Properties

Label 2-605-1.1-c3-0-13
Degree $2$
Conductor $605$
Sign $1$
Analytic cond. $35.6961$
Root an. cond. $5.97462$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.729·2-s − 0.737·3-s − 7.46·4-s + 5·5-s − 0.537·6-s − 19.3·7-s − 11.2·8-s − 26.4·9-s + 3.64·10-s + 5.50·12-s − 19.1·13-s − 14.0·14-s − 3.68·15-s + 51.5·16-s + 34.8·17-s − 19.2·18-s − 37.2·19-s − 37.3·20-s + 14.2·21-s − 114.·23-s + 8.31·24-s + 25·25-s − 13.9·26-s + 39.4·27-s + 144.·28-s − 26.9·29-s − 2.68·30-s + ⋯
L(s)  = 1  + 0.257·2-s − 0.141·3-s − 0.933·4-s + 0.447·5-s − 0.0365·6-s − 1.04·7-s − 0.498·8-s − 0.979·9-s + 0.115·10-s + 0.132·12-s − 0.408·13-s − 0.269·14-s − 0.0634·15-s + 0.805·16-s + 0.496·17-s − 0.252·18-s − 0.449·19-s − 0.417·20-s + 0.148·21-s − 1.03·23-s + 0.0707·24-s + 0.200·25-s − 0.105·26-s + 0.281·27-s + 0.974·28-s − 0.172·29-s − 0.0163·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(605\)    =    \(5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(35.6961\)
Root analytic conductor: \(5.97462\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 605,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9803097205\)
\(L(\frac12)\) \(\approx\) \(0.9803097205\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 - 0.729T + 8T^{2} \)
3 \( 1 + 0.737T + 27T^{2} \)
7 \( 1 + 19.3T + 343T^{2} \)
13 \( 1 + 19.1T + 2.19e3T^{2} \)
17 \( 1 - 34.8T + 4.91e3T^{2} \)
19 \( 1 + 37.2T + 6.85e3T^{2} \)
23 \( 1 + 114.T + 1.21e4T^{2} \)
29 \( 1 + 26.9T + 2.43e4T^{2} \)
31 \( 1 - 45.6T + 2.97e4T^{2} \)
37 \( 1 - 331.T + 5.06e4T^{2} \)
41 \( 1 - 241.T + 6.89e4T^{2} \)
43 \( 1 - 285.T + 7.95e4T^{2} \)
47 \( 1 + 72.3T + 1.03e5T^{2} \)
53 \( 1 + 317.T + 1.48e5T^{2} \)
59 \( 1 - 755.T + 2.05e5T^{2} \)
61 \( 1 + 908.T + 2.26e5T^{2} \)
67 \( 1 - 626.T + 3.00e5T^{2} \)
71 \( 1 - 968.T + 3.57e5T^{2} \)
73 \( 1 + 1.02e3T + 3.89e5T^{2} \)
79 \( 1 + 459.T + 4.93e5T^{2} \)
83 \( 1 - 637.T + 5.71e5T^{2} \)
89 \( 1 - 756.T + 7.04e5T^{2} \)
97 \( 1 - 513.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.964585743796890086819644104062, −9.518988908894267115805392350865, −8.637265136601379075430266097107, −7.69641029234519182974141479293, −6.22217705834303858157865877081, −5.82525836234253868763578602045, −4.68743252325151150921151787028, −3.57159616363893212170914201098, −2.54995377727790515653594079328, −0.55107762226854394798171265955, 0.55107762226854394798171265955, 2.54995377727790515653594079328, 3.57159616363893212170914201098, 4.68743252325151150921151787028, 5.82525836234253868763578602045, 6.22217705834303858157865877081, 7.69641029234519182974141479293, 8.637265136601379075430266097107, 9.518988908894267115805392350865, 9.964585743796890086819644104062

Graph of the $Z$-function along the critical line