Properties

Label 288.2.i.c.97.1
Level $288$
Weight $2$
Character 288.97
Analytic conductor $2.300$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,2,Mod(97,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 97.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 288.97
Dual form 288.2.i.c.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.41421i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.72474 - 2.98735i) q^{7} +(-1.00000 + 2.82843i) q^{9} +(0.724745 - 1.25529i) q^{11} +(-2.94949 - 5.10867i) q^{13} +(0.724745 - 1.57313i) q^{15} +4.89898 q^{17} -4.00000 q^{19} +(-5.94949 + 0.548188i) q^{21} +(-2.72474 - 4.71940i) q^{23} +(2.00000 - 3.46410i) q^{25} +(5.00000 - 1.41421i) q^{27} +(-0.0505103 + 0.0874863i) q^{29} +(1.27526 + 2.20881i) q^{31} +(-2.50000 + 0.230351i) q^{33} +3.44949 q^{35} -0.898979 q^{37} +(-4.27526 + 9.27987i) q^{39} +(5.94949 + 10.3048i) q^{41} +(-1.17423 + 2.03383i) q^{43} +(-2.94949 + 0.548188i) q^{45} +(-3.17423 + 5.49794i) q^{47} +(-2.44949 - 4.24264i) q^{49} +(-4.89898 - 6.92820i) q^{51} +8.89898 q^{53} +1.44949 q^{55} +(4.00000 + 5.65685i) q^{57} +(7.17423 + 12.4261i) q^{59} +(3.94949 - 6.84072i) q^{61} +(6.72474 + 7.86566i) q^{63} +(2.94949 - 5.10867i) q^{65} +(6.17423 + 10.6941i) q^{67} +(-3.94949 + 8.57277i) q^{69} -7.79796 q^{71} -4.89898 q^{73} +(-6.89898 + 0.635674i) q^{75} +(-2.50000 - 4.33013i) q^{77} +(6.72474 - 11.6476i) q^{79} +(-7.00000 - 5.65685i) q^{81} +(-0.275255 + 0.476756i) q^{83} +(2.44949 + 4.24264i) q^{85} +(0.174235 - 0.0160540i) q^{87} -12.8990 q^{89} -20.3485 q^{91} +(1.84847 - 4.01229i) q^{93} +(-2.00000 - 3.46410i) q^{95} +(1.94949 - 3.37662i) q^{97} +(2.82577 + 3.30518i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 2 q^{5} + 2 q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} - 2 q^{15} - 16 q^{19} - 14 q^{21} - 6 q^{23} + 8 q^{25} + 20 q^{27} - 10 q^{29} + 10 q^{31} - 10 q^{33} + 4 q^{35} + 16 q^{37} - 22 q^{39}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.41421i −0.577350 0.816497i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i 0.955901 0.293691i \(-0.0948835\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) 0 0
\(7\) 1.72474 2.98735i 0.651892 1.12911i −0.330771 0.943711i \(-0.607309\pi\)
0.982663 0.185399i \(-0.0593579\pi\)
\(8\) 0 0
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 0 0
\(11\) 0.724745 1.25529i 0.218519 0.378486i −0.735837 0.677159i \(-0.763211\pi\)
0.954355 + 0.298674i \(0.0965442\pi\)
\(12\) 0 0
\(13\) −2.94949 5.10867i −0.818041 1.41689i −0.907123 0.420865i \(-0.861727\pi\)
0.0890821 0.996024i \(-0.471607\pi\)
\(14\) 0 0
\(15\) 0.724745 1.57313i 0.187128 0.406181i
\(16\) 0 0
\(17\) 4.89898 1.18818 0.594089 0.804400i \(-0.297513\pi\)
0.594089 + 0.804400i \(0.297513\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −5.94949 + 0.548188i −1.29829 + 0.119624i
\(22\) 0 0
\(23\) −2.72474 4.71940i −0.568149 0.984062i −0.996749 0.0805681i \(-0.974327\pi\)
0.428601 0.903494i \(-0.359007\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) 0 0
\(29\) −0.0505103 + 0.0874863i −0.00937952 + 0.0162458i −0.870677 0.491855i \(-0.836319\pi\)
0.861298 + 0.508101i \(0.169652\pi\)
\(30\) 0 0
\(31\) 1.27526 + 2.20881i 0.229043 + 0.396713i 0.957525 0.288352i \(-0.0931072\pi\)
−0.728482 + 0.685065i \(0.759774\pi\)
\(32\) 0 0
\(33\) −2.50000 + 0.230351i −0.435194 + 0.0400989i
\(34\) 0 0
\(35\) 3.44949 0.583070
\(36\) 0 0
\(37\) −0.898979 −0.147791 −0.0738957 0.997266i \(-0.523543\pi\)
−0.0738957 + 0.997266i \(0.523543\pi\)
\(38\) 0 0
\(39\) −4.27526 + 9.27987i −0.684589 + 1.48597i
\(40\) 0 0
\(41\) 5.94949 + 10.3048i 0.929154 + 1.60934i 0.784740 + 0.619825i \(0.212796\pi\)
0.144414 + 0.989517i \(0.453870\pi\)
\(42\) 0 0
\(43\) −1.17423 + 2.03383i −0.179069 + 0.310157i −0.941562 0.336840i \(-0.890642\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) −2.94949 + 0.548188i −0.439684 + 0.0817191i
\(46\) 0 0
\(47\) −3.17423 + 5.49794i −0.463010 + 0.801956i −0.999109 0.0421984i \(-0.986564\pi\)
0.536100 + 0.844155i \(0.319897\pi\)
\(48\) 0 0
\(49\) −2.44949 4.24264i −0.349927 0.606092i
\(50\) 0 0
\(51\) −4.89898 6.92820i −0.685994 0.970143i
\(52\) 0 0
\(53\) 8.89898 1.22237 0.611184 0.791488i \(-0.290693\pi\)
0.611184 + 0.791488i \(0.290693\pi\)
\(54\) 0 0
\(55\) 1.44949 0.195449
\(56\) 0 0
\(57\) 4.00000 + 5.65685i 0.529813 + 0.749269i
\(58\) 0 0
\(59\) 7.17423 + 12.4261i 0.934006 + 1.61775i 0.776397 + 0.630244i \(0.217045\pi\)
0.157609 + 0.987502i \(0.449622\pi\)
\(60\) 0 0
\(61\) 3.94949 6.84072i 0.505680 0.875864i −0.494298 0.869292i \(-0.664575\pi\)
0.999978 0.00657156i \(-0.00209181\pi\)
\(62\) 0 0
\(63\) 6.72474 + 7.86566i 0.847238 + 0.990980i
\(64\) 0 0
\(65\) 2.94949 5.10867i 0.365839 0.633652i
\(66\) 0 0
\(67\) 6.17423 + 10.6941i 0.754303 + 1.30649i 0.945720 + 0.324982i \(0.105358\pi\)
−0.191417 + 0.981509i \(0.561308\pi\)
\(68\) 0 0
\(69\) −3.94949 + 8.57277i −0.475463 + 1.03204i
\(70\) 0 0
\(71\) −7.79796 −0.925447 −0.462724 0.886503i \(-0.653128\pi\)
−0.462724 + 0.886503i \(0.653128\pi\)
\(72\) 0 0
\(73\) −4.89898 −0.573382 −0.286691 0.958023i \(-0.592555\pi\)
−0.286691 + 0.958023i \(0.592555\pi\)
\(74\) 0 0
\(75\) −6.89898 + 0.635674i −0.796626 + 0.0734014i
\(76\) 0 0
\(77\) −2.50000 4.33013i −0.284901 0.493464i
\(78\) 0 0
