Properties

Label 605.4.a.n.1.4
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 33x^{4} + 67x^{3} + 256x^{2} - 236x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.270958\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.729042 q^{2} -0.737592 q^{3} -7.46850 q^{4} +5.00000 q^{5} -0.537736 q^{6} -19.3354 q^{7} -11.2772 q^{8} -26.4560 q^{9} +3.64521 q^{10} +5.50870 q^{12} -19.1434 q^{13} -14.0963 q^{14} -3.68796 q^{15} +51.5264 q^{16} +34.8156 q^{17} -19.2875 q^{18} -37.2672 q^{19} -37.3425 q^{20} +14.2616 q^{21} -114.071 q^{23} +8.31796 q^{24} +25.0000 q^{25} -13.9564 q^{26} +39.4287 q^{27} +144.406 q^{28} -26.9925 q^{29} -2.68868 q^{30} +45.6445 q^{31} +127.782 q^{32} +25.3821 q^{34} -96.6769 q^{35} +197.586 q^{36} +331.873 q^{37} -27.1694 q^{38} +14.1200 q^{39} -56.3860 q^{40} +241.369 q^{41} +10.3973 q^{42} +285.332 q^{43} -132.280 q^{45} -83.1628 q^{46} -72.3478 q^{47} -38.0055 q^{48} +30.8567 q^{49} +18.2261 q^{50} -25.6797 q^{51} +142.973 q^{52} -317.740 q^{53} +28.7452 q^{54} +218.049 q^{56} +27.4880 q^{57} -19.6787 q^{58} +755.784 q^{59} +27.5435 q^{60} -908.535 q^{61} +33.2768 q^{62} +511.536 q^{63} -319.053 q^{64} -95.7171 q^{65} +626.261 q^{67} -260.020 q^{68} +84.1380 q^{69} -70.4815 q^{70} +968.978 q^{71} +298.349 q^{72} -1027.71 q^{73} +241.950 q^{74} -18.4398 q^{75} +278.330 q^{76} +10.2941 q^{78} -459.166 q^{79} +257.632 q^{80} +685.229 q^{81} +175.968 q^{82} +637.420 q^{83} -106.513 q^{84} +174.078 q^{85} +208.019 q^{86} +19.9095 q^{87} +756.844 q^{89} -96.4376 q^{90} +370.145 q^{91} +851.941 q^{92} -33.6670 q^{93} -52.7446 q^{94} -186.336 q^{95} -94.2513 q^{96} +513.113 q^{97} +22.4958 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 12 q^{3} + 27 q^{4} + 30 q^{5} + 45 q^{6} - 10 q^{7} + 51 q^{8} + 104 q^{9} + 15 q^{10} + 137 q^{12} + 80 q^{13} + 7 q^{14} + 60 q^{15} + 155 q^{16} - 12 q^{17} + 14 q^{18} + 86 q^{19} + 135 q^{20}+ \cdots + 6850 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.729042 0.257755 0.128878 0.991660i \(-0.458863\pi\)
0.128878 + 0.991660i \(0.458863\pi\)
\(3\) −0.737592 −0.141950 −0.0709748 0.997478i \(-0.522611\pi\)
−0.0709748 + 0.997478i \(0.522611\pi\)
\(4\) −7.46850 −0.933562
\(5\) 5.00000 0.447214
\(6\) −0.537736 −0.0365883
\(7\) −19.3354 −1.04401 −0.522006 0.852942i \(-0.674816\pi\)
−0.522006 + 0.852942i \(0.674816\pi\)
\(8\) −11.2772 −0.498386
\(9\) −26.4560 −0.979850
\(10\) 3.64521 0.115272
\(11\) 0 0
\(12\) 5.50870 0.132519
\(13\) −19.1434 −0.408418 −0.204209 0.978927i \(-0.565462\pi\)
−0.204209 + 0.978927i \(0.565462\pi\)
\(14\) −14.0963 −0.269100
\(15\) −3.68796 −0.0634818
\(16\) 51.5264 0.805100
\(17\) 34.8156 0.496707 0.248354 0.968669i \(-0.420110\pi\)
0.248354 + 0.968669i \(0.420110\pi\)
\(18\) −19.2875 −0.252562
\(19\) −37.2672 −0.449984 −0.224992 0.974361i \(-0.572236\pi\)
−0.224992 + 0.974361i \(0.572236\pi\)
\(20\) −37.3425 −0.417502
\(21\) 14.2616 0.148197
\(22\) 0 0
\(23\) −114.071 −1.03415 −0.517076 0.855939i \(-0.672980\pi\)
−0.517076 + 0.855939i \(0.672980\pi\)
\(24\) 8.31796 0.0707457
\(25\) 25.0000 0.200000
\(26\) −13.9564 −0.105272
\(27\) 39.4287 0.281039
\(28\) 144.406 0.974650
\(29\) −26.9925 −0.172841 −0.0864205 0.996259i \(-0.527543\pi\)
−0.0864205 + 0.996259i \(0.527543\pi\)
\(30\) −2.68868 −0.0163628
\(31\) 45.6445 0.264452 0.132226 0.991220i \(-0.457788\pi\)
0.132226 + 0.991220i \(0.457788\pi\)
\(32\) 127.782 0.705905
\(33\) 0 0
\(34\) 25.3821 0.128029
\(35\) −96.6769 −0.466896
\(36\) 197.586 0.914751
\(37\) 331.873 1.47458 0.737292 0.675574i \(-0.236104\pi\)
0.737292 + 0.675574i \(0.236104\pi\)
\(38\) −27.1694 −0.115986
\(39\) 14.1200 0.0579747
\(40\) −56.3860 −0.222885
\(41\) 241.369 0.919401 0.459701 0.888074i \(-0.347957\pi\)
0.459701 + 0.888074i \(0.347957\pi\)
\(42\) 10.3973 0.0381986
\(43\) 285.332 1.01192 0.505962 0.862556i \(-0.331137\pi\)
0.505962 + 0.862556i \(0.331137\pi\)
\(44\) 0 0
\(45\) −132.280 −0.438202
\(46\) −83.1628 −0.266558
\(47\) −72.3478 −0.224532 −0.112266 0.993678i \(-0.535811\pi\)
−0.112266 + 0.993678i \(0.535811\pi\)
\(48\) −38.0055 −0.114284
\(49\) 30.8567 0.0899611
\(50\) 18.2261 0.0515511
\(51\) −25.6797 −0.0705074
\(52\) 142.973 0.381283
\(53\) −317.740 −0.823491 −0.411745 0.911299i \(-0.635081\pi\)
−0.411745 + 0.911299i \(0.635081\pi\)
\(54\) 28.7452 0.0724393
\(55\) 0 0
\(56\) 218.049 0.520321
\(57\) 27.4880 0.0638750
\(58\) −19.6787 −0.0445507
\(59\) 755.784 1.66771 0.833853 0.551986i \(-0.186130\pi\)
0.833853 + 0.551986i \(0.186130\pi\)
\(60\) 27.5435 0.0592642
\(61\) −908.535 −1.90698 −0.953492 0.301420i \(-0.902539\pi\)
−0.953492 + 0.301420i \(0.902539\pi\)
\(62\) 33.2768 0.0681638
\(63\) 511.536 1.02298
\(64\) −319.053 −0.623150
\(65\) −95.7171 −0.182650
\(66\) 0 0
\(67\) 626.261 1.14194 0.570969 0.820971i \(-0.306567\pi\)
