i \(-0.142322\pi\)
−0.825291 + 0.564708i \(0.808989\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.7980 −0.909038
\(576\) 0 0
\(577\) −19.1010 −0.795186 −0.397593 0.917562i \(-0.630154\pi\)
−0.397593 + 0.917562i \(0.630154\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.949490 1.64456i −0.0393915 0.0682280i
\(582\) 0 0
\(583\) −6.44949 + 11.1708i −0.267111 + 0.462649i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.9722 + 25.9326i −0.617969 + 1.07035i 0.371887 + 0.928278i \(0.378711\pi\)
−0.989856 + 0.142075i \(0.954623\pi\)
\(588\) 0 0
\(589\) −5.10102 8.83523i −0.210184 0.364049i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.8990 −1.18674 −0.593369 0.804930i \(-0.702203\pi\)
−0.593369 + 0.804930i \(0.702203\pi\)
\(594\) 0 0
\(595\) −16.8990 −0.692791
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.2753 + 24.7255i 0.583271 + 1.01026i 0.995089 + 0.0989888i \(0.0315608\pi\)
−0.411817 + 0.911266i \(0.635106\pi\)
\(600\) 0 0
\(601\) −5.15153 + 8.92271i −0.210135 + 0.363965i −0.951757 0.306854i \(-0.900724\pi\)
0.741621 + 0.670819i \(0.234057\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.44949 7.70674i 0.180897 0.313324i
\(606\) 0 0
\(607\) −12.9722 22.4685i −0.526525 0.911968i −0.999522 0.0309043i \(-0.990161\pi\)
0.472997 0.881064i \(-0.343172\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 37.4495 1.51504
\(612\) 0 0
\(613\) −26.6969 −1.07828 −0.539140 0.842216i \(-0.681250\pi\)
−0.539140 + 0.842216i \(0.681250\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.8485 + 20.5222i 0.477001 + 0.826191i 0.999653 0.0263559i \(-0.00839032\pi\)
−0.522651 + 0.852547i \(0.675057\pi\)
\(618\) 0 0
\(619\) 13.0732 22.6435i 0.525457 0.910118i −0.474104 0.880469i \(-0.657228\pi\)
0.999560 0.0296488i \(-0.00943890\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.2474 + 38.5337i −0.891325 + 1.54382i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.40408 0.175602
\(630\) 0 0
\(631\) −6.20204 −0.246899 −0.123450 0.992351i \(-0.539396\pi\)
−0.123450 + 0.992351i \(0.539396\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) −14.4495 + 25.0273i −0.572510 + 0.991616i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.2980 23.0327i 0.525238 0.909739i −0.474330 0.880347i \(-0.657310\pi\)
0.999568 0.0293915i \(-0.00935696\pi\)
\(642\) 0 0
\(643\) −2.17423 3.76588i −0.0857434 0.148512i 0.819964 0.572415i \(-0.193993\pi\)
−0.905708 + 0.423903i \(0.860660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.79796 −0.385198 −0.192599 0.981278i \(-0.561692\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(648\) 0 0
\(649\) 20.7980 0.816391
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.50000 14.7224i −0.332631 0.576133i 0.650396 0.759595i \(-0.274603\pi\)
−0.983027 + 0.183462i \(0.941270\pi\)
\(654\) 0 0
\(655\) −6.62372 + 11.4726i −0.258810 + 0.448273i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.82577 6.62642i 0.149031 0.258129i −0.781839 0.623481i \(-0.785718\pi\)
0.930869 + 0.365352i \(0.119051\pi\)
\(660\) 0 0
\(661\) 15.1969 + 26.3219i 0.591092 + 1.02380i 0.994086 + 0.108599i \(0.0346365\pi\)
−0.402993 + 0.915203i \(0.632030\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.7980 0.535062
\(666\) 0 0
\(667\) −0.550510 −0.0213158
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.72474 9.91555i −0.221001 0.382786i
\(672\) 0 0
\(673\) −13.6464 + 23.6363i −0.526031 + 0.911113i 0.473509 + 0.880789i \(0.342987\pi\)
−0.999540 + 0.0303237i \(0.990346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.1969 21.1257i 0.468766 0.811927i −0.530596 0.847625i \(-0.678032\pi\)
0.999363 + 0.0356974i \(0.0113653\pi\)
\(678\) 0 0
\(679\) 6.72474 + 11.6476i 0.258072 + 0.446994i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.3939 0.665558 0.332779 0.943005i \(-0.392014\pi\)