\(79\) 6.72474 11.6476i 0.756593 1.31046i −0.187986 0.982172i \(-0.560196\pi\)
0.944579 0.328286i \(-0.106471\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) −0.275255 + 0.476756i −0.0302132 + 0.0523308i −0.880737 0.473606i \(-0.842952\pi\)
0.850523 + 0.525937i \(0.176285\pi\)
\(84\) 0 0
\(85\) 2.44949 + 4.24264i 0.265684 + 0.460179i
\(86\) 0 0
\(87\) 0.174235 0.0160540i 0.0186799 0.00172117i
\(88\) 0 0
\(89\) −12.8990 −1.36729 −0.683645 0.729815i \(-0.739606\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(90\) 0 0
\(91\) −20.3485 −2.13310
\(92\) 0 0
\(93\) 1.84847 4.01229i 0.191677 0.416055i
\(94\) 0 0
\(95\) −2.00000 3.46410i −0.205196 0.355409i
\(96\) 0 0
\(97\) 1.94949 3.37662i 0.197941 0.342843i −0.749920 0.661529i \(-0.769908\pi\)
0.947861 + 0.318685i \(0.103241\pi\)
\(98\) 0 0
\(99\) 2.82577 + 3.30518i 0.284000 + 0.332183i
\(100\) 0 0
\(101\) −6.39898 + 11.0834i −0.636722 + 1.10284i 0.349425 + 0.936964i \(0.386377\pi\)
−0.986147 + 0.165871i \(0.946956\pi\)
\(102\) 0 0
\(103\) 6.27526 + 10.8691i 0.618319 + 1.07096i 0.989792 + 0.142517i \(0.0455195\pi\)
−0.371473 + 0.928444i \(0.621147\pi\)
\(104\) 0 0
\(105\) −3.44949 4.87832i −0.336636 0.476075i
\(106\) 0 0
\(107\) 5.79796 0.560510 0.280255 0.959926i \(-0.409581\pi\)
0.280255 + 0.959926i \(0.409581\pi\)
\(108\) 0 0
\(109\) 0.898979 0.0861066 0.0430533 0.999073i \(-0.486291\pi\)
0.0430533 + 0.999073i \(0.486291\pi\)
\(110\) 0 0
\(111\) 0.898979 + 1.27135i 0.0853274 + 0.120671i
\(112\) 0 0
\(113\) −4.39898 7.61926i −0.413821 0.716759i 0.581483 0.813559i \(-0.302473\pi\)
−0.995304 + 0.0967994i \(0.969139\pi\)
\(114\) 0 0
\(115\) 2.72474 4.71940i 0.254084 0.440086i
\(116\) 0 0
\(117\) 17.3990 3.23375i 1.60854 0.298960i
\(118\) 0 0
\(119\) 8.44949 14.6349i 0.774563 1.34158i
\(120\) 0 0
\(121\) 4.44949 + 7.70674i 0.404499 + 0.700613i
\(122\) 0 0
\(123\) 8.62372 18.7187i 0.777575 1.68781i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 4.05051 0.373215i 0.356628 0.0328598i
\(130\) 0 0
\(131\) −6.62372 11.4726i −0.578717 1.00237i −0.995627 0.0934200i \(-0.970220\pi\)
0.416909 0.908948i \(-0.363113\pi\)
\(132\) 0 0
\(133\) −6.89898 + 11.9494i −0.598217 + 1.03614i
\(134\) 0 0
\(135\) 3.72474 + 3.62302i 0.320575 + 0.311820i
\(136\) 0 0
\(137\) 5.05051 8.74774i 0.431494 0.747370i −0.565508 0.824743i \(-0.691320\pi\)
0.997002 + 0.0773729i \(0.0246532\pi\)
\(138\) 0 0
\(139\) −1.72474 2.98735i −0.146291 0.253383i 0.783563 0.621312i \(-0.213400\pi\)
−0.929854 + 0.367929i \(0.880067\pi\)
\(140\) 0 0
\(141\) 10.9495 1.00889i 0.922113 0.0849639i
\(142\) 0 0
\(143\) −8.55051 −0.715030
\(144\) 0 0
\(145\) −0.101021 −0.00838930
\(146\) 0 0
\(147\) −3.55051 + 7.70674i −0.292841 + 0.635641i
\(148\) 0 0
\(149\) −2.05051 3.55159i −0.167984 0.290957i 0.769727 0.638374i \(-0.220392\pi\)
−0.937711 + 0.347416i \(0.887059\pi\)
\(150\) 0 0
\(151\) 7.62372 13.2047i 0.620410 1.07458i −0.368999 0.929430i \(-0.620300\pi\)
0.989409 0.145152i \(-0.0463671\pi\)
\(152\) 0 0
\(153\) −4.89898 + 13.8564i −0.396059 + 1.12022i
\(154\) 0 0
\(155\) −1.27526 + 2.20881i −0.102431 + 0.177416i
\(156\) 0 0
\(157\) 5.39898 + 9.35131i 0.430885 + 0.746316i 0.996950 0.0780455i \(-0.0248680\pi\)
−0.566064 + 0.824361i \(0.691535\pi\)
\(158\) 0 0
\(159\) −8.89898 12.5851i −0.705735 0.998060i
\(160\) 0 0
\(161\) −18.7980 −1.48149
\(162\) 0 0
\(163\) 5.79796 0.454131 0.227066 0.973879i \(-0.427087\pi\)
0.227066 + 0.973879i \(0.427087\pi\)
\(164\) 0 0
\(165\) −1.44949 2.04989i −0.112843 0.159584i
\(166\) 0 0
\(167\) 2.27526 + 3.94086i 0.176065 + 0.304953i 0.940529 0.339713i \(-0.110330\pi\)
−0.764465 + 0.644666i \(0.776997\pi\)
\(168\) 0 0
\(169\) −10.8990 + 18.8776i −0.838383 + 1.45212i
\(170\) 0 0
\(171\) 4.00000 11.3137i 0.305888 0.865181i
\(172\) 0 0
\(173\) −1.50000 + 2.59808i −0.114043 + 0.197528i −0.917397 0.397974i \(-0.869713\pi\)
0.803354 + 0.595502i \(0.203047\pi\)
\(174\) 0 0
\(175\) −6.89898 11.9494i −0.521514 0.903288i
\(176\) 0 0
\(177\) 10.3990 22.5720i 0.781635 1.69662i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.6969 0.795097 0.397549 0.917581i \(-0.369861\pi\)
0.397549 + 0.917581i \(0.369861\pi\)
\(182\) 0 0
\(183\) −13.6237 + 1.25529i −1.00709 + 0.0927941i
\(184\) 0 0
\(185\) −0.449490 0.778539i −0.0330471 0.0572393i
\(186\) 0 0
\(187\) 3.55051 6.14966i 0.259639 0.449708i
\(188\) 0 0
\(189\) 4.39898 17.3759i 0.319979 1.26391i
\(190\) 0 0
\(191\) −6.27526 + 10.8691i −0.454062 + 0.786458i −0.998634 0.0522563i \(-0.983359\pi\)
0.544572 + 0.838714i \(0.316692\pi\)
\(192\) 0 0
\(193\) −2.05051 3.55159i −0.147599 0.255649i 0.782741 0.622348i \(-0.213821\pi\)
−0.930340 + 0.366699i \(0.880488\pi\)
\(194\) 0 0
\(195\) −10.1742 + 0.937458i −0.728592 + 0.0671327i
\(196\) 0 0
\(197\) −17.5959 −1.25366 −0.626829 0.779157i \(-0.715647\pi\)
−0.626829 + 0.779157i \(0.715647\pi\)
\(198\) 0 0
\(199\) 7.79796 0.552783 0.276391 0.961045i \(-0.410861\pi\)
0.276391 + 0.961045i \(0.410861\pi\)
\(200\) 0 0
\(201\) 8.94949 19.4258i 0.631248 1.37019i
\(202\) 0 0
\(203\) 0.174235 + 0.301783i 0.0122289 + 0.0211810i
\(204\) 0 0
\(205\) −5.94949 + 10.3048i −0.415530 + 0.719720i
\(206\) 0 0
\(207\) 16.0732 2.98735i 1.11717 0.207635i
\(208\) 0 0
\(209\) −2.89898 + 5.02118i −0.200527 + 0.347322i
\(210\) 0 0
\(211\) 5.27526 + 9.13701i 0.363164 + 0.629018i 0.988480 0.151354i \(-0.0483633\pi\)