0.570969 + 0.820971i \(0.306567\pi\)
\(68\) −260.020 −0.463707
\(69\) 84.1380 0.146797
\(70\) −70.4815 −0.120345
\(71\) 968.978 1.61967 0.809834 0.586659i \(-0.199557\pi\)
0.809834 + 0.586659i \(0.199557\pi\)
\(72\) 298.349 0.488344
\(73\) −1027.71 −1.64773 −0.823863 0.566788i \(-0.808186\pi\)
−0.823863 + 0.566788i \(0.808186\pi\)
\(74\) 241.950 0.380082
\(75\) −18.4398 −0.0283899
\(76\) 278.330 0.420088
\(77\) 0 0
\(78\) 10.2941 0.0149433
\(79\) −459.166 −0.653927 −0.326963 0.945037i \(-0.606025\pi\)
−0.326963 + 0.945037i \(0.606025\pi\)
\(80\) 257.632 0.360052
\(81\) 685.229 0.939957
\(82\) 175.968 0.236981
\(83\) 637.420 0.842964 0.421482 0.906837i \(-0.361510\pi\)
0.421482 + 0.906837i \(0.361510\pi\)
\(84\) −106.513 −0.138351
\(85\) 174.078 0.222134
\(86\) 208.019 0.260829
\(87\) 19.9095 0.0245347
\(88\) 0 0
\(89\) 756.844 0.901408 0.450704 0.892673i \(-0.351173\pi\)
0.450704 + 0.892673i \(0.351173\pi\)
\(90\) −96.4376 −0.112949
\(91\) 370.145 0.426393
\(92\) 851.941 0.965445
\(93\) −33.6670 −0.0375388
\(94\) −52.7446 −0.0578744
\(95\) −186.336 −0.201239
\(96\) −94.2513 −0.100203
\(97\) 513.113 0.537100 0.268550 0.963266i \(-0.413455\pi\)
0.268550 + 0.963266i \(0.413455\pi\)
\(98\) 22.4958 0.0231880
\(99\) 0 0
\(100\) −186.712 −0.186712
\(101\) −591.132 −0.582375 −0.291187 0.956666i \(-0.594050\pi\)
−0.291187 + 0.956666i \(0.594050\pi\)
\(102\) −18.7216 −0.0181737
\(103\) 613.367 0.586765 0.293383 0.955995i \(-0.405219\pi\)
0.293383 + 0.955995i \(0.405219\pi\)
\(104\) 215.884 0.203550
\(105\) 71.3081 0.0662757
\(106\) −231.646 −0.212259
\(107\) −575.014 −0.519521 −0.259761 0.965673i \(-0.583644\pi\)
−0.259761 + 0.965673i \(0.583644\pi\)
\(108\) −294.473 −0.262367
\(109\) 2052.08 1.80325 0.901624 0.432521i \(-0.142376\pi\)
0.901624 + 0.432521i \(0.142376\pi\)
\(110\) 0 0
\(111\) −244.787 −0.209317
\(112\) −996.283 −0.840535
\(113\) 1091.59 0.908742 0.454371 0.890812i \(-0.349864\pi\)
0.454371 + 0.890812i \(0.349864\pi\)
\(114\) 20.0399 0.0164641
\(115\) −570.356 −0.462487
\(116\) 201.594 0.161358
\(117\) 506.458 0.400188
\(118\) 550.999 0.429860
\(119\) −673.173 −0.518569
\(120\) 41.5898 0.0316384
\(121\) 0 0
\(122\) −662.360 −0.491535
\(123\) −178.031 −0.130509
\(124\) −340.896 −0.246882
\(125\) 125.000 0.0894427
\(126\) 372.931 0.263677
\(127\) 636.023 0.444393 0.222197 0.975002i \(-0.428677\pi\)
0.222197 + 0.975002i \(0.428677\pi\)
\(128\) −1254.86 −0.866525
\(129\) −210.459 −0.143642
\(130\) −69.7818 −0.0470790
\(131\) 2593.85 1.72997 0.864984 0.501799i \(-0.167328\pi\)
0.864984 + 0.501799i \(0.167328\pi\)
\(132\) 0 0
\(133\) 720.576 0.469788
\(134\) 456.571 0.294341
\(135\) 197.143 0.125684
\(136\) −392.622 −0.247552
\(137\) 2168.42 1.35227 0.676133 0.736780i \(-0.263655\pi\)
0.676133 + 0.736780i \(0.263655\pi\)
\(138\) 61.3402 0.0378378
\(139\) −1201.35 −0.733073 −0.366537 0.930404i \(-0.619457\pi\)
−0.366537 + 0.930404i \(0.619457\pi\)
\(140\) 722.031 0.435877
\(141\) 53.3632 0.0318723
\(142\) 706.426 0.417478
\(143\) 0 0
\(144\) −1363.18 −0.788878
\(145\) −134.963 −0.0772969
\(146\) −749.242 −0.424711
\(147\) −22.7596 −0.0127699
\(148\) −2478.60 −1.37662
\(149\) −1679.92 −0.923654 −0.461827 0.886970i \(-0.652806\pi\)
−0.461827 + 0.886970i \(0.652806\pi\)
\(150\) −13.4434 −0.00731765
\(151\) −2181.82 −1.17586 −0.587928 0.808913i \(-0.700056\pi\)
−0.587928 + 0.808913i \(0.700056\pi\)
\(152\) 420.270 0.224266
\(153\) −921.080 −0.486699
\(154\) 0 0
\(155\) 228.223 0.118266
\(156\) −105.455 −0.0541230
\(157\) 742.382 0.377379 0.188690 0.982037i \(-0.439576\pi\)
0.188690 + 0.982037i \(0.439576\pi\)
\(158\) −334.751 −0.168553
\(159\) 234.363 0.116894
\(160\) 638.912 0.315690
\(161\) 2205.61 1.07967
\(162\) 499.561 0.242279
\(163\) −2136.53 −1.02666 −0.513330 0.858191i \(-0.671588\pi\)
−0.513330 + 0.858191i \(0.671588\pi\)
\(164\) −1802.66 −0.858318
\(165\) 0 0
\(166\) 464.707 0.217278
\(167\) −2509.44 −1.16279 −0.581395 0.813621i \(-0.697493\pi\)
−0.581395 + 0.813621i \(0.697493\pi\)
\(168\) −160.831 −0.0738594
\(169\) −1830.53 −0.833195
\(170\) 126.910 0.0572563
\(171\) 985.941 0.440917
\(172\) −2131.00 −0.944695
\(173\) 511.948 0.224986 0.112493 0.993652i \(-0.464116\pi\)
0.112493 + 0.993652i \(0.464116\pi\)
\(174\) 14.5149 0.00632395
\(175\) −483.384 −0.208802
\(176\) 0 0
\(177\) −557.460 −0.236730
\(178\) 551.772 0.232343
\(179\) −2690.21 −1.12333 −0.561665 0.827365i \(-0.689839\pi\)
−0.561665 + 0.827365i \(0.689839\pi\)
\(180\) 987.931 0.409089
\(181\) −745.715 −0.306235 −0.153118 0.988208i \(-0.548931\pi\)
−0.153118 + 0.988208i \(0.548931\pi\)
\(182\) 269.852 0.109905
\(183\) 670.128 0.270695
\(184\) 1286.40 0.515407
\(185\) 1659.37 0.659454
\(186\) −24.5447 −0.00967583
\(187\) 0 0
\(188\) 540.330 0.209615
\(189\) −762.368 −0.293408
\(190\) −135.847 −0.0518704