0.332779 + 0.943005i \(0.392014\pi\)
\(684\) 0 0
\(685\) 10.1010 0.385940
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 26.2474 + 45.4619i 0.999948 + 1.73196i
\(690\) 0 0
\(691\) 18.9722 32.8608i 0.721736 1.25008i −0.238567 0.971126i \(-0.576678\pi\)
0.960303 0.278958i \(-0.0899890\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.72474 2.98735i 0.0654233 0.113316i
\(696\) 0 0
\(697\) 29.1464 + 50.4831i 1.10400 + 1.91218i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.4949 0.471926 0.235963 0.971762i \(-0.424176\pi\)
0.235963 + 0.971762i \(0.424176\pi\)
\(702\) 0 0
\(703\) −3.59592 −0.135623
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.0732 + 38.2319i 0.830149 + 1.43786i
\(708\) 0 0
\(709\) 2.50000 4.33013i 0.0938895 0.162621i −0.815255 0.579102i \(-0.803403\pi\)
0.909145 + 0.416481i \(0.136737\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.94949 + 12.0369i −0.260260 + 0.450784i
\(714\) 0 0
\(715\) 4.27526 + 7.40496i 0.159885 + 0.276930i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.1918 −1.16326 −0.581630 0.813454i \(-0.697585\pi\)
−0.581630 + 0.813454i \(0.697585\pi\)
\(720\) 0 0
\(721\) 43.2929 1.61231
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.202041 0.349945i −0.00750362 0.0129966i
\(726\) 0 0
\(727\) 9.27526 16.0652i 0.344000 0.595826i −0.641171 0.767398i \(-0.721551\pi\)
0.985172 + 0.171572i \(0.0548846\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.75255 + 9.96371i −0.212766 + 0.368521i
\(732\) 0 0
\(733\) 5.94949 + 10.3048i 0.219749 + 0.380617i 0.954731 0.297470i \(-0.0961427\pi\)
−0.734982 + 0.678087i \(0.762809\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.8990 −0.659317
\(738\) 0 0
\(739\) −14.0000 −0.514998 −0.257499 0.966279i \(-0.582898\pi\)
−0.257499 + 0.966279i \(0.582898\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.7247 30.7002i −0.650258 1.12628i −0.983060 0.183283i \(-0.941328\pi\)
0.332802 0.942997i \(-0.392006\pi\)
\(744\) 0 0
\(745\) 2.05051 3.55159i 0.0751249 0.130120i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.0000 + 17.3205i −0.365392 + 0.632878i
\(750\) 0 0
\(751\) 21.3207 + 36.9285i 0.778002 + 1.34754i 0.933092 + 0.359639i \(0.117100\pi\)
−0.155090 + 0.987900i \(0.549567\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.2474 0.554911
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.6464 21.9043i −0.458433 0.794029i 0.540446 0.841379i \(-0.318256\pi\)
−0.998878 + 0.0473502i \(0.984922\pi\)
\(762\) 0 0
\(763\) −1.55051 + 2.68556i −0.0561322 + 0.0972239i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 42.3207 73.3015i 1.52811 2.64677i
\(768\) 0 0
\(769\) 18.2980 + 31.6930i 0.659841 + 1.14288i 0.980656 + 0.195737i \(0.0627098\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.4949 1.31263 0.656315 0.754487i \(-0.272114\pi\)
0.656315 + 0.754487i \(0.272114\pi\)
\(774\) 0 0
\(775\) −10.2020 −0.366468
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.7980 41.2193i −0.852650 1.47683i
\(780\) 0 0
\(781\) −5.65153 + 9.78874i −0.202228 + 0.350269i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.39898 9.35131i 0.192698 0.333762i
\(786\) 0 0
\(787\) 10.6237 + 18.4008i 0.378695 + 0.655919i 0.990873 0.134801i \(-0.0430396\pi\)
−0.612178 + 0.790720i \(0.709706\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.3485 −1.07907
\(792\) 0 0
\(793\) −46.5959 −1.65467
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8485 + 41.3068i 0.844756 + 1.46316i 0.885833 + 0.464005i \(0.153588\pi\)
−0.0410767 + 0.999156i \(0.513079\pi\)
\(798\) 0 0
\(799\) 15.5505 26.9343i 0.550138 0.952866i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.55051 + 6.14966i −0.125295 + 0.217017i
\(804\) 0 0
\(805\) −9.39898 16.2795i −0.331270 0.573777i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.4949 1.14246 0.571230 0.820790i \(-0.306466\pi\)