−0.625316 + 0.780372i \(0.715030\pi\)
\(212\) 0 0
\(213\) 7.79796 + 11.0280i 0.534307 + 0.755625i
\(214\) 0 0
\(215\) −2.34847 −0.160164
\(216\) 0 0
\(217\) 8.79796 0.597244
\(218\) 0 0
\(219\) 4.89898 + 6.92820i 0.331042 + 0.468165i
\(220\) 0 0
\(221\) −14.4495 25.0273i −0.971978 1.68352i
\(222\) 0 0
\(223\) −8.07321 + 13.9832i −0.540622 + 0.936385i 0.458246 + 0.888825i \(0.348478\pi\)
−0.998868 + 0.0475601i \(0.984855\pi\)
\(224\) 0 0
\(225\) 7.79796 + 9.12096i 0.519864 + 0.608064i
\(226\) 0 0
\(227\) 3.82577 6.62642i 0.253925 0.439811i −0.710678 0.703517i \(-0.751612\pi\)
0.964603 + 0.263706i \(0.0849450\pi\)
\(228\) 0 0
\(229\) 0.500000 + 0.866025i 0.0330409 + 0.0572286i 0.882073 0.471113i \(-0.156147\pi\)
−0.849032 + 0.528341i \(0.822814\pi\)
\(230\) 0 0
\(231\) −3.62372 + 7.86566i −0.238424 + 0.517522i
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −6.34847 −0.414128
\(236\) 0 0
\(237\) −23.1969 + 2.13737i −1.50680 + 0.138837i
\(238\) 0 0
\(239\) 7.07321 + 12.2512i 0.457528 + 0.792462i 0.998830 0.0483665i \(-0.0154016\pi\)
−0.541301 + 0.840829i \(0.682068\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 0 0
\(243\) −1.00000 + 15.5563i −0.0641500 + 0.997940i
\(244\) 0 0
\(245\) 2.44949 4.24264i 0.156492 0.271052i
\(246\) 0 0
\(247\) 11.7980 + 20.4347i 0.750686 + 1.30023i
\(248\) 0 0
\(249\) 0.949490 0.0874863i 0.0601715 0.00554422i
\(250\) 0 0
\(251\) −21.7980 −1.37587 −0.687937 0.725770i \(-0.741484\pi\)
−0.687937 + 0.725770i \(0.741484\pi\)
\(252\) 0 0
\(253\) −7.89898 −0.496605
\(254\) 0 0
\(255\) 3.55051 7.70674i 0.222342 0.482615i
\(256\) 0 0
\(257\) 5.39898 + 9.35131i 0.336779 + 0.583318i 0.983825 0.179133i \(-0.0573291\pi\)
−0.647046 + 0.762451i \(0.723996\pi\)
\(258\) 0 0
\(259\) −1.55051 + 2.68556i −0.0963440 + 0.166873i
\(260\) 0 0
\(261\) −0.196938 0.230351i −0.0121902 0.0142584i
\(262\) 0 0
\(263\) 2.72474 4.71940i 0.168015 0.291010i −0.769707 0.638397i \(-0.779598\pi\)
0.937722 + 0.347387i \(0.112931\pi\)
\(264\) 0 0
\(265\) 4.44949 + 7.70674i 0.273330 + 0.473421i
\(266\) 0 0
\(267\) 12.8990 + 18.2419i 0.789405 + 1.11639i
\(268\) 0 0
\(269\) 7.10102 0.432957 0.216478 0.976287i \(-0.430543\pi\)
0.216478 + 0.976287i \(0.430543\pi\)
\(270\) 0 0
\(271\) −29.3939 −1.78555 −0.892775 0.450502i \(-0.851245\pi\)
−0.892775 + 0.450502i \(0.851245\pi\)
\(272\) 0 0
\(273\) 20.3485 + 28.7771i 1.23155 + 1.74167i
\(274\) 0 0
\(275\) −2.89898 5.02118i −0.174815 0.302789i
\(276\) 0 0
\(277\) 7.39898 12.8154i 0.444562 0.770003i −0.553460 0.832876i \(-0.686693\pi\)
0.998022 + 0.0628725i \(0.0200262\pi\)
\(278\) 0 0
\(279\) −7.52270 + 1.39816i −0.450372 + 0.0837056i
\(280\) 0 0
\(281\) 5.05051 8.74774i 0.301288 0.521846i −0.675140 0.737690i \(-0.735917\pi\)
0.976428 + 0.215843i \(0.0692501\pi\)
\(282\) 0 0
\(283\) −1.72474 2.98735i −0.102525 0.177579i 0.810199 0.586155i \(-0.199359\pi\)
−0.912725 + 0.408576i \(0.866026\pi\)
\(284\) 0 0
\(285\) −2.89898 + 6.29253i −0.171721 + 0.372737i
\(286\) 0 0
\(287\) 41.0454 2.42283
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) −6.72474 + 0.619620i −0.394212 + 0.0363228i
\(292\) 0 0
\(293\) −0.398979 0.691053i −0.0233086 0.0403717i 0.854136 0.520050i \(-0.174087\pi\)
−0.877444 + 0.479678i \(0.840753\pi\)
\(294\) 0 0
\(295\) −7.17423 + 12.4261i −0.417700 + 0.723478i
\(296\) 0 0
\(297\) 1.84847 7.30142i 0.107259 0.423671i
\(298\) 0 0
\(299\) −16.0732 + 27.8396i −0.929538 + 1.61001i
\(300\) 0 0
\(301\) 4.05051 + 7.01569i 0.233468 + 0.404378i
\(302\) 0 0
\(303\) 22.0732 2.03383i 1.26807 0.116841i
\(304\) 0 0
\(305\) 7.89898 0.452294
\(306\) 0 0
\(307\) 21.7980 1.24408 0.622038 0.782987i \(-0.286305\pi\)
0.622038 + 0.782987i \(0.286305\pi\)
\(308\) 0 0
\(309\) 9.09592 19.7436i 0.517449 1.12317i
\(310\) 0 0
\(311\) −7.62372 13.2047i −0.432302 0.748769i 0.564769 0.825249i \(-0.308965\pi\)
−0.997071 + 0.0764802i \(0.975632\pi\)
\(312\) 0 0
\(313\) 8.50000 14.7224i 0.480448 0.832161i −0.519300 0.854592i \(-0.673807\pi\)
0.999748 + 0.0224310i \(0.00714060\pi\)
\(314\) 0 0
\(315\) −3.44949 + 9.75663i −0.194357 + 0.549724i
\(316\) 0 0
\(317\) −12.9495 + 22.4292i −0.727316 + 1.25975i 0.230698 + 0.973025i \(0.425899\pi\)
−0.958014 + 0.286722i \(0.907434\pi\)
\(318\) 0 0
\(319\) 0.0732141 + 0.126811i 0.00409920 + 0.00710003i
\(320\) 0 0
\(321\) −5.79796 8.19955i −0.323611 0.457654i
\(322\) 0 0
\(323\) −19.5959 −1.09035
\(324\) 0 0
\(325\) −23.5959 −1.30887
\(326\) 0 0
\(327\) −0.898979 1.27135i −0.0497137 0.0703058i
\(328\) 0 0
\(329\) 10.9495 + 18.9651i 0.603665 + 1.04558i
\(330\) 0 0
\(331\) 5.62372 9.74058i 0.309108 0.535390i −0.669060 0.743209i \(-0.733303\pi\)
0.978167 + 0.207818i \(0.0666363\pi\)
\(332\) 0 0
\(333\) 0.898979 2.54270i 0.0492638 0.139339i
\(334\) 0 0
\(335\) −6.17423 + 10.6941i −0.337334 + 0.584280i
\(336\) 0 0
\(337\) 5.39898 + 9.35131i 0.294101 + 0.509398i 0.974775 0.223188i \(-0.0716464\pi\)
−0.680674 + 0.732586i \(0.738313\pi\)
\(338\) 0 0
\(339\) −6.37628 + 13.8404i −0.346312 + 0.751705i
\(340\) 0 0
\(341\) 3.69694 0.200200
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 0 0
\(345\) −9.39898 + 0.866025i −0.506024 + 0.0466252i
\(346\) 0 0
\(347\) 3.07321 + 5.32296i 0.164979 + 0.285752i 0.936648 0.350273i \(-0.113911\pi\)
−0.771669 + 0.636024i \(0.780578\pi\)