\(191\) 1522.08 0.576617 0.288308 0.957538i \(-0.406907\pi\)
0.288308 + 0.957538i \(0.406907\pi\)
\(192\) 235.331 0.0884558
\(193\) −2697.01 −1.00588 −0.502941 0.864321i \(-0.667749\pi\)
−0.502941 + 0.864321i \(0.667749\pi\)
\(194\) 374.081 0.138441
\(195\) 70.6001 0.0259271
\(196\) −230.453 −0.0839843
\(197\) −5167.15 −1.86875 −0.934376 0.356288i \(-0.884042\pi\)
−0.934376 + 0.356288i \(0.884042\pi\)
\(198\) 0 0
\(199\) 2225.27 0.792690 0.396345 0.918102i \(-0.370278\pi\)
0.396345 + 0.918102i \(0.370278\pi\)
\(200\) −281.930 −0.0996772
\(201\) −461.925 −0.162098
\(202\) −430.961 −0.150110
\(203\) 521.911 0.180448
\(204\) 191.789 0.0658231
\(205\) 1206.84 0.411169
\(206\) 447.170 0.151242
\(207\) 3017.86 1.01331
\(208\) −986.392 −0.328817
\(209\) 0 0
\(210\) 51.9866 0.0170829
\(211\) 4611.47 1.50458 0.752291 0.658831i \(-0.228949\pi\)
0.752291 + 0.658831i \(0.228949\pi\)
\(212\) 2373.04 0.768780
\(213\) −714.710 −0.229911
\(214\) −419.210 −0.133909
\(215\) 1426.66 0.452547
\(216\) −444.645 −0.140066
\(217\) −882.554 −0.276091
\(218\) 1496.06 0.464797
\(219\) 758.028 0.233894
\(220\) 0 0
\(221\) −666.490 −0.202864
\(222\) −178.460 −0.0539525
\(223\) −1217.14 −0.365496 −0.182748 0.983160i \(-0.558499\pi\)
−0.182748 + 0.983160i \(0.558499\pi\)
\(224\) −2470.72 −0.736973
\(225\) −661.399 −0.195970
\(226\) 795.813 0.234233
\(227\) 6354.43 1.85797 0.928983 0.370121i \(-0.120684\pi\)
0.928983 + 0.370121i \(0.120684\pi\)
\(228\) −205.294 −0.0596313
\(229\) −2602.50 −0.750996 −0.375498 0.926823i \(-0.622528\pi\)
−0.375498 + 0.926823i \(0.622528\pi\)
\(230\) −415.814 −0.119209
\(231\) 0 0
\(232\) 304.400 0.0861416
\(233\) 4853.85 1.36475 0.682373 0.731004i \(-0.260948\pi\)
0.682373 + 0.731004i \(0.260948\pi\)
\(234\) 369.229 0.103151
\(235\) −361.739 −0.100414
\(236\) −5644.57 −1.55691
\(237\) 338.677 0.0928246
\(238\) −490.772 −0.133664
\(239\) −1973.44 −0.534105 −0.267052 0.963682i \(-0.586050\pi\)
−0.267052 + 0.963682i \(0.586050\pi\)
\(240\) −190.027 −0.0511092
\(241\) −1288.83 −0.344486 −0.172243 0.985055i \(-0.555101\pi\)
−0.172243 + 0.985055i \(0.555101\pi\)
\(242\) 0 0
\(243\) −1569.99 −0.414465
\(244\) 6785.39 1.78029
\(245\) 154.283 0.0402318
\(246\) −129.793 −0.0336393
\(247\) 713.423 0.183781
\(248\) −514.742 −0.131799
\(249\) −470.156 −0.119658
\(250\) 91.1303 0.0230543
\(251\) 2128.34 0.535219 0.267609 0.963527i \(-0.413766\pi\)
0.267609 + 0.963527i \(0.413766\pi\)
\(252\) −3820.40 −0.955011
\(253\) 0 0
\(254\) 463.688 0.114545
\(255\) −128.399 −0.0315319
\(256\) 1637.57 0.399798
\(257\) −2985.66 −0.724672 −0.362336 0.932048i \(-0.618021\pi\)
−0.362336 + 0.932048i \(0.618021\pi\)
\(258\) −153.433 −0.0370246
\(259\) −6416.89 −1.53948
\(260\) 714.863 0.170515
\(261\) 714.114 0.169358
\(262\) 1891.03 0.445909
\(263\) 3974.84 0.931937 0.465968 0.884801i \(-0.345706\pi\)
0.465968 + 0.884801i \(0.345706\pi\)
\(264\) 0 0
\(265\) −1588.70 −0.368276
\(266\) 525.330 0.121091
\(267\) −558.242 −0.127955
\(268\) −4677.23 −1.06607
\(269\) −1490.18 −0.337761 −0.168880 0.985637i \(-0.554015\pi\)
−0.168880 + 0.985637i \(0.554015\pi\)
\(270\) 143.726 0.0323958
\(271\) 756.295 0.169526 0.0847632 0.996401i \(-0.472987\pi\)
0.0847632 + 0.996401i \(0.472987\pi\)
\(272\) 1793.92 0.399899
\(273\) −273.016 −0.0605263
\(274\) 1580.87 0.348554
\(275\) 0 0
\(276\) −628.384 −0.137045
\(277\) 1097.85 0.238135 0.119067 0.992886i \(-0.462010\pi\)
0.119067 + 0.992886i \(0.462010\pi\)
\(278\) −875.835 −0.188954
\(279\) −1207.57 −0.259123
\(280\) 1090.24 0.232695
\(281\) −2880.06 −0.611422 −0.305711 0.952124i \(-0.598894\pi\)
−0.305711 + 0.952124i \(0.598894\pi\)
\(282\) 38.9040 0.00821525
\(283\) −7875.47 −1.65423 −0.827117 0.562029i \(-0.810021\pi\)
−0.827117 + 0.562029i \(0.810021\pi\)
\(284\) −7236.81 −1.51206
\(285\) 137.440 0.0285658
\(286\) 0 0
\(287\) −4666.95 −0.959866
\(288\) −3380.61 −0.691681
\(289\) −3700.87 −0.753282
\(290\) −98.3935 −0.0199237
\(291\) −378.468 −0.0762412
\(292\) 7675.43 1.53826
\(293\) 5591.66 1.11491 0.557455 0.830207i \(-0.311778\pi\)
0.557455 + 0.830207i \(0.311778\pi\)
\(294\) −16.5927 −0.00329152
\(295\) 3778.92 0.745821
\(296\) −3742.60 −0.734913
\(297\) 0 0
\(298\) −1224.73 −0.238077
\(299\) 2183.71 0.422366
\(300\) 137.718 0.0265038
\(301\) −5517.01 −1.05646
\(302\) −1590.64 −0.303083
\(303\) 436.014 0.0826679
\(304\) −1920.25 −0.362282
\(305\) −4542.67 −0.852829
\(306\) −671.507 −0.125449
\(307\) −9699.86 −1.80326 −0.901629 0.432510i \(-0.857628\pi\)
−0.901629 + 0.432510i \(0.857628\pi\)
\(308\) 0 0
\(309\) −452.414 −0.0832911
\(310\) 166.384 0.0304838
\(311\) −1105.67 −0.201597 −0.100798 0.994907i \(-0.532140\pi\)
−0.100798 + 0.994907i \(0.532140\pi\)
\(312\) −159.234 −0.0288938
\(313\) 9151.92 1.65271 0.826353 0.563152i \(-0.190411\pi\)