0.571230 + 0.820790i \(0.306466\pi\)
\(810\) 0 0
\(811\) 8.40408 0.295107 0.147554 0.989054i \(-0.452860\pi\)
0.147554 + 0.989054i \(0.452860\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.89898 + 5.02118i 0.101547 + 0.175884i
\(816\) 0 0
\(817\) 4.69694 8.13534i 0.164325 0.284619i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.64643 13.2440i 0.266862 0.462219i −0.701188 0.712977i \(-0.747346\pi\)
0.968050 + 0.250758i \(0.0806798\pi\)
\(822\) 0 0
\(823\) −5.27526 9.13701i −0.183884 0.318496i 0.759316 0.650722i \(-0.225534\pi\)
−0.943200 + 0.332226i \(0.892200\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 0 0
\(829\) −23.1010 −0.802332 −0.401166 0.916005i \(-0.631395\pi\)
−0.401166 + 0.916005i \(0.631395\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.0000 + 20.7846i 0.415775 + 0.720144i
\(834\) 0 0
\(835\) 2.27526 3.94086i 0.0787385 0.136379i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.1742 + 26.2825i −0.523873 + 0.907374i 0.475741 + 0.879585i \(0.342180\pi\)
−0.999614 + 0.0277888i \(0.991153\pi\)
\(840\) 0 0
\(841\) 14.4949 + 25.1059i 0.499824 + 0.865721i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 21.7980 0.749873
\(846\) 0 0
\(847\) −30.6969 −1.05476
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.44949 + 4.24264i 0.0839674 + 0.145436i
\(852\) 0 0
\(853\) 3.94949 6.84072i 0.135228 0.234222i −0.790457 0.612518i \(-0.790157\pi\)
0.925685 + 0.378296i \(0.123490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.9495 + 24.1612i −0.476505 + 0.825332i −0.999638 0.0269199i \(-0.991430\pi\)
0.523132 + 0.852252i \(0.324763\pi\)
\(858\) 0 0
\(859\) 10.7247 + 18.5758i 0.365924 + 0.633798i 0.988924 0.148423i \(-0.0474198\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.7980 0.605850 0.302925 0.953014i \(-0.402037\pi\)
0.302925 + 0.953014i \(0.402037\pi\)
\(864\) 0 0
\(865\) −3.00000 −0.102003
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.74745 + 16.8831i 0.330660 + 0.572719i
\(870\) 0 0
\(871\) −36.4217 + 63.0842i −1.23410 + 2.13753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.5227 26.8861i 0.524763 0.908916i
\(876\) 0 0
\(877\) 13.9495 + 24.1612i 0.471041 + 0.815867i 0.999451 0.0331224i \(-0.0105451\pi\)
−0.528411 + 0.848989i \(0.677212\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 24.4949 0.825254 0.412627 0.910900i \(-0.364611\pi\)
0.412627 + 0.910900i \(0.364611\pi\)
\(882\) 0 0
\(883\) 39.5959 1.33251 0.666254 0.745725i \(-0.267897\pi\)
0.666254 + 0.745725i \(0.267897\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.4217 30.1752i −0.584963 1.01319i −0.994880 0.101063i \(-0.967776\pi\)
0.409917 0.912123i \(-0.365558\pi\)
\(888\) 0 0
\(889\) −13.7980 + 23.8988i −0.462769 + 0.801539i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.6969 + 21.9917i −0.424887 + 0.735926i
\(894\) 0 0
\(895\) −6.00000 10.3923i −0.200558 0.347376i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.257654 −0.00859324
\(900\) 0 0
\(901\) 43.5959 1.45239
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.34847 9.26382i −0.177789 0.307940i
\(906\) 0 0
\(907\) −12.6237 + 21.8649i −0.419164 + 0.726013i −0.995856 0.0909487i \(-0.971010\pi\)
0.576692 + 0.816962i \(0.304343\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −21.7702 + 37.7070i −0.721277 + 1.24929i 0.239211 + 0.970968i \(0.423111\pi\)
−0.960488 + 0.278321i \(0.910222\pi\)
\(912\) 0 0
\(913\) 0.398979 + 0.691053i 0.0132043 + 0.0228705i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.6969 1.50905
\(918\) 0 0
\(919\) −9.79796 −0.323205 −0.161602 0.986856i \(-0.551666\pi\)
−0.161602 + 0.986856i \(0.551666\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.0000 + 39.8372i 0.757054 + 1.31126i
\(924\) 0 0
\(925\) −1.79796 + 3.11416i −0.0591165 + 0.102393i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.8485 41.3068i 0.782443 1.35523i −0.148072 0.988977i \(-0.547307\pi\)