\(348\) 0 0
\(349\) 7.39898 12.8154i 0.396058 0.685993i −0.597177 0.802109i \(-0.703711\pi\)
0.993236 + 0.116116i \(0.0370445\pi\)
\(350\) 0 0
\(351\) −21.9722 21.3721i −1.17279 1.14076i
\(352\) 0 0
\(353\) 6.84847 11.8619i 0.364507 0.631345i −0.624190 0.781273i \(-0.714571\pi\)
0.988697 + 0.149928i \(0.0479041\pi\)
\(354\) 0 0
\(355\) −3.89898 6.75323i −0.206936 0.358424i
\(356\) 0 0
\(357\) −29.1464 + 2.68556i −1.54259 + 0.142135i
\(358\) 0 0
\(359\) 1.79796 0.0948926 0.0474463 0.998874i \(-0.484892\pi\)
0.0474463 + 0.998874i \(0.484892\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 6.44949 13.9993i 0.338510 0.734771i
\(364\) 0 0
\(365\) −2.44949 4.24264i −0.128212 0.222070i
\(366\) 0 0
\(367\) −2.17423 + 3.76588i −0.113494 + 0.196578i −0.917177 0.398481i \(-0.869538\pi\)
0.803683 + 0.595058i \(0.202871\pi\)
\(368\) 0 0
\(369\) −35.0959 + 6.52288i −1.82702 + 0.339568i
\(370\) 0 0
\(371\) 15.3485 26.5843i 0.796853 1.38019i
\(372\) 0 0
\(373\) −15.8485 27.4504i −0.820603 1.42133i −0.905234 0.424913i \(-0.860305\pi\)
0.0846315 0.996412i \(-0.473029\pi\)
\(374\) 0 0
\(375\) −9.00000 12.7279i −0.464758 0.657267i
\(376\) 0 0
\(377\) 0.595918 0.0306913
\(378\) 0 0
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 8.00000 + 11.3137i 0.409852 + 0.579619i
\(382\) 0 0
\(383\) 14.2753 + 24.7255i 0.729431 + 1.26341i 0.957124 + 0.289679i \(0.0935486\pi\)
−0.227692 + 0.973733i \(0.573118\pi\)
\(384\) 0 0
\(385\) 2.50000 4.33013i 0.127412 0.220684i
\(386\) 0 0
\(387\) −4.57832 5.35507i −0.232729 0.272214i
\(388\) 0 0
\(389\) 3.39898 5.88721i 0.172335 0.298493i −0.766901 0.641766i \(-0.778202\pi\)
0.939236 + 0.343273i \(0.111535\pi\)
\(390\) 0 0
\(391\) −13.3485 23.1202i −0.675061 1.16924i
\(392\) 0 0
\(393\) −9.60102 + 20.8400i −0.484307 + 1.05124i
\(394\) 0 0
\(395\) 13.4495 0.676717
\(396\) 0 0
\(397\) −10.6969 −0.536864 −0.268432 0.963299i \(-0.586505\pi\)
−0.268432 + 0.963299i \(0.586505\pi\)
\(398\) 0 0
\(399\) 23.7980 2.19275i 1.19139 0.109775i
\(400\) 0 0
\(401\) 6.84847 + 11.8619i 0.341996 + 0.592355i 0.984803 0.173673i \(-0.0555637\pi\)
−0.642807 + 0.766028i \(0.722230\pi\)
\(402\) 0 0
\(403\) 7.52270 13.0297i 0.374733 0.649056i
\(404\) 0 0
\(405\) 1.39898 8.89060i 0.0695158 0.441778i
\(406\) 0 0
\(407\) −0.651531 + 1.12848i −0.0322952 + 0.0559369i
\(408\) 0 0
\(409\) −13.2980 23.0327i −0.657542 1.13890i −0.981250 0.192739i \(-0.938263\pi\)
0.323708 0.946157i \(-0.395070\pi\)
\(410\) 0 0
\(411\) −17.4217 + 1.60524i −0.859348 + 0.0791807i
\(412\) 0 0
\(413\) 49.4949 2.43548
\(414\) 0 0
\(415\) −0.550510 −0.0270235
\(416\) 0 0
\(417\) −2.50000 + 5.42650i −0.122426 + 0.265737i
\(418\) 0 0
\(419\) −15.6237 27.0611i −0.763269 1.32202i −0.941157 0.337970i \(-0.890260\pi\)
0.177888 0.984051i \(-0.443073\pi\)
\(420\) 0 0
\(421\) −0.0505103 + 0.0874863i −0.00246172 + 0.00426382i −0.867254 0.497867i \(-0.834117\pi\)
0.864792 + 0.502130i \(0.167450\pi\)
\(422\) 0 0
\(423\) −12.3763 14.4760i −0.601755 0.703849i
\(424\) 0 0
\(425\) 9.79796 16.9706i 0.475271 0.823193i
\(426\) 0 0
\(427\) −13.6237 23.5970i −0.659298 1.14194i
\(428\) 0 0
\(429\) 8.55051 + 12.0922i 0.412823 + 0.583819i
\(430\) 0 0
\(431\) −14.2020 −0.684088 −0.342044 0.939684i \(-0.611119\pi\)
−0.342044 + 0.939684i \(0.611119\pi\)
\(432\) 0 0
\(433\) −8.49490 −0.408239 −0.204119 0.978946i \(-0.565433\pi\)
−0.204119 + 0.978946i \(0.565433\pi\)
\(434\) 0 0
\(435\) 0.101021 + 0.142865i 0.00484356 + 0.00684983i
\(436\) 0 0
\(437\) 10.8990 + 18.8776i 0.521369 + 0.903037i
\(438\) 0 0
\(439\) −18.1742 + 31.4787i −0.867409 + 1.50240i −0.00277364 + 0.999996i \(0.500883\pi\)
−0.864635 + 0.502400i \(0.832450\pi\)
\(440\) 0 0
\(441\) 14.4495 2.68556i 0.688071 0.127884i
\(442\) 0 0
\(443\) 11.7247 20.3079i 0.557059 0.964855i −0.440681 0.897664i \(-0.645263\pi\)
0.997740 0.0671913i \(-0.0214038\pi\)
\(444\) 0 0
\(445\) −6.44949 11.1708i −0.305735 0.529549i
\(446\) 0 0
\(447\) −2.97219 + 6.45145i −0.140580 + 0.305143i
\(448\) 0 0
\(449\) 11.1010 0.523890 0.261945 0.965083i \(-0.415636\pi\)
0.261945 + 0.965083i \(0.415636\pi\)
\(450\) 0 0
\(451\) 17.2474 0.812151
\(452\) 0 0
\(453\) −26.2980 + 2.42310i −1.23559 + 0.113847i
\(454\) 0 0
\(455\) −10.1742 17.6223i −0.476975 0.826146i
\(456\) 0 0
\(457\) 15.7474 27.2754i 0.736635 1.27589i −0.217368 0.976090i \(-0.569747\pi\)
0.954002 0.299799i \(-0.0969195\pi\)
\(458\) 0 0
\(459\) 24.4949 6.92820i 1.14332 0.323381i
\(460\) 0 0
\(461\) −17.8485 + 30.9145i −0.831286 + 1.43983i 0.0657327 + 0.997837i \(0.479062\pi\)
−0.897019 + 0.441992i \(0.854272\pi\)
\(462\) 0 0
\(463\) −15.6237 27.0611i −0.726096 1.25764i −0.958521 0.285021i \(-0.907999\pi\)
0.232425 0.972614i \(-0.425334\pi\)
\(464\) 0 0
\(465\) 4.39898 0.405324i 0.203998 0.0187964i
\(466\) 0 0
\(467\) −39.5959 −1.83228 −0.916140 0.400858i \(-0.868712\pi\)
−0.916140 + 0.400858i \(0.868712\pi\)
\(468\) 0 0
\(469\) 42.5959 1.96690
\(470\) 0 0
\(471\) 7.82577 16.9866i 0.360592 0.782702i
\(472\) 0 0
\(473\) 1.70204 + 2.94802i 0.0782599 + 0.135550i
\(474\) 0 0
\(475\) −8.00000 + 13.8564i −0.367065 + 0.635776i
\(476\) 0 0
\(477\) −8.89898 + 25.1701i −0.407456 + 1.15246i
\(478\) 0 0
\(479\) 12.5227 21.6900i 0.572177 0.991040i −0.424165 0.905585i \(-0.639432\pi\)
0.996342 0.0854547i \(-0.0272343\pi\)
\(480\) 0 0