0.826353 + 0.563152i \(0.190411\pi\)
\(314\) 541.228 0.0972715
\(315\) 2557.68 0.457489
\(316\) 3429.28 0.610481
\(317\) 8929.63 1.58214 0.791070 0.611726i \(-0.209525\pi\)
0.791070 + 0.611726i \(0.209525\pi\)
\(318\) 170.860 0.0301301
\(319\) 0 0
\(320\) −1595.26 −0.278681
\(321\) 424.126 0.0737458
\(322\) 1607.98 0.278290
\(323\) −1297.48 −0.223510
\(324\) −5117.63 −0.877508
\(325\) −478.586 −0.0816835
\(326\) −1557.62 −0.264627
\(327\) −1513.60 −0.255970
\(328\) −2721.96 −0.458217
\(329\) 1398.87 0.234414
\(330\) 0 0
\(331\) −2111.51 −0.350632 −0.175316 0.984512i \(-0.556095\pi\)
−0.175316 + 0.984512i \(0.556095\pi\)
\(332\) −4760.57 −0.786959
\(333\) −8780.03 −1.44487
\(334\) −1829.49 −0.299716
\(335\) 3131.30 0.510691
\(336\) 734.850 0.119314
\(337\) 4170.40 0.674113 0.337057 0.941484i \(-0.390569\pi\)
0.337057 + 0.941484i \(0.390569\pi\)
\(338\) −1334.53 −0.214761
\(339\) −805.146 −0.128996
\(340\) −1300.10 −0.207376
\(341\) 0 0
\(342\) 718.792 0.113649
\(343\) 6035.41 0.950092
\(344\) −3217.75 −0.504329
\(345\) 420.690 0.0656498
\(346\) 373.232 0.0579915
\(347\) 11233.4 1.73788 0.868938 0.494921i \(-0.164803\pi\)
0.868938 + 0.494921i \(0.164803\pi\)
\(348\) −148.694 −0.0229047
\(349\) −7487.15 −1.14836 −0.574181 0.818729i \(-0.694679\pi\)
−0.574181 + 0.818729i \(0.694679\pi\)
\(350\) −352.408 −0.0538199
\(351\) −754.800 −0.114781
\(352\) 0 0
\(353\) 3775.45 0.569256 0.284628 0.958638i \(-0.408130\pi\)
0.284628 + 0.958638i \(0.408130\pi\)
\(354\) −406.412 −0.0610185
\(355\) 4844.89 0.724338
\(356\) −5652.49 −0.841521
\(357\) 496.527 0.0736106
\(358\) −1961.28 −0.289544
\(359\) −2014.08 −0.296097 −0.148049 0.988980i \(-0.547299\pi\)
−0.148049 + 0.988980i \(0.547299\pi\)
\(360\) 1491.74 0.218394
\(361\) −5470.15 −0.797515
\(362\) −543.658 −0.0789338
\(363\) 0 0
\(364\) −2764.43 −0.398064
\(365\) −5138.54 −0.736886
\(366\) 488.552 0.0697732
\(367\) 11609.9 1.65132 0.825658 0.564172i \(-0.190804\pi\)
0.825658 + 0.564172i \(0.190804\pi\)
\(368\) −5877.68 −0.832596
\(369\) −6385.64 −0.900876
\(370\) 1209.75 0.169978
\(371\) 6143.63 0.859734
\(372\) 251.442 0.0350448
\(373\) 5231.95 0.726273 0.363137 0.931736i \(-0.381706\pi\)
0.363137 + 0.931736i \(0.381706\pi\)
\(374\) 0 0
\(375\) −92.1990 −0.0126964
\(376\) 815.880 0.111904
\(377\) 516.730 0.0705913
\(378\) −555.799 −0.0756275
\(379\) −2938.72 −0.398290 −0.199145 0.979970i \(-0.563816\pi\)
−0.199145 + 0.979970i \(0.563816\pi\)
\(380\) 1391.65 0.187869
\(381\) −469.126 −0.0630814
\(382\) 1109.66 0.148626
\(383\) 22.9411 0.00306067 0.00153033 0.999999i \(-0.499513\pi\)
0.00153033 + 0.999999i \(0.499513\pi\)
\(384\) 925.576 0.123003
\(385\) 0 0
\(386\) −1966.24 −0.259271
\(387\) −7548.74 −0.991535
\(388\) −3832.18 −0.501417
\(389\) −2898.85 −0.377834 −0.188917 0.981993i \(-0.560498\pi\)
−0.188917 + 0.981993i \(0.560498\pi\)
\(390\) 51.4705 0.00668285
\(391\) −3971.46 −0.513671
\(392\) −347.976 −0.0448354
\(393\) −1913.20 −0.245568
\(394\) −3767.07 −0.481681
\(395\) −2295.83 −0.292445
\(396\) 0 0
\(397\) 2030.77 0.256730 0.128365 0.991727i \(-0.459027\pi\)
0.128365 + 0.991727i \(0.459027\pi\)
\(398\) 1622.32 0.204320
\(399\) −531.491 −0.0666863
\(400\) 1288.16 0.161020
\(401\) −5125.75 −0.638324 −0.319162 0.947700i \(-0.603401\pi\)
−0.319162 + 0.947700i \(0.603401\pi\)
\(402\) −336.763 −0.0417816
\(403\) −873.792 −0.108007
\(404\) 4414.87 0.543683
\(405\) 3426.14 0.420362
\(406\) 380.495 0.0465115
\(407\) 0 0
\(408\) 289.595 0.0351399
\(409\) 13227.0 1.59910 0.799549 0.600601i \(-0.205072\pi\)
0.799549 + 0.600601i \(0.205072\pi\)
\(410\) 879.840 0.105981
\(411\) −1599.41 −0.191953
\(412\) −4580.93 −0.547782
\(413\) −14613.4 −1.74111
\(414\) 2200.15 0.261187
\(415\) 3187.10 0.376985
\(416\) −2446.19 −0.288304
\(417\) 886.106 0.104059
\(418\) 0 0
\(419\) 14065.7 1.63998 0.819991 0.572376i \(-0.193978\pi\)
0.819991 + 0.572376i \(0.193978\pi\)
\(420\) −532.564 −0.0618725
\(421\) 7149.16 0.827622 0.413811 0.910363i \(-0.364197\pi\)
0.413811 + 0.910363i \(0.364197\pi\)
\(422\) 3361.96 0.387814
\(423\) 1914.03 0.220008
\(424\) 3583.22 0.410416
\(425\) 870.390 0.0993415
\(426\) −521.054 −0.0592609
\(427\) 17566.9 1.99091
\(428\) 4294.49 0.485005
\(429\) 0 0
\(430\) 1040.10 0.116646
\(431\) −8002.27 −0.894329 −0.447164 0.894452i \(-0.647566\pi\)
−0.447164 + 0.894452i \(0.647566\pi\)
\(432\) 2031.62 0.226265
\(433\) 3651.31 0.405244 0.202622 0.979257i \(-0.435054\pi\)
0.202622 + 0.979257i \(0.435054\pi\)
\(434\) −643.419 −0.0711638
\(435\) 99.5474 0.0109723
\(436\) −15326.0 −1.68344
\(437\) 4251.12 0.465352
\(438\) 552.635 0.0602875
\(439\) 12493.6 1.35829 0.679144 0.734005i \(-0.262351\pi\)
0.679144 + 0.734005i \(0.262351\pi\)
\(440\) 0 0
\(441\) −816.342 −0.0881484
\(442\) −485.900 −0.0522893
\(443\) 5985.71 0.641964 0.320982 0.947085i \(-0.395987\pi\)
