Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [576,2,Mod(193,576)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(576, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("576.193");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 576.i (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 288) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 |
|
0 | 1.00000 | − | 1.41421i | 0 | −0.500000 | + | 0.866025i | 0 | 1.72474 | + | 2.98735i | 0 | −1.00000 | − | 2.82843i | 0 | ||||||||||||||||||||||
193.2 | 0 | 1.00000 | + | 1.41421i | 0 | −0.500000 | + | 0.866025i | 0 | −0.724745 | − | 1.25529i | 0 | −1.00000 | + | 2.82843i | 0 | |||||||||||||||||||||||
385.1 | 0 | 1.00000 | − | 1.41421i | 0 | −0.500000 | − | 0.866025i | 0 | −0.724745 | + | 1.25529i | 0 | −1.00000 | − | 2.82843i | 0 | |||||||||||||||||||||||
385.2 | 0 | 1.00000 | + | 1.41421i | 0 | −0.500000 | − | 0.866025i | 0 | 1.72474 | − | 2.98735i | 0 | −1.00000 | + | 2.82843i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.2.i.m | 4 | |
3.b | odd | 2 | 1 | 1728.2.i.m | 4 | ||
4.b | odd | 2 | 1 | 576.2.i.i | 4 | ||
8.b | even | 2 | 1 | 288.2.i.c | ✓ | 4 | |
8.d | odd | 2 | 1 | 288.2.i.e | yes | 4 | |
9.c | even | 3 | 1 | inner | 576.2.i.m | 4 | |
9.c | even | 3 | 1 | 5184.2.a.bu | 2 | ||
9.d | odd | 6 | 1 | 1728.2.i.m | 4 | ||
9.d | odd | 6 | 1 | 5184.2.a.bj | 2 | ||
12.b | even | 2 | 1 | 1728.2.i.k | 4 | ||
24.f | even | 2 | 1 | 864.2.i.c | 4 | ||
24.h | odd | 2 | 1 | 864.2.i.e | 4 | ||
36.f | odd | 6 | 1 | 576.2.i.i | 4 | ||
36.f | odd | 6 | 1 | 5184.2.a.by | 2 | ||
36.h | even | 6 | 1 | 1728.2.i.k | 4 | ||
36.h | even | 6 | 1 | 5184.2.a.bn | 2 | ||
72.j | odd | 6 | 1 | 864.2.i.e | 4 | ||
72.j | odd | 6 | 1 | 2592.2.a.o | 2 | ||
72.l | even | 6 | 1 | 864.2.i.c | 4 | ||
72.l | even | 6 | 1 | 2592.2.a.s | 2 | ||
72.n | even | 6 | 1 | 288.2.i.c | ✓ | 4 | |
72.n | even | 6 | 1 | 2592.2.a.j | 2 | ||
72.p | odd | 6 | 1 | 288.2.i.e | yes | 4 | |
72.p | odd | 6 | 1 | 2592.2.a.n | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
288.2.i.c | ✓ | 4 | 8.b | even | 2 | 1 | |
288.2.i.c | ✓ | 4 | 72.n | even | 6 | 1 | |
288.2.i.e | yes | 4 | 8.d | odd | 2 | 1 | |
288.2.i.e | yes | 4 | 72.p | odd | 6 | 1 | |
576.2.i.i | 4 | 4.b | odd | 2 | 1 | ||
576.2.i.i | 4 | 36.f | odd | 6 | 1 | ||
576.2.i.m | 4 | 1.a | even | 1 | 1 | trivial | |
576.2.i.m | 4 | 9.c | even | 3 | 1 | inner | |
864.2.i.c | 4 | 24.f | even | 2 | 1 | ||
864.2.i.c | 4 | 72.l | even | 6 | 1 | ||
864.2.i.e | 4 | 24.h | odd | 2 | 1 | ||
864.2.i.e | 4 | 72.j | odd | 6 | 1 | ||
1728.2.i.k | 4 | 12.b | even | 2 | 1 | ||
1728.2.i.k | 4 | 36.h | even | 6 | 1 | ||
1728.2.i.m | 4 | 3.b | odd | 2 | 1 | ||
1728.2.i.m | 4 | 9.d | odd | 6 | 1 | ||
2592.2.a.j | 2 | 72.n | even | 6 | 1 | ||
2592.2.a.n | 2 | 72.p | odd | 6 | 1 | ||
2592.2.a.o | 2 | 72.j | odd | 6 | 1 | ||
2592.2.a.s | 2 | 72.l | even | 6 | 1 | ||
5184.2.a.bj | 2 | 9.d | odd | 6 | 1 | ||
5184.2.a.bn | 2 | 36.h | even | 6 | 1 | ||
5184.2.a.bu | 2 | 9.c | even | 3 | 1 | ||
5184.2.a.by | 2 | 36.f | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|