\(481\) 2.65153 + 4.59259i 0.120899 + 0.209404i
\(482\) 0 0
\(483\) 18.7980 + 26.5843i 0.855337 + 1.20963i
\(484\) 0 0
\(485\) 3.89898 0.177044
\(486\) 0 0
\(487\) 17.7980 0.806503 0.403251 0.915089i \(-0.367880\pi\)
0.403251 + 0.915089i \(0.367880\pi\)
\(488\) 0 0
\(489\) −5.79796 8.19955i −0.262193 0.370797i
\(490\) 0 0
\(491\) 5.37628 + 9.31198i 0.242628 + 0.420244i 0.961462 0.274938i \(-0.0886573\pi\)
−0.718834 + 0.695182i \(0.755324\pi\)
\(492\) 0 0
\(493\) −0.247449 + 0.428594i −0.0111445 + 0.0193029i
\(494\) 0 0
\(495\) −1.44949 + 4.09978i −0.0651497 + 0.184271i
\(496\) 0 0
\(497\) −13.4495 + 23.2952i −0.603292 + 1.04493i
\(498\) 0 0
\(499\) −0.825765 1.43027i −0.0369663 0.0640276i 0.846950 0.531672i \(-0.178436\pi\)
−0.883917 + 0.467644i \(0.845103\pi\)
\(500\) 0 0
\(501\) 3.29796 7.15855i 0.147342 0.319821i
\(502\) 0 0
\(503\) 39.7980 1.77450 0.887252 0.461286i \(-0.152612\pi\)
0.887252 + 0.461286i \(0.152612\pi\)
\(504\) 0 0
\(505\) −12.7980 −0.569502
\(506\) 0 0
\(507\) 37.5959 3.46410i 1.66969 0.153846i
\(508\) 0 0
\(509\) 7.74745 + 13.4190i 0.343400 + 0.594786i 0.985062 0.172202i \(-0.0550881\pi\)
−0.641662 + 0.766987i \(0.721755\pi\)
\(510\) 0 0
\(511\) −8.44949 + 14.6349i −0.373783 + 0.647412i
\(512\) 0 0
\(513\) −20.0000 + 5.65685i −0.883022 + 0.249756i
\(514\) 0 0
\(515\) −6.27526 + 10.8691i −0.276521 + 0.478948i
\(516\) 0 0
\(517\) 4.60102 + 7.96920i 0.202353 + 0.350485i
\(518\) 0 0
\(519\) 5.17423 0.476756i 0.227124 0.0209273i
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −13.5959 −0.594508 −0.297254 0.954798i \(-0.596071\pi\)
−0.297254 + 0.954798i \(0.596071\pi\)
\(524\) 0 0
\(525\) −10.0000 + 21.7060i −0.436436 + 0.947328i
\(526\) 0 0
\(527\) 6.24745 + 10.8209i 0.272143 + 0.471366i
\(528\) 0 0
\(529\) −3.34847 + 5.79972i −0.145586 + 0.252162i
\(530\) 0 0
\(531\) −42.3207 + 7.86566i −1.83656 + 0.341341i
\(532\) 0 0
\(533\) 35.0959 60.7879i 1.52017 2.63302i
\(534\) 0 0
\(535\) 2.89898 + 5.02118i 0.125334 + 0.217085i
\(536\) 0 0
\(537\) −12.0000 16.9706i −0.517838 0.732334i
\(538\) 0 0
\(539\) −7.10102 −0.305863
\(540\) 0 0
\(541\) 29.5959 1.27243 0.636214 0.771513i \(-0.280500\pi\)
0.636214 + 0.771513i \(0.280500\pi\)
\(542\) 0 0
\(543\) −10.6969 15.1278i −0.459050 0.649194i
\(544\) 0 0
\(545\) 0.449490 + 0.778539i 0.0192540 + 0.0333489i
\(546\) 0 0
\(547\) −3.27526 + 5.67291i −0.140040 + 0.242556i −0.927511 0.373795i \(-0.878056\pi\)
0.787472 + 0.616351i \(0.211390\pi\)
\(548\) 0 0
\(549\) 15.3990 + 18.0116i 0.657212 + 0.768715i
\(550\) 0 0
\(551\) 0.202041 0.349945i 0.00860724 0.0149082i
\(552\) 0 0
\(553\) −23.1969 40.1783i −0.986434 1.70855i
\(554\) 0 0
\(555\) −0.651531 + 1.41421i −0.0276559 + 0.0600300i
\(556\) 0 0
\(557\) −18.6969 −0.792215 −0.396107 0.918204i \(-0.629639\pi\)
−0.396107 + 0.918204i \(0.629639\pi\)
\(558\) 0 0
\(559\) 13.8536 0.585944
\(560\) 0 0
\(561\) −12.2474 + 1.12848i −0.517088 + 0.0476446i
\(562\) 0 0
\(563\) 2.17423 + 3.76588i 0.0916331 + 0.158713i 0.908198 0.418540i \(-0.137458\pi\)
−0.816565 + 0.577253i \(0.804125\pi\)
\(564\) 0 0
\(565\) 4.39898 7.61926i 0.185066 0.320545i
\(566\) 0 0
\(567\) −28.9722 + 11.1548i −1.21672 + 0.468457i
\(568\) 0 0
\(569\) 0.500000 0.866025i 0.0209611 0.0363057i −0.855355 0.518043i \(-0.826661\pi\)
0.876316 + 0.481737i \(0.159994\pi\)
\(570\) 0 0
\(571\) −1.82577 3.16232i −0.0764059 0.132339i 0.825291 0.564708i \(-0.191011\pi\)
−0.901697 + 0.432369i \(0.857678\pi\)
\(572\) 0 0
\(573\) 21.6464 1.99451i 0.904293 0.0833218i
\(574\) 0 0
\(575\) −21.7980 −0.909038
\(576\) 0 0
\(577\) −19.1010 −0.795186 −0.397593 0.917562i \(-0.630154\pi\)
−0.397593 + 0.917562i \(0.630154\pi\)
\(578\) 0 0
\(579\) −2.97219 + 6.45145i −0.123520 + 0.268113i
\(580\) 0 0
\(581\) 0.949490 + 1.64456i 0.0393915 + 0.0682280i
\(582\) 0 0
\(583\) 6.44949 11.1708i 0.267111 0.462649i
\(584\) 0 0
\(585\) 11.5000 + 13.4511i 0.475466 + 0.556134i
\(586\) 0 0
\(587\) −14.9722 + 25.9326i −0.617969 + 1.07035i 0.371887 + 0.928278i \(0.378711\pi\)
−0.989856 + 0.142075i \(0.954623\pi\)
\(588\) 0 0
\(589\) −5.10102 8.83523i −0.210184 0.364049i
\(590\) 0 0
\(591\) 17.5959 + 24.8844i 0.723799 + 1.02361i
\(592\) 0 0
\(593\) 28.8990 1.18674 0.593369 0.804930i \(-0.297797\pi\)
0.593369 + 0.804930i \(0.297797\pi\)
\(594\) 0 0
\(595\) 16.8990 0.692791
\(596\) 0 0
\(597\) −7.79796 11.0280i −0.319149 0.451345i
\(598\) 0 0
\(599\) 14.2753 + 24.7255i 0.583271 + 1.01026i 0.995089 + 0.0989888i \(0.0315608\pi\)
−0.411817 + 0.911266i \(0.635106\pi\)
\(600\) 0 0
\(601\) −5.15153 + 8.92271i −0.210135 + 0.363965i −0.951757 0.306854i \(-0.900724\pi\)
0.741621 + 0.670819i \(0.234057\pi\)
\(602\) 0 0
\(603\) −36.4217 + 6.76928i −1.48321 + 0.275667i
\(604\) 0 0
\(605\) −4.44949 + 7.70674i −0.180897 + 0.313324i
\(606\) 0 0
\(607\) 12.9722 + 22.4685i 0.526525 + 0.911968i 0.999522 + 0.0309043i \(0.00983872\pi\)
−0.472997 + 0.881064i \(0.656828\pi\)
\(608\) 0 0
\(609\) 0.252551 0.548188i 0.0102339 0.0222137i
\(610\) 0 0
\(611\) 37.4495 1.51504
\(612\) 0 0
\(613\) −26.6969 −1.07828 −0.539140 0.842216i \(-0.681250\pi\)
−0.539140 + 0.842216i \(0.681250\pi\)
\(614\) 0 0
\(615\) 20.5227 1.89097i 0.827555 0.0762512i
\(616\) 0 0
\(617\) −11.8485 20.5222i −0.477001 0.826191i 0.522651 0.852547i \(-0.324943\pi\)
−0.999653 + 0.0263559i \(0.991610\pi\)
\(618\) 0 0