0.320982 + 0.947085i \(0.395987\pi\)
\(444\) 1828.19 0.195410
\(445\) 3784.22 0.403122
\(446\) −887.346 −0.0942087
\(447\) 1239.10 0.131112
\(448\) 6169.00 0.650576
\(449\) −12352.2 −1.29830 −0.649152 0.760659i \(-0.724876\pi\)
−0.649152 + 0.760659i \(0.724876\pi\)
\(450\) −482.188 −0.0505123
\(451\) 0 0
\(452\) −8152.52 −0.848368
\(453\) 1609.29 0.166912
\(454\) 4632.65 0.478901
\(455\) 1850.73 0.190689
\(456\) −309.987 −0.0318344
\(457\) 15282.9 1.56434 0.782171 0.623064i \(-0.214112\pi\)
0.782171 + 0.623064i \(0.214112\pi\)
\(458\) −1897.33 −0.193573
\(459\) 1372.73 0.139594
\(460\) 4259.70 0.431760
\(461\) 6227.38 0.629150 0.314575 0.949233i \(-0.398138\pi\)
0.314575 + 0.949233i \(0.398138\pi\)
\(462\) 0 0
\(463\) 14097.6 1.41506 0.707529 0.706684i \(-0.249810\pi\)
0.707529 + 0.706684i \(0.249810\pi\)
\(464\) −1390.83 −0.139154
\(465\) −168.335 −0.0167879
\(466\) 3538.66 0.351771
\(467\) 10616.8 1.05201 0.526004 0.850482i \(-0.323690\pi\)
0.526004 + 0.850482i \(0.323690\pi\)
\(468\) −3782.48 −0.373601
\(469\) −12109.0 −1.19220
\(470\) −263.723 −0.0258822
\(471\) −547.575 −0.0535688
\(472\) −8523.12 −0.831162
\(473\) 0 0
\(474\) 246.910 0.0239260
\(475\) −931.681 −0.0899968
\(476\) 5027.59 0.484116
\(477\) 8406.13 0.806898
\(478\) −1438.72 −0.137668
\(479\) −14627.4 −1.39529 −0.697645 0.716443i \(-0.745769\pi\)
−0.697645 + 0.716443i \(0.745769\pi\)
\(480\) −471.256 −0.0448121
\(481\) −6353.19 −0.602247
\(482\) −939.614 −0.0887931
\(483\) −1626.84 −0.153258
\(484\) 0 0
\(485\) 2565.56 0.240199
\(486\) −1144.59 −0.106831
\(487\) 19666.3 1.82991 0.914954 0.403557i \(-0.132226\pi\)
0.914954 + 0.403557i \(0.132226\pi\)
\(488\) 10245.7 0.950414
\(489\) 1575.88 0.145734
\(490\) 112.479 0.0103700
\(491\) 8451.42 0.776796 0.388398 0.921492i \(-0.373029\pi\)
0.388398 + 0.921492i \(0.373029\pi\)
\(492\) 1329.63 0.121838
\(493\) −939.762 −0.0858514
\(494\) 520.115 0.0473706
\(495\) 0 0
\(496\) 2351.90 0.212910
\(497\) −18735.5 −1.69095
\(498\) −342.764 −0.0308426
\(499\) −734.629 −0.0659049 −0.0329524 0.999457i \(-0.510491\pi\)
−0.0329524 + 0.999457i \(0.510491\pi\)
\(500\) −933.562 −0.0835003
\(501\) 1850.94 0.165058
\(502\) 1551.65 0.137956
\(503\) 14370.7 1.27387 0.636937 0.770916i \(-0.280201\pi\)
0.636937 + 0.770916i \(0.280201\pi\)
\(504\) −5768.69 −0.509837
\(505\) −2955.66 −0.260446
\(506\) 0 0
\(507\) 1350.18 0.118272
\(508\) −4750.14 −0.414869
\(509\) −18638.7 −1.62308 −0.811539 0.584298i \(-0.801370\pi\)
−0.811539 + 0.584298i \(0.801370\pi\)
\(510\) −93.6080 −0.00812751
\(511\) 19871.1 1.72025
\(512\) 11232.8 0.969575
\(513\) −1469.40 −0.126463
\(514\) −2176.68 −0.186788
\(515\) 3066.83 0.262409
\(516\) 1571.81 0.134099
\(517\) 0 0
\(518\) −4678.19 −0.396810
\(519\) −377.608 −0.0319367
\(520\) 1079.42 0.0910302
\(521\) 10565.2 0.888422 0.444211 0.895922i \(-0.353484\pi\)
0.444211 + 0.895922i \(0.353484\pi\)
\(522\) 520.619 0.0436530
\(523\) 7469.83 0.624537 0.312268 0.949994i \(-0.398911\pi\)
0.312268 + 0.949994i \(0.398911\pi\)
\(524\) −19372.2 −1.61503
\(525\) 356.540 0.0296394
\(526\) 2897.83 0.240212
\(527\) 1589.14 0.131355
\(528\) 0 0
\(529\) 845.251 0.0694708
\(530\) −1158.23 −0.0949252
\(531\) −19995.0 −1.63410
\(532\) −5381.62 −0.438577
\(533\) −4620.62 −0.375500
\(534\) −406.982 −0.0329810
\(535\) −2875.07 −0.232337
\(536\) −7062.46 −0.569126
\(537\) 1984.28 0.159456
\(538\) −1086.40 −0.0870597
\(539\) 0 0
\(540\) −1472.36 −0.117334
\(541\) −8518.88 −0.676997 −0.338498 0.940967i \(-0.609919\pi\)
−0.338498 + 0.940967i \(0.609919\pi\)
\(542\) 551.371 0.0436964
\(543\) 550.033 0.0434700
\(544\) 4448.83 0.350628
\(545\) 10260.4 0.806437
\(546\) −199.040 −0.0156010
\(547\) −3710.72 −0.290053 −0.145026 0.989428i \(-0.546327\pi\)
−0.145026 + 0.989428i \(0.546327\pi\)
\(548\) −16194.8 −1.26242
\(549\) 24036.2 1.86856
\(550\) 0 0
\(551\) 1005.94 0.0777756
\(552\) −948.840 −0.0731618
\(553\) 8878.15 0.682707
\(554\) 800.378 0.0613805
\(555\) −1223.94 −0.0936093
\(556\) 8972.28 0.684369
\(557\) 8174.43 0.621834 0.310917 0.950437i \(-0.399364\pi\)
0.310917 + 0.950437i \(0.399364\pi\)
\(558\) −880.369 −0.0667903
\(559\) −5462.24 −0.413288
\(560\) −4981.41 −0.375898
\(561\) 0 0
\(562\) −2099.68 −0.157597
\(563\) −6354.30 −0.475669 −0.237835 0.971306i \(-0.576438\pi\)
−0.237835 + 0.971306i \(0.576438\pi\)
\(564\) −398.543 −0.0297547
\(565\) 5457.94 0.406402
\(566\) −5741.56 −0.426388
\(567\) −13249.2 −0.981326
\(568\) −10927.3 −0.807220
\(569\) 11023.2 0.812158 0.406079 0.913838i \(-0.366896\pi\)
0.406079 + 0.913838i \(0.366896\pi\)
\(570\) 100.200 0.00736298
\(571\) 10506.5 0.770020 0.385010 0.922912i \(-0.374198\pi\)
0.385010 + 0.922912i \(0.374198\pi\)
\(572\) 0 0
\(573\) −1122.67 −0.0818505
\(574\) −3402.41 −0.247411
\(575\) −2851.78 −0.206830
