Properties

Label 576.2.i.m
Level 576576
Weight 22
Character orbit 576.i
Analytic conductor 4.5994.599
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(193,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 576.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.599383156434.59938315643
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+1)q3+(β21)q5+(β3+β2+β1)q7+(2β31)q9+(β3+β2β1)q11+(4β3β2+2β1+1)q13++(β3+3β2+3β18)q99+O(q100) q + ( - \beta_{3} + 1) q^{3} + (\beta_{2} - 1) q^{5} + (\beta_{3} + \beta_{2} + \beta_1) q^{7} + ( - 2 \beta_{3} - 1) q^{9} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{11} + ( - 4 \beta_{3} - \beta_{2} + 2 \beta_1 + 1) q^{13}+ \cdots + ( - \beta_{3} + 3 \beta_{2} + 3 \beta_1 - 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q32q5+2q74q9+2q11+2q132q15+16q19+14q216q23+8q2520q27+10q29+10q3110q334q3516q3722q39+26q99+O(q100) 4 q + 4 q^{3} - 2 q^{5} + 2 q^{7} - 4 q^{9} + 2 q^{11} + 2 q^{13} - 2 q^{15} + 16 q^{19} + 14 q^{21} - 6 q^{23} + 8 q^{25} - 20 q^{27} + 10 q^{29} + 10 q^{31} - 10 q^{33} - 4 q^{35} - 16 q^{37} - 22 q^{39}+ \cdots - 26 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 1+β2-1 + \beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
1.22474 + 0.707107i
−1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 0.707107i
0 1.00000 1.41421i 0 −0.500000 + 0.866025i 0 1.72474 + 2.98735i 0 −1.00000 2.82843i 0
193.2 0 1.00000 + 1.41421i 0 −0.500000 + 0.866025i 0 −0.724745 1.25529i 0 −1.00000 + 2.82843i 0
385.1 0 1.00000 1.41421i 0 −0.500000 0.866025i 0 −0.724745 + 1.25529i 0 −1.00000 2.82843i 0
385.2 0 1.00000 + 1.41421i 0 −0.500000 0.866025i 0 1.72474 2.98735i 0 −1.00000 + 2.82843i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.2.i.m 4
3.b odd 2 1 1728.2.i.m 4
4.b odd 2 1 576.2.i.i 4
8.b even 2 1 288.2.i.c 4
8.d odd 2 1 288.2.i.e yes 4
9.c even 3 1 inner 576.2.i.m 4
9.c even 3 1 5184.2.a.bu 2
9.d odd 6 1 1728.2.i.m 4
9.d odd 6 1 5184.2.a.bj 2
12.b even 2 1 1728.2.i.k 4
24.f even 2 1 864.2.i.c 4
24.h odd 2 1 864.2.i.e 4
36.f odd 6 1 576.2.i.i 4
36.f odd 6 1 5184.2.a.by 2
36.h even 6 1 1728.2.i.k 4
36.h even 6 1 5184.2.a.bn 2
72.j odd 6 1 864.2.i.e 4
72.j odd 6 1 2592.2.a.o 2
72.l even 6 1 864.2.i.c 4
72.l even 6 1 2592.2.a.s 2
72.n even 6 1 288.2.i.c 4
72.n even 6 1 2592.2.a.j 2
72.p odd 6 1 288.2.i.e yes 4
72.p odd 6 1 2592.2.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.2.i.c 4 8.b even 2 1
288.2.i.c 4 72.n even 6 1
288.2.i.e yes 4 8.d odd 2 1
288.2.i.e yes 4 72.p odd 6 1
576.2.i.i 4 4.b odd 2 1
576.2.i.i 4 36.f odd 6 1
576.2.i.m 4 1.a even 1 1 trivial
576.2.i.m 4 9.c even 3 1 inner
864.2.i.c 4 24.f even 2 1
864.2.i.c 4 72.l even 6 1
864.2.i.e 4 24.h odd 2 1
864.2.i.e 4 72.j odd 6 1
1728.2.i.k 4 12.b even 2 1
1728.2.i.k 4 36.h even 6 1
1728.2.i.m 4 3.b odd 2 1
1728.2.i.m 4 9.d odd 6 1
2592.2.a.j 2 72.n even 6 1
2592.2.a.n 2 72.p odd 6 1
2592.2.a.o 2 72.j odd 6 1
2592.2.a.s 2 72.l even 6 1
5184.2.a.bj 2 9.d odd 6 1
5184.2.a.bn 2 36.h even 6 1
5184.2.a.bu 2 9.c even 3 1
5184.2.a.by 2 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(576,[χ])S_{2}^{\mathrm{new}}(576, [\chi]):

T52+T5+1 T_{5}^{2} + T_{5} + 1 Copy content Toggle raw display
T742T73+9T72+10T7+25 T_{7}^{4} - 2T_{7}^{3} + 9T_{7}^{2} + 10T_{7} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T22T+3)2 (T^{2} - 2 T + 3)^{2} Copy content Toggle raw display
55 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
77 T42T3++25 T^{4} - 2 T^{3} + \cdots + 25 Copy content Toggle raw display
1111 T42T3++25 T^{4} - 2 T^{3} + \cdots + 25 Copy content Toggle raw display
1313 T42T3++529 T^{4} - 2 T^{3} + \cdots + 529 Copy content Toggle raw display
1717 (T224)2 (T^{2} - 24)^{2} Copy content Toggle raw display
1919 (T4)4 (T - 4)^{4} Copy content Toggle raw display
2323 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
2929 T410T3++1 T^{4} - 10 T^{3} + \cdots + 1 Copy content Toggle raw display
3131 T410T3++361 T^{4} - 10 T^{3} + \cdots + 361 Copy content Toggle raw display
3737 (T2+8T8)2 (T^{2} + 8 T - 8)^{2} Copy content Toggle raw display
4141 T414T3++625 T^{4} - 14 T^{3} + \cdots + 625 Copy content Toggle raw display
4343 T4+10T3++841 T^{4} + 10 T^{3} + \cdots + 841 Copy content Toggle raw display
4747 T42T3++2809 T^{4} - 2 T^{3} + \cdots + 2809 Copy content Toggle raw display
5353 (T2+8T8)2 (T^{2} + 8 T - 8)^{2} Copy content Toggle raw display
5959 T4+14T3++25 T^{4} + 14 T^{3} + \cdots + 25 Copy content Toggle raw display
6161 T4+6T3++225 T^{4} + 6 T^{3} + \cdots + 225 Copy content Toggle raw display
6767 T4+10T3++841 T^{4} + 10 T^{3} + \cdots + 841 Copy content Toggle raw display
7171 (T24T92)2 (T^{2} - 4 T - 92)^{2} Copy content Toggle raw display
7373 (T224)2 (T^{2} - 24)^{2} Copy content Toggle raw display
7979 T422T3++13225 T^{4} - 22 T^{3} + \cdots + 13225 Copy content Toggle raw display
8383 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
8989 (T2+16T+40)2 (T^{2} + 16 T + 40)^{2} Copy content Toggle raw display
9797 T4+2T3++529 T^{4} + 2 T^{3} + \cdots + 529 Copy content Toggle raw display
show more
show less