\(619\) −13.0732 + 22.6435i −0.525457 + 0.910118i 0.474104 + 0.880469i \(0.342772\pi\)
−0.999560 + 0.0296488i \(0.990561\pi\)
\(620\) 0 0
\(621\) −20.2980 19.7436i −0.814529 0.792284i
\(622\) 0 0
\(623\) −22.2474 + 38.5337i −0.891325 + 1.54382i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 10.0000 0.921404i 0.399362 0.0367973i
\(628\) 0 0
\(629\) −4.40408 −0.175602
\(630\) 0 0
\(631\) 6.20204 0.246899 0.123450 0.992351i \(-0.460604\pi\)
0.123450 + 0.992351i \(0.460604\pi\)
\(632\) 0 0
\(633\) 7.64643 16.5973i 0.303918 0.659685i
\(634\) 0 0
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) −14.4495 + 25.0273i −0.572510 + 0.991616i
\(638\) 0 0
\(639\) 7.79796 22.0560i 0.308482 0.872520i
\(640\) 0 0
\(641\) −13.2980 + 23.0327i −0.525238 + 0.909739i 0.474330 + 0.880347i \(0.342690\pi\)
−0.999568 + 0.0293915i \(0.990643\pi\)
\(642\) 0 0
\(643\) 2.17423 + 3.76588i 0.0857434 + 0.148512i 0.905708 0.423903i \(-0.139340\pi\)
−0.819964 + 0.572415i \(0.806007\pi\)
\(644\) 0 0
\(645\) 2.34847 + 3.32124i 0.0924709 + 0.130774i
\(646\) 0 0
\(647\) −9.79796 −0.385198 −0.192599 0.981278i \(-0.561692\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(648\) 0 0
\(649\) 20.7980 0.816391
\(650\) 0 0
\(651\) −8.79796 12.4422i −0.344819 0.487648i
\(652\) 0 0
\(653\) 8.50000 + 14.7224i 0.332631 + 0.576133i 0.983027 0.183462i \(-0.0587304\pi\)
−0.650396 + 0.759595i \(0.725397\pi\)
\(654\) 0 0
\(655\) 6.62372 11.4726i 0.258810 0.448273i
\(656\) 0 0
\(657\) 4.89898 13.8564i 0.191127 0.540590i
\(658\) 0 0
\(659\) 3.82577 6.62642i 0.149031 0.258129i −0.781839 0.623481i \(-0.785718\pi\)
0.930869 + 0.365352i \(0.119051\pi\)
\(660\) 0 0
\(661\) 15.1969 + 26.3219i 0.591092 + 1.02380i 0.994086 + 0.108599i \(0.0346365\pi\)
−0.402993 + 0.915203i \(0.632030\pi\)
\(662\) 0 0
\(663\) −20.9444 + 45.4619i −0.813413 + 1.76559i
\(664\) 0 0
\(665\) −13.7980 −0.535062
\(666\) 0 0
\(667\) 0.550510 0.0213158
\(668\) 0 0
\(669\) 27.8485 2.56597i 1.07668 0.0992061i
\(670\) 0 0
\(671\) −5.72474 9.91555i −0.221001 0.382786i
\(672\) 0 0
\(673\) −13.6464 + 23.6363i −0.526031 + 0.911113i 0.473509 + 0.880789i \(0.342987\pi\)
−0.999540 + 0.0303237i \(0.990346\pi\)
\(674\) 0 0
\(675\) 5.10102 20.1489i 0.196338 0.775533i
\(676\) 0 0
\(677\) −12.1969 + 21.1257i −0.468766 + 0.811927i −0.999363 0.0356974i \(-0.988635\pi\)
0.530596 + 0.847625i \(0.321968\pi\)
\(678\) 0 0
\(679\) −6.72474 11.6476i −0.258072 0.446994i
\(680\) 0 0
\(681\) −13.1969 + 1.21597i −0.505708 + 0.0465961i
\(682\) 0 0
\(683\) 17.3939 0.665558 0.332779 0.943005i \(-0.392014\pi\)
0.332779 + 0.943005i \(0.392014\pi\)
\(684\) 0 0
\(685\) 10.1010 0.385940
\(686\) 0 0
\(687\) 0.724745 1.57313i 0.0276507 0.0600187i
\(688\) 0 0
\(689\) −26.2474 45.4619i −0.999948 1.73196i
\(690\) 0 0
\(691\) −18.9722 + 32.8608i −0.721736 + 1.25008i 0.238567 + 0.971126i \(0.423322\pi\)
−0.960303 + 0.278958i \(0.910011\pi\)
\(692\) 0 0
\(693\) 14.7474 2.74094i 0.560209 0.104120i
\(694\) 0 0
\(695\) 1.72474 2.98735i 0.0654233 0.113316i
\(696\) 0 0
\(697\) 29.1464 + 50.4831i 1.10400 + 1.91218i
\(698\) 0 0
\(699\) 6.00000 + 8.48528i 0.226941 + 0.320943i
\(700\) 0 0
\(701\) −12.4949 −0.471926 −0.235963 0.971762i \(-0.575824\pi\)
−0.235963 + 0.971762i \(0.575824\pi\)
\(702\) 0 0
\(703\) 3.59592 0.135623
\(704\) 0 0
\(705\) 6.34847 + 8.97809i 0.239097 + 0.338134i
\(706\) 0 0
\(707\) 22.0732 + 38.2319i 0.830149 + 1.43786i
\(708\) 0 0
\(709\) 2.50000 4.33013i 0.0938895 0.162621i −0.815255 0.579102i \(-0.803403\pi\)
0.909145 + 0.416481i \(0.136737\pi\)
\(710\) 0 0
\(711\) 26.2196 + 30.6681i 0.983313 + 1.15014i
\(712\) 0 0
\(713\) 6.94949 12.0369i 0.260260 0.450784i
\(714\) 0 0
\(715\) −4.27526 7.40496i −0.159885 0.276930i
\(716\) 0 0
\(717\) 10.2526 22.2542i 0.382889 0.831098i
\(718\) 0 0
\(719\) −31.1918 −1.16326 −0.581630 0.813454i \(-0.697585\pi\)
−0.581630 + 0.813454i \(0.697585\pi\)
\(720\) 0 0
\(721\) 43.2929 1.61231
\(722\) 0 0
\(723\) 12.0732 1.11243i 0.449008 0.0413717i
\(724\) 0 0
\(725\) 0.202041 + 0.349945i 0.00750362 + 0.0129966i
\(726\) 0 0
\(727\) −9.27526 + 16.0652i −0.344000 + 0.595826i −0.985172 0.171572i \(-0.945115\pi\)
0.641171 + 0.767398i \(0.278449\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) −5.75255 + 9.96371i −0.212766 + 0.368521i
\(732\) 0 0
\(733\) 5.94949 + 10.3048i 0.219749 + 0.380617i 0.954731 0.297470i \(-0.0961427\pi\)
−0.734982 + 0.678087i \(0.762809\pi\)
\(734\) 0 0
\(735\) −8.44949 + 0.778539i −0.311664 + 0.0287168i
\(736\) 0 0
\(737\) 17.8990 0.659317
\(738\) 0 0
\(739\) 14.0000 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(740\) 0 0
\(741\) 17.1010 37.1195i 0.628222 1.36362i
\(742\) 0 0
\(743\) −17.7247 30.7002i −0.650258 1.12628i −0.983060 0.183283i \(-0.941328\pi\)
0.332802 0.942997i \(-0.392006\pi\)
\(744\) 0 0
\(745\) 2.05051 3.55159i 0.0751249 0.130120i
\(746\) 0 0
\(747\) −1.07321 1.25529i −0.0392669 0.0459288i
\(748\) 0 0
\(749\) 10.0000 17.3205i 0.365392 0.632878i
\(750\) 0 0
\(751\) −21.3207 36.9285i −0.778002 1.34754i −0.933092 0.359639i \(-0.882900\pi\)
0.155090 0.987900i \(-0.450433\pi\)
\(752\) 0 0
\(753\) 21.7980 + 30.8270i 0.794362 + 1.12340i
\(754\) 0 0
\(755\) 15.2474 0.554911
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) 7.89898 + 11.1708i 0.286715 + 0.405476i
\(760\) 0 0