0.930515 0.366254i \(-0.119360\pi\)
\(930\) 0 0
\(931\) −9.79796 16.9706i −0.321115 0.556188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.10102 0.232228
\(936\) 0 0
\(937\) 56.4949 1.84561 0.922804 0.385270i \(-0.125892\pi\)
0.922804 + 0.385270i \(0.125892\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.50000 + 6.06218i 0.114097 + 0.197621i 0.917418 0.397924i \(-0.130269\pi\)
−0.803322 + 0.595545i \(0.796936\pi\)
\(942\) 0 0
\(943\) −32.4217 + 56.1560i −1.05580 + 1.82869i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.3763 + 17.9722i −0.337184 + 0.584019i −0.983902 0.178710i \(-0.942808\pi\)
0.646718 + 0.762729i \(0.276141\pi\)
\(948\) 0 0
\(949\) 14.4495 + 25.0273i 0.469050 + 0.812419i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −43.1010 −1.39618 −0.698090 0.716011i \(-0.745966\pi\)
−0.698090 + 0.716011i \(0.745966\pi\)
\(954\) 0 0
\(955\) 12.5505 0.406125
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.4217 30.1752i −0.562575 0.974409i
\(960\) 0 0
\(961\) 12.2474 21.2132i 0.395079 0.684297i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.05051 + 3.55159i −0.0660083 + 0.114330i
\(966\) 0 0
\(967\) 7.62372 + 13.2047i 0.245162 + 0.424634i 0.962177 0.272424i \(-0.0878254\pi\)
−0.717015 + 0.697058i \(0.754492\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 0 0
\(973\) −11.8990 −0.381464
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.60102 + 11.4333i 0.211185 + 0.365784i 0.952086 0.305831i \(-0.0989343\pi\)
−0.740900 + 0.671615i \(0.765601\pi\)
\(978\) 0 0
\(979\) 9.34847 16.1920i 0.298778 0.517499i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.82577 17.0187i 0.313393 0.542813i −0.665701 0.746218i \(-0.731868\pi\)
0.979095 + 0.203405i \(0.0652009\pi\)
\(984\) 0 0
\(985\) −8.79796 15.2385i −0.280326 0.485539i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.7980 −0.406951
\(990\) 0 0
\(991\) −21.3939 −0.679599 −0.339799 0.940498i \(-0.610359\pi\)
−0.339799 + 0.940498i \(0.610359\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.89898 + 6.75323i 0.123606 + 0.214092i
\(996\) 0 0
\(997\) −16.1969 + 28.0539i −0.512962 + 0.888477i 0.486925 + 0.873444i \(0.338119\pi\)
−0.999887 + 0.0150327i \(0.995215\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.i.c.289.1 4
3.2 odd 2 288.2.i.e.97.2 yes 4
4.3 odd 2 864.2.i.e.289.2 4
8.3 odd 2 1728.2.i.m.1153.2 4
8.5 even 2 1728.2.i.k.1153.1 4
9.2 odd 6 2592.2.a.n.1.2 2
9.4 even 3 inner 864.2.i.c.577.1 4
9.5 odd 6 288.2.i.e.193.1 yes 4
9.7 even 3 2592.2.a.s.1.2 2
12.11 even 2 288.2.i.c.97.1 4
24.5 odd 2 576.2.i.i.385.1 4
24.11 even 2 576.2.i.m.385.2 4
36.7 odd 6 2592.2.a.o.1.1 2
36.11 even 6 2592.2.a.j.1.1 2
36.23 even 6 288.2.i.c.193.2 yes 4
36.31 odd 6 864.2.i.e.577.2 4
72.5 odd 6 576.2.i.i.193.2 4
72.11 even 6 5184.2.a.bu.1.1 2
72.13 even 6 1728.2.i.k.577.1 4
72.29 odd 6 5184.2.a.by.1.2 2
72.43 odd 6 5184.2.a.bj.1.1 2
72.59 even 6 576.2.i.m.193.1 4
72.61 even 6 5184.2.a.bn.1.2 2
72.67 odd 6 1728.2.i.m.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.i.c.97.1 4 12.11 even 2
288.2.i.c.193.2 yes 4 36.23 even 6
288.2.i.e.97.2 yes 4 3.2 odd 2
288.2.i.e.193.1 yes 4 9.5 odd 6
576.2.i.i.193.2 4 72.5 odd 6
576.2.i.i.385.1 4 24.5 odd 2
576.2.i.m.193.1 4 72.59 even 6
576.2.i.m.385.2 4 24.11 even 2
864.2.i.c.289.1 4 1.1 even 1 trivial
864.2.i.c.577.1 4 9.4 even 3 inner
864.2.i.e.289.2 4 4.3 odd 2
864.2.i.e.577.2 4 36.31 odd 6
1728.2.i.k.577.1 4 72.13 even 6
1728.2.i.k.1153.1 4 8.5 even 2
1728.2.i.m.577.2 4 72.67 odd 6
1728.2.i.m.1153.2 4 8.3 odd 2
2592.2.a.j.1.1 2 36.11 even 6
2592.2.a.n.1.2 2 9.2 odd 6
2592.2.a.o.1.1 2 36.7 odd 6
2592.2.a.s.1.2 2 9.7 even 3
5184.2.a.bj.1.1 2 72.43 odd 6
5184.2.a.bn.1.2 2 72.61 even 6
5184.2.a.bu.1.1 2 72.11 even 6
5184.2.a.by.1.2 2 72.29 odd 6