\(576\) 8440.84 0.610593
\(577\) 15541.6 1.12132 0.560662 0.828045i \(-0.310547\pi\)
0.560662 + 0.828045i \(0.310547\pi\)
\(578\) −2698.09 −0.194162
\(579\) 1989.29 0.142784
\(580\) 1007.97 0.0721614
\(581\) −12324.8 −0.880064
\(582\) −275.919 −0.0196516
\(583\) 0 0
\(584\) 11589.7 0.821204
\(585\) 2532.29 0.178970
\(586\) 4076.56 0.287374
\(587\) 8327.99 0.585576 0.292788 0.956177i \(-0.405417\pi\)
0.292788 + 0.956177i \(0.405417\pi\)
\(588\) 169.980 0.0119215
\(589\) −1701.05 −0.118999
\(590\) 2754.99 0.192239
\(591\) 3811.25 0.265269
\(592\) 17100.2 1.18719
\(593\) 20186.4 1.39790 0.698950 0.715170i \(-0.253651\pi\)
0.698950 + 0.715170i \(0.253651\pi\)
\(594\) 0 0
\(595\) −3365.86 −0.231911
\(596\) 12546.5 0.862289
\(597\) −1641.34 −0.112522
\(598\) 1592.02 0.108867
\(599\) 9706.44 0.662094 0.331047 0.943614i \(-0.392598\pi\)
0.331047 + 0.943614i \(0.392598\pi\)
\(600\) 207.949 0.0141491
\(601\) −4522.84 −0.306972 −0.153486 0.988151i \(-0.549050\pi\)
−0.153486 + 0.988151i \(0.549050\pi\)
\(602\) −4022.13 −0.272309
\(603\) −16568.3 −1.11893
\(604\) 16294.9 1.09773
\(605\) 0 0
\(606\) 317.873 0.0213081
\(607\) −13750.4 −0.919457 −0.459729 0.888059i \(-0.652053\pi\)
−0.459729 + 0.888059i \(0.652053\pi\)
\(608\) −4762.10 −0.317646
\(609\) −384.957 −0.0256145
\(610\) −3311.80 −0.219821
\(611\) 1384.99 0.0917029
\(612\) 6879.09 0.454364
\(613\) −17727.0 −1.16801 −0.584003 0.811751i \(-0.698514\pi\)
−0.584003 + 0.811751i \(0.698514\pi\)
\(614\) −7071.61 −0.464799
\(615\) −890.157 −0.0583652
\(616\) 0 0
\(617\) −19390.1 −1.26518 −0.632590 0.774487i \(-0.718008\pi\)
−0.632590 + 0.774487i \(0.718008\pi\)
\(618\) −329.829 −0.0214687
\(619\) 17350.9 1.12664 0.563321 0.826238i \(-0.309524\pi\)
0.563321 + 0.826238i \(0.309524\pi\)
\(620\) −1704.48 −0.110409
\(621\) −4497.68 −0.290637
\(622\) −806.078 −0.0519627
\(623\) −14633.9 −0.941081
\(624\) 727.555 0.0466755
\(625\) 625.000 0.0400000
\(626\) 6672.14 0.425994
\(627\) 0 0
\(628\) −5544.48 −0.352307
\(629\) 11554.4 0.732437
\(630\) 1864.66 0.117920
\(631\) 8553.79 0.539653 0.269826 0.962909i \(-0.413034\pi\)
0.269826 + 0.962909i \(0.413034\pi\)
\(632\) 5178.10 0.325908
\(633\) −3401.38 −0.213575
\(634\) 6510.08 0.407805
\(635\) 3180.12 0.198739
\(636\) −1750.34 −0.109128
\(637\) −590.702 −0.0367417
\(638\) 0 0
\(639\) −25635.2 −1.58703
\(640\) −6274.31 −0.387522
\(641\) −17543.7 −1.08102 −0.540511 0.841337i \(-0.681769\pi\)
−0.540511 + 0.841337i \(0.681769\pi\)
\(642\) 309.206 0.0190084
\(643\) −11059.1 −0.678271 −0.339135 0.940738i \(-0.610134\pi\)
−0.339135 + 0.940738i \(0.610134\pi\)
\(644\) −16472.6 −1.00794
\(645\) −1052.29 −0.0642388
\(646\) −945.919 −0.0576110
\(647\) 10935.6 0.664486 0.332243 0.943194i \(-0.392195\pi\)
0.332243 + 0.943194i \(0.392195\pi\)
\(648\) −7727.45 −0.468461
\(649\) 0 0
\(650\) −348.909 −0.0210544
\(651\) 650.964 0.0391909
\(652\) 15956.6 0.958452
\(653\) −12195.4 −0.730844 −0.365422 0.930842i \(-0.619075\pi\)
−0.365422 + 0.930842i \(0.619075\pi\)
\(654\) −1103.48 −0.0659777
\(655\) 12969.3 0.773665
\(656\) 12436.9 0.740210
\(657\) 27189.0 1.61453
\(658\) 1019.84 0.0604216
\(659\) −20533.8 −1.21378 −0.606891 0.794785i \(-0.707583\pi\)
−0.606891 + 0.794785i \(0.707583\pi\)
\(660\) 0 0
\(661\) 22534.4 1.32600 0.663001 0.748618i \(-0.269282\pi\)
0.663001 + 0.748618i \(0.269282\pi\)
\(662\) −1539.38 −0.0903772
\(663\) 491.598 0.0287965
\(664\) −7188.31 −0.420121
\(665\) 3602.88 0.210096
\(666\) −6401.01 −0.372424
\(667\) 3079.07 0.178744
\(668\) 18741.7 1.08554
\(669\) 897.752 0.0518821
\(670\) 2282.85 0.131633
\(671\) 0 0
\(672\) 1822.38 0.104613
\(673\) 15795.7 0.904722 0.452361 0.891835i \(-0.350582\pi\)
0.452361 + 0.891835i \(0.350582\pi\)
\(674\) 3040.40 0.173756
\(675\) 985.717 0.0562078
\(676\) 13671.3 0.777839
\(677\) 3288.35 0.186679 0.0933394 0.995634i \(-0.470246\pi\)
0.0933394 + 0.995634i \(0.470246\pi\)
\(678\) −586.985 −0.0332493
\(679\) −9921.23 −0.560739
\(680\) −1963.11 −0.110709
\(681\) −4686.98 −0.263738
\(682\) 0 0
\(683\) −14806.7 −0.829519 −0.414760 0.909931i \(-0.636134\pi\)
−0.414760 + 0.909931i \(0.636134\pi\)
\(684\) −7363.49 −0.411623
\(685\) 10842.1 0.604751
\(686\) 4400.07 0.244891
\(687\) 1919.58 0.106604
\(688\) 14702.2 0.814701
\(689\) 6082.64 0.336328
\(690\) 306.701 0.0169216
\(691\) 21669.1 1.19295 0.596477 0.802630i \(-0.296567\pi\)
0.596477 + 0.802630i \(0.296567\pi\)
\(692\) −3823.48 −0.210039
\(693\) 0 0
\(694\) 8189.66 0.447947
\(695\) −6006.75 −0.327840
\(696\) −224.523 −0.0122278
\(697\) 8403.40 0.456673
\(698\) −5458.45 −0.295996
\(699\) −3580.16 −0.193725
\(700\) 3610.15 0.194930
\(701\) −8397.07 −0.452429 −0.226215 0.974078i \(-0.572635\pi\)
−0.226215 + 0.974078i \(0.572635\pi\)
\(702\) −550.281 −0.0295855
\(703\) −12368.0 −0.663539
\(704\) 0 0