\(761\) 12.6464 + 21.9043i 0.458433 + 0.794029i 0.998878 0.0473502i \(-0.0150777\pi\)
−0.540446 + 0.841379i \(0.681744\pi\)
\(762\) 0 0
\(763\) 1.55051 2.68556i 0.0561322 0.0972239i
\(764\) 0 0
\(765\) −14.4495 + 2.68556i −0.522422 + 0.0970967i
\(766\) 0 0
\(767\) 42.3207 73.3015i 1.52811 2.64677i
\(768\) 0 0
\(769\) 18.2980 + 31.6930i 0.659841 + 1.14288i 0.980656 + 0.195737i \(0.0627098\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(770\) 0 0
\(771\) 7.82577 16.9866i 0.281838 0.611758i
\(772\) 0 0
\(773\) −36.4949 −1.31263 −0.656315 0.754487i \(-0.727886\pi\)
−0.656315 + 0.754487i \(0.727886\pi\)
\(774\) 0 0
\(775\) 10.2020 0.366468
\(776\) 0 0
\(777\) 5.34847 0.492810i 0.191875 0.0176795i
\(778\) 0 0
\(779\) −23.7980 41.2193i −0.852650 1.47683i
\(780\) 0 0
\(781\) −5.65153 + 9.78874i −0.202228 + 0.350269i
\(782\) 0 0
\(783\) −0.128827 + 0.508864i −0.00460390 + 0.0181853i
\(784\) 0 0
\(785\) −5.39898 + 9.35131i −0.192698 + 0.333762i
\(786\) 0 0
\(787\) −10.6237 18.4008i −0.378695 0.655919i 0.612178 0.790720i \(-0.290294\pi\)
−0.990873 + 0.134801i \(0.956960\pi\)
\(788\) 0 0
\(789\) −9.39898 + 0.866025i −0.334613 + 0.0308313i
\(790\) 0 0
\(791\) −30.3485 −1.07907
\(792\) 0 0
\(793\) −46.5959 −1.65467
\(794\) 0 0
\(795\) 6.44949 13.9993i 0.228740 0.496503i
\(796\) 0 0
\(797\) −23.8485 41.3068i −0.844756 1.46316i −0.885833 0.464005i \(-0.846412\pi\)
0.0410767 0.999156i \(-0.486921\pi\)
\(798\) 0 0
\(799\) −15.5505 + 26.9343i −0.550138 + 0.952866i
\(800\) 0 0
\(801\) 12.8990 36.4838i 0.455763 1.28909i
\(802\) 0 0
\(803\) −3.55051 + 6.14966i −0.125295 + 0.217017i
\(804\) 0 0
\(805\) −9.39898 16.2795i −0.331270 0.573777i
\(806\) 0 0
\(807\) −7.10102 10.0424i −0.249968 0.353508i
\(808\) 0 0
\(809\) −32.4949 −1.14246 −0.571230 0.820790i \(-0.693534\pi\)
−0.571230 + 0.820790i \(0.693534\pi\)
\(810\) 0 0
\(811\) −8.40408 −0.295107 −0.147554 0.989054i \(-0.547140\pi\)
−0.147554 + 0.989054i \(0.547140\pi\)
\(812\) 0 0
\(813\) 29.3939 + 41.5692i 1.03089 + 1.45790i
\(814\) 0 0
\(815\) 2.89898 + 5.02118i 0.101547 + 0.175884i
\(816\) 0 0
\(817\) 4.69694 8.13534i 0.164325 0.284619i
\(818\) 0 0
\(819\) 20.3485 57.5542i 0.711033 2.01111i
\(820\) 0 0
\(821\) −7.64643 + 13.2440i −0.266862 + 0.462219i −0.968050 0.250758i \(-0.919320\pi\)
0.701188 + 0.712977i \(0.252654\pi\)
\(822\) 0 0
\(823\) 5.27526 + 9.13701i 0.183884 + 0.318496i 0.943200 0.332226i \(-0.107800\pi\)
−0.759316 + 0.650722i \(0.774466\pi\)
\(824\) 0 0
\(825\) −4.20204 + 9.12096i −0.146296 + 0.317551i
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 0 0
\(829\) −23.1010 −0.802332 −0.401166 0.916005i \(-0.631395\pi\)
−0.401166 + 0.916005i \(0.631395\pi\)
\(830\) 0 0
\(831\) −25.5227 + 2.35167i −0.885373 + 0.0815786i
\(832\) 0 0
\(833\) −12.0000 20.7846i −0.415775 0.720144i
\(834\) 0 0
\(835\) −2.27526 + 3.94086i −0.0787385 + 0.136379i
\(836\) 0 0
\(837\) 9.50000 + 9.24055i 0.328368 + 0.319400i
\(838\) 0 0
\(839\) −15.1742 + 26.2825i −0.523873 + 0.907374i 0.475741 + 0.879585i \(0.342180\pi\)
−0.999614 + 0.0277888i \(0.991153\pi\)
\(840\) 0 0
\(841\) 14.4949 + 25.1059i 0.499824 + 0.865721i
\(842\) 0 0
\(843\) −17.4217 + 1.60524i −0.600035 + 0.0552874i
\(844\) 0 0
\(845\) −21.7980 −0.749873
\(846\) 0 0
\(847\) 30.6969 1.05476
\(848\) 0 0
\(849\) −2.50000 + 5.42650i −0.0857998 + 0.186237i
\(850\) 0 0
\(851\) 2.44949 + 4.24264i 0.0839674 + 0.145436i
\(852\) 0 0
\(853\) 3.94949 6.84072i 0.135228 0.234222i −0.790457 0.612518i \(-0.790157\pi\)
0.925685 + 0.378296i \(0.123490\pi\)
\(854\) 0 0
\(855\) 11.7980 2.19275i 0.403482 0.0749906i
\(856\) 0 0
\(857\) 13.9495 24.1612i 0.476505 0.825332i −0.523132 0.852252i \(-0.675237\pi\)
0.999638 + 0.0269199i \(0.00856990\pi\)
\(858\) 0 0
\(859\) −10.7247 18.5758i −0.365924 0.633798i 0.623000 0.782222i \(-0.285914\pi\)
−0.988924 + 0.148423i \(0.952580\pi\)
\(860\) 0 0
\(861\) −41.0454 58.0470i −1.39882 1.97824i
\(862\) 0 0
\(863\) 17.7980 0.605850 0.302925 0.953014i \(-0.402037\pi\)
0.302925 + 0.953014i \(0.402037\pi\)
\(864\) 0 0
\(865\) −3.00000 −0.102003
\(866\) 0 0
\(867\) −7.00000 9.89949i −0.237732 0.336204i
\(868\) 0 0
\(869\) −9.74745 16.8831i −0.330660 0.572719i
\(870\) 0 0
\(871\) 36.4217 63.0842i 1.23410 2.13753i
\(872\) 0 0
\(873\) 7.60102 + 8.89060i 0.257256 + 0.300901i
\(874\) 0 0
\(875\) 15.5227 26.8861i 0.524763 0.908916i
\(876\) 0 0
\(877\) 13.9495 + 24.1612i 0.471041 + 0.815867i 0.999451 0.0331224i \(-0.0105451\pi\)
−0.528411 + 0.848989i \(0.677212\pi\)
\(878\) 0 0
\(879\) −0.578317 + 1.25529i −0.0195061 + 0.0423400i
\(880\) 0 0
\(881\) −24.4949 −0.825254 −0.412627 0.910900i \(-0.635389\pi\)
−0.412627 + 0.910900i \(0.635389\pi\)
\(882\) 0 0
\(883\) −39.5959 −1.33251 −0.666254 0.745725i \(-0.732103\pi\)
−0.666254 + 0.745725i \(0.732103\pi\)
\(884\) 0 0
\(885\) 24.7474 2.28024i 0.831876 0.0766494i
\(886\) 0 0
\(887\) −17.4217 30.1752i −0.584963 1.01319i −0.994880 0.101063i \(-0.967776\pi\)
0.409917 0.912123i \(-0.365558\pi\)
\(888\) 0 0
\(889\) −13.7980 + 23.8988i −0.462769 + 0.801539i
\(890\) 0 0
\(891\) −12.1742 + 4.68729i −0.407852 + 0.157030i
\(892\) 0 0
\(893\) 12.6969 21.9917i 0.424887 0.735926i
\(894\) 0 0
\(895\) 6.00000 + 10.3923i 0.200558 + 0.347376i
\(896\) 0 0
\(897\) 55.4444 5.10867i 1.85123 0.170573i
\(898\) 0 0
\(899\) −0.257654 −0.00859324
\(900\) 0 0
\(901\) 43.5959 1.45239
\(902\) 0 0
\(903\) 5.87117 12.7440i 0.195380 0.424093i
\(904\) 0 0
\(905\) 5.34847 + 9.26382i 0.177789 + 0.307940i
\(906\) 0 0
\(907\) 12.6237 21.8649i 0.419164 0.726013i −0.576692 0.816962i \(-0.695657\pi\)
0.995856 + 0.0909487i \(0.0289899\pi\)
\(908\) 0 0
\(909\) −24.9495 29.1824i −0.827522 0.967919i
\(910\) 0 0
\(911\) −21.7702 + 37.7070i −0.721277 + 1.24929i 0.239211 + 0.970968i \(0.423111\pi\)
−0.960488 + 0.278321i \(0.910222\pi\)
\(912\) 0 0
\(913\) 0.398979 + 0.691053i 0.0132043 + 0.0228705i
\(914\) 0 0
\(915\) −7.89898 11.1708i −0.261132 0.369297i
\(916\) 0 0
\(917\) −45.6969 −1.50905
\(918\) 0 0
\(919\) 9.79796 0.323205 0.161602 0.986856i \(-0.448334\pi\)
0.161602 + 0.986856i \(0.448334\pi\)
\(920\) 0 0
\(921\) −21.7980 30.8270i −0.718267 1.01578i
\(922\) 0 0
\(923\) 23.0000 + 39.8372i 0.757054 + 1.31126i
\(924\) 0 0
\(925\) −1.79796 + 3.11416i −0.0591165 + 0.102393i
\(926\) 0 0
\(927\) −37.0176 + 6.88004i −1.21582 + 0.225970i
\(928\) 0 0
\(929\) −23.8485 + 41.3068i −0.782443 + 1.35523i 0.148072 + 0.988977i \(0.452693\pi\)
−0.930515 + 0.366254i \(0.880640\pi\)
\(930\) 0 0
\(931\) 9.79796 + 16.9706i 0.321115 + 0.556188i
\(932\) 0 0
\(933\) −11.0505 + 23.9863i −0.361777 + 0.785275i
\(934\) 0 0
\(935\) 7.10102 0.232228
\(936\) 0 0
\(937\) 56.4949 1.84561 0.922804 0.385270i \(-0.125892\pi\)
0.922804 + 0.385270i \(0.125892\pi\)
\(938\) 0 0
\(939\) −29.3207 + 2.70162i −0.956844 + 0.0881639i
\(940\) 0 0
\(941\) −3.50000 6.06218i −0.114097 0.197621i 0.803322 0.595545i \(-0.203064\pi\)
−0.917418 + 0.397924i \(0.869731\pi\)
\(942\) 0 0
\(943\) 32.4217 56.1560i 1.05580 1.82869i
\(944\) 0 0
\(945\) 17.2474 4.87832i 0.561060 0.158692i
\(946\) 0 0
\(947\) −10.3763 + 17.9722i −0.337184 + 0.584019i −0.983902 0.178710i \(-0.942808\pi\)
0.646718 + 0.762729i \(0.276141\pi\)
\(948\) 0 0
\(949\) 14.4495 + 25.0273i 0.469050 + 0.812419i
\(950\) 0 0
\(951\) 44.6691 4.11583i 1.44850 0.133465i
\(952\) 0 0
\(953\) 43.1010 1.39618 0.698090 0.716011i \(-0.254034\pi\)
0.698090 + 0.716011i \(0.254034\pi\)
\(954\) 0 0
\(955\) −12.5505 −0.406125
\(956\) 0 0
\(957\) 0.106123 0.230351i 0.00343047 0.00744619i
\(958\) 0 0
\(959\) −17.4217 30.1752i −0.562575 0.974409i
\(960\) 0 0
\(961\) 12.2474 21.2132i 0.395079 0.684297i
\(962\) 0 0
\(963\) −5.79796 + 16.3991i −0.186837 + 0.528454i
\(964\) 0 0
\(965\) 2.05051 3.55159i 0.0660083 0.114330i
\(966\) 0 0
\(967\) −7.62372 13.2047i −0.245162 0.424634i 0.717015 0.697058i \(-0.245508\pi\)
−0.962177 + 0.272424i \(0.912175\pi\)
\(968\) 0 0
\(969\) 19.5959 + 27.7128i 0.629512 + 0.890264i
\(970\) 0 0
\(971\) 10.0000 0.320915 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(972\) 0 0
\(973\) −11.8990 −0.381464
\(974\) 0 0
\(975\) 23.5959 + 33.3697i 0.755674 + 1.06868i
\(976\) 0 0
\(977\) −6.60102 11.4333i −0.211185 0.365784i 0.740900 0.671615i \(-0.234399\pi\)
−0.952086 + 0.305831i \(0.901066\pi\)
\(978\) 0 0
\(979\) −9.34847 + 16.1920i −0.298778 + 0.517499i
\(980\) 0 0
\(981\) −0.898979 + 2.54270i −0.0287022 + 0.0811821i
\(982\) 0 0
\(983\) 9.82577 17.0187i 0.313393 0.542813i −0.665701 0.746218i \(-0.731868\pi\)
0.979095 + 0.203405i \(0.0652009\pi\)
\(984\) 0 0
\(985\) −8.79796 15.2385i −0.280326 0.485539i
\(986\) 0 0
\(987\) 15.8712 34.4500i 0.505185 1.09656i
\(988\) 0 0
\(989\) 12.7980 0.406951
\(990\) 0 0
\(991\) 21.3939 0.679599 0.339799 0.940498i \(-0.389641\pi\)
0.339799 + 0.940498i \(0.389641\pi\)
\(992\) 0 0
\(993\) −19.3990 + 1.78743i −0.615608 + 0.0567223i
\(994\) 0 0
\(995\) 3.89898 + 6.75323i 0.123606 + 0.214092i
\(996\) 0 0
\(997\) −16.1969 + 28.0539i −0.512962 + 0.888477i 0.486925 + 0.873444i \(0.338119\pi\)
−0.999887 + 0.0150327i \(0.995215\pi\)
\(998\) 0 0
\(999\) −4.49490 + 1.27135i −0.142212 + 0.0402237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.i.c.97.1 4
3.2 odd 2 864.2.i.e.289.2 4
4.3 odd 2 288.2.i.e.97.2 yes 4
8.3 odd 2 576.2.i.i.385.1 4
8.5 even 2 576.2.i.m.385.2 4
9.2 odd 6 2592.2.a.o.1.1 2
9.4 even 3 inner 288.2.i.c.193.2 yes 4
9.5 odd 6 864.2.i.e.577.2 4
9.7 even 3 2592.2.a.j.1.1 2
12.11 even 2 864.2.i.c.289.1 4
24.5 odd 2 1728.2.i.m.1153.2 4
24.11 even 2 1728.2.i.k.1153.1 4
36.7 odd 6 2592.2.a.n.1.2 2
36.11 even 6 2592.2.a.s.1.2 2
36.23 even 6 864.2.i.c.577.1 4
36.31 odd 6 288.2.i.e.193.1 yes 4
72.5 odd 6 1728.2.i.m.577.2 4
72.11 even 6 5184.2.a.bn.1.2 2
72.13 even 6 576.2.i.m.193.1 4
72.29 odd 6 5184.2.a.bj.1.1 2
72.43 odd 6 5184.2.a.by.1.2 2
72.59 even 6 1728.2.i.k.577.1 4
72.61 even 6 5184.2.a.bu.1.1 2
72.67 odd 6 576.2.i.i.193.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.i.c.97.1 4 1.1 even 1 trivial
288.2.i.c.193.2 yes 4 9.4 even 3 inner
288.2.i.e.97.2 yes 4 4.3 odd 2
288.2.i.e.193.1 yes 4 36.31 odd 6
576.2.i.i.193.2 4 72.67 odd 6
576.2.i.i.385.1 4 8.3 odd 2
576.2.i.m.193.1 4 72.13 even 6
576.2.i.m.385.2 4 8.5 even 2
864.2.i.c.289.1 4 12.11 even 2
864.2.i.c.577.1 4 36.23 even 6
864.2.i.e.289.2 4 3.2 odd 2
864.2.i.e.577.2 4 9.5 odd 6
1728.2.i.k.577.1 4 72.59 even 6
1728.2.i.k.1153.1 4 24.11 even 2
1728.2.i.m.577.2 4 72.5 odd 6
1728.2.i.m.1153.2 4 24.5 odd 2
2592.2.a.j.1.1 2 9.7 even 3
2592.2.a.n.1.2 2 36.7 odd 6
2592.2.a.o.1.1 2 9.2 odd 6
2592.2.a.s.1.2 2 36.11 even 6
5184.2.a.bj.1.1 2 72.29 odd 6
5184.2.a.bn.1.2 2 72.11 even 6
5184.2.a.bu.1.1 2 72.61 even 6
5184.2.a.by.1.2 2 72.43 odd 6