\(705\) 266.816 0.0142537
\(706\) 2752.47 0.146729
\(707\) 11429.8 0.608006
\(708\) 4163.39 0.221002
\(709\) −14939.9 −0.791370 −0.395685 0.918386i \(-0.629493\pi\)
−0.395685 + 0.918386i \(0.629493\pi\)
\(710\) 3532.13 0.186702
\(711\) 12147.7 0.640750
\(712\) −8535.08 −0.449249
\(713\) −5206.73 −0.273483
\(714\) 361.989 0.0189735
\(715\) 0 0
\(716\) 20091.8 1.04870
\(717\) 1455.59 0.0758160
\(718\) −1468.35 −0.0763206
\(719\) 125.385 0.00650359 0.00325179 0.999995i \(-0.498965\pi\)
0.00325179 + 0.999995i \(0.498965\pi\)
\(720\) −6815.91 −0.352797
\(721\) −11859.7 −0.612590
\(722\) −3987.97 −0.205564
\(723\) 950.633 0.0488996
\(724\) 5569.37 0.285890
\(725\) −674.814 −0.0345682
\(726\) 0 0
\(727\) 15436.0 0.787470 0.393735 0.919224i \(-0.371183\pi\)
0.393735 + 0.919224i \(0.371183\pi\)
\(728\) −4174.20 −0.212508
\(729\) −17343.2 −0.881124
\(730\) −3746.21 −0.189936
\(731\) 9934.02 0.502631
\(732\) −5004.85 −0.252711
\(733\) −25237.5 −1.27172 −0.635858 0.771806i \(-0.719354\pi\)
−0.635858 + 0.771806i \(0.719354\pi\)
\(734\) 8464.12 0.425635
\(735\) −113.798 −0.00571089
\(736\) −14576.3 −0.730013
\(737\) 0 0
\(738\) −4655.40 −0.232206
\(739\) 24196.0 1.20442 0.602209 0.798339i \(-0.294288\pi\)
0.602209 + 0.798339i \(0.294288\pi\)
\(740\) −12393.0 −0.615642
\(741\) −526.215 −0.0260877
\(742\) 4478.97 0.221601
\(743\) 13967.8 0.689676 0.344838 0.938662i \(-0.387934\pi\)
0.344838 + 0.938662i \(0.387934\pi\)
\(744\) 379.669 0.0187088
\(745\) −8399.61 −0.413071
\(746\) 3814.31 0.187201
\(747\) −16863.6 −0.825978
\(748\) 0 0
\(749\) 11118.1 0.542386
\(750\) −67.2170 −0.00327255
\(751\) 772.044 0.0375130 0.0187565 0.999824i \(-0.494029\pi\)
0.0187565 + 0.999824i \(0.494029\pi\)
\(752\) −3727.83 −0.180771
\(753\) −1569.85 −0.0759741
\(754\) 376.718 0.0181953
\(755\) −10909.1 −0.525859
\(756\) 5693.74 0.273915
\(757\) 12428.9 0.596746 0.298373 0.954449i \(-0.403556\pi\)
0.298373 + 0.954449i \(0.403556\pi\)
\(758\) −2142.45 −0.102661
\(759\) 0 0
\(760\) 2101.35 0.100295
\(761\) 16501.3 0.786035 0.393018 0.919531i \(-0.371431\pi\)
0.393018 + 0.919531i \(0.371431\pi\)
\(762\) −342.012 −0.0162596
\(763\) −39677.8 −1.88261
\(764\) −11367.6 −0.538308
\(765\) −4605.40 −0.217658
\(766\) 16.7250 0.000788904 0
\(767\) −14468.3 −0.681121
\(768\) −1207.86 −0.0567512
\(769\) −5711.77 −0.267844 −0.133922 0.990992i \(-0.542757\pi\)
−0.133922 + 0.990992i \(0.542757\pi\)
\(770\) 0 0
\(771\) 2202.20 0.102867
\(772\) 20142.6 0.939053
\(773\) −2620.00 −0.121908 −0.0609540 0.998141i \(-0.519414\pi\)
−0.0609540 + 0.998141i \(0.519414\pi\)
\(774\) −5503.35 −0.255573
\(775\) 1141.11 0.0528903
\(776\) −5786.47 −0.267683
\(777\) 4733.05 0.218529
\(778\) −2113.38 −0.0973888
\(779\) −8995.14 −0.413716
\(780\) −527.277 −0.0242045
\(781\) 0 0
\(782\) −2895.36 −0.132402
\(783\) −1064.28 −0.0485751
\(784\) 1589.93 0.0724277
\(785\) 3711.91 0.168769
\(786\) −1394.81 −0.0632966
\(787\) 5340.68 0.241899 0.120950 0.992659i \(-0.461406\pi\)
0.120950 + 0.992659i \(0.461406\pi\)
\(788\) 38590.9 1.74460
\(789\) −2931.81 −0.132288
\(790\) −1673.76 −0.0753793
\(791\) −21106.2 −0.948738
\(792\) 0 0
\(793\) 17392.5 0.778846
\(794\) 1480.52 0.0661735
\(795\) 1171.81 0.0522767
\(796\) −16619.4 −0.740026
\(797\) −25516.3 −1.13405 −0.567023 0.823702i \(-0.691905\pi\)
−0.567023 + 0.823702i \(0.691905\pi\)
\(798\) −387.479 −0.0171887
\(799\) −2518.83 −0.111527
\(800\) 3194.56 0.141181
\(801\) −20023.0 −0.883245
\(802\) −3736.89 −0.164531
\(803\) 0 0
\(804\) 3449.88 0.151328
\(805\) 11028.1 0.482842
\(806\) −637.032 −0.0278393
\(807\) 1099.14 0.0479450
\(808\) 6666.31 0.290248
\(809\) −18588.3 −0.807826 −0.403913 0.914797i \(-0.632350\pi\)
−0.403913 + 0.914797i \(0.632350\pi\)
\(810\) 2497.80 0.108350
\(811\) −10519.5 −0.455474 −0.227737 0.973723i \(-0.573133\pi\)
−0.227737 + 0.973723i \(0.573133\pi\)
\(812\) −3897.89 −0.168460
\(813\) −557.837 −0.0240642
\(814\) 0 0
\(815\) −10682.6 −0.459137
\(816\) −1323.18 −0.0567656
\(817\) −10633.5 −0.455350
\(818\) 9643.02 0.412176
\(819\) −9792.55 −0.417801
\(820\) −9013.31 −0.383852
\(821\) −7678.75 −0.326419 −0.163210 0.986591i \(-0.552185\pi\)
−0.163210 + 0.986591i \(0.552185\pi\)
\(822\) −1166.03 −0.0494770
\(823\) 26903.4 1.13948 0.569740 0.821825i \(-0.307044\pi\)
0.569740 + 0.821825i \(0.307044\pi\)
\(824\) −6917.05 −0.292436
\(825\) 0 0
\(826\) −10653.8 −0.448779
\(827\) −5583.42 −0.234770 −0.117385 0.993087i \(-0.537451\pi\)
−0.117385 + 0.993087i \(0.537451\pi\)
\(828\) −22538.9 −0.945992
\(829\) −136.924 −0.00573649 −0.00286825 0.999996i \(-0.500913\pi\)
−0.00286825 + 0.999996i \(0.500913\pi\)
\(830\) 2323.53 0.0971699
\(831\) −809.764 −0.0338031
\(832\) 6107.76 0.254505
\(833\) 1074.29 0.0446843
\(834\) 646.009 0.0268219
\(835\) −12547.2 −0.520016
\(836\) 0 0
\(837\) 1799.70 0.0743212
\(838\) 10254.5 0.422714
\(839\) −15151.1 −0.623450 −0.311725 0.950172i \(-0.600907\pi\)
−0.311725 + 0.950172i \(0.600907\pi\)
\(840\) −804.154 −0.0330309
\(841\) −23660.4 −0.970126
\(842\) 5212.04 0.213324
\(843\) 2124.31 0.0867912
\(844\) −34440.8 −1.40462
\(845\) −9152.65 −0.372616
\(846\) 1395.41 0.0567083
\(847\) 0 0
\(848\) −16372.0 −0.662993
\(849\) 5808.88 0.234818
\(850\) 634.552 0.0256058
\(851\) −37857.2 −1.52495
\(852\) 5337.81 0.214636
\(853\) 10425.4 0.418475 0.209237 0.977865i \(-0.432902\pi\)
0.209237 + 0.977865i \(0.432902\pi\)
\(854\) 12807.0 0.513169
\(855\) 4929.70 0.197184
\(856\) 6484.55 0.258922
\(857\) 27375.9 1.09118 0.545592 0.838051i \(-0.316305\pi\)
0.545592 + 0.838051i \(0.316305\pi\)
\(858\) 0 0
\(859\) −28410.3 −1.12846 −0.564230 0.825618i \(-0.690827\pi\)
−0.564230 + 0.825618i \(0.690827\pi\)
\(860\) −10655.0 −0.422480
\(861\) 3442.31 0.136253
\(862\) −5833.99 −0.230518
\(863\) −27051.8 −1.06704 −0.533520 0.845788i \(-0.679131\pi\)
−0.533520 + 0.845788i \(0.679131\pi\)
\(864\) 5038.29 0.198387
\(865\) 2559.74 0.100617
\(866\) 2661.96 0.104454
\(867\) 2729.73 0.106928
\(868\) 6591.35 0.257748
\(869\) 0 0
\(870\) 72.5743 0.00282816
\(871\) −11988.8 −0.466388
\(872\) −23141.7 −0.898714
\(873\) −13574.9 −0.526278
\(874\) 3099.25 0.119947
\(875\) −2416.92 −0.0933793
\(876\) −5661.33 −0.218355
\(877\) 7719.49 0.297228 0.148614 0.988895i \(-0.452519\pi\)
0.148614 + 0.988895i \(0.452519\pi\)
\(878\) 9108.38 0.350106
\(879\) −4124.36 −0.158261
\(880\) 0 0
\(881\) −47510.2 −1.81687 −0.908434 0.418029i \(-0.862721\pi\)
−0.908434 + 0.418029i \(0.862721\pi\)
\(882\) −595.148 −0.0227207
\(883\) 31428.7 1.19780 0.598902 0.800822i \(-0.295604\pi\)
0.598902 + 0.800822i \(0.295604\pi\)
\(884\) 4977.68 0.189386
\(885\) −2787.30 −0.105869
\(886\) 4363.84 0.165470
\(887\) 40887.6 1.54777 0.773884 0.633327i \(-0.218311\pi\)
0.773884 + 0.633327i \(0.218311\pi\)
\(888\) 2760.51 0.104321
\(889\) −12297.7 −0.463952
\(890\) 2758.86 0.103907
\(891\) 0 0
\(892\) 9090.20 0.341214
\(893\) 2696.20 0.101036
\(894\) 903.353 0.0337949
\(895\) −13451.1 −0.502368
\(896\) 24263.2 0.904663
\(897\) −1610.69 −0.0599547
\(898\) −9005.31 −0.334645
\(899\) −1232.06 −0.0457081
\(900\) 4939.66 0.182950
\(901\) −11062.3 −0.409034
\(902\) 0 0
\(903\) 4069.30 0.149964
\(904\) −12310.0 −0.452905
\(905\) −3728.58 −0.136953
\(906\) 1173.24 0.0430225
\(907\) −33552.6 −1.22833 −0.614165 0.789177i \(-0.710507\pi\)
−0.614165 + 0.789177i \(0.710507\pi\)
\(908\) −47458.1 −1.73453
\(909\) 15639.0 0.570640
\(910\) 1349.26 0.0491511
\(911\) 29572.6 1.07550 0.537751 0.843103i \(-0.319274\pi\)
0.537751 + 0.843103i \(0.319274\pi\)
\(912\) 1416.36 0.0514258
\(913\) 0 0
\(914\) 11141.9 0.403217
\(915\) 3350.64 0.121059
\(916\) 19436.8 0.701101
\(917\) −50153.1 −1.80611
\(918\) 1000.78 0.0359811
\(919\) 48752.3 1.74994 0.874968 0.484181i \(-0.160882\pi\)
0.874968 + 0.484181i \(0.160882\pi\)
\(920\) 6432.02 0.230497
\(921\) 7154.53 0.255972
\(922\) 4540.02 0.162167
\(923\) −18549.5 −0.661501
\(924\) 0 0
\(925\) 8296.83 0.294917
\(926\) 10277.8 0.364739
\(927\) −16227.2 −0.574942
\(928\) −3449.17 −0.122009
\(929\) −5301.99 −0.187247 −0.0936235 0.995608i \(-0.529845\pi\)
−0.0936235 + 0.995608i \(0.529845\pi\)
\(930\) −122.723 −0.00432716
\(931\) −1149.94 −0.0404810
\(932\) −36250.9 −1.27408
\(933\) 815.531 0.0286166
\(934\) 7740.12 0.271161
\(935\) 0 0
\(936\) −5711.42 −0.199448
\(937\) 48059.5 1.67560 0.837800 0.545978i \(-0.183842\pi\)
0.837800 + 0.545978i \(0.183842\pi\)
\(938\) −8827.96 −0.307295
\(939\) −6750.38 −0.234601
\(940\) 2701.65 0.0937426
\(941\) −13528.1 −0.468654 −0.234327 0.972158i \(-0.575289\pi\)
−0.234327 + 0.972158i \(0.575289\pi\)
\(942\) −399.205 −0.0138076
\(943\) −27533.2 −0.950801
\(944\) 38942.8 1.34267
\(945\) −3811.84 −0.131216
\(946\) 0 0
\(947\) −38482.1 −1.32049 −0.660243 0.751052i \(-0.729547\pi\)
−0.660243 + 0.751052i \(0.729547\pi\)
\(948\) −2529.41 −0.0866576
\(949\) 19673.8 0.672961
\(950\) −679.235 −0.0231971
\(951\) −6586.42 −0.224584
\(952\) 7591.50 0.258447
\(953\) 20764.6 0.705806 0.352903 0.935660i \(-0.385195\pi\)
0.352903 + 0.935660i \(0.385195\pi\)
\(954\) 6128.42 0.207982
\(955\) 7610.40 0.257871
\(956\) 14738.6 0.498620
\(957\) 0 0
\(958\) −10664.0 −0.359644
\(959\) −41927.1 −1.41178
\(960\) 1176.65 0.0395586
\(961\) −27707.6 −0.930065
\(962\) −4631.75 −0.155232
\(963\) 15212.6 0.509053
\(964\) 9625.65 0.321599
\(965\) −13485.1 −0.449844
\(966\) −1186.04 −0.0395032
\(967\) −16064.0 −0.534212 −0.267106 0.963667i \(-0.586067\pi\)
−0.267106 + 0.963667i \(0.586067\pi\)
\(968\) 0 0
\(969\) 957.012 0.0317272
\(970\) 1870.41 0.0619125
\(971\) −15509.7 −0.512595 −0.256298 0.966598i \(-0.582503\pi\)
−0.256298 + 0.966598i \(0.582503\pi\)
\(972\) 11725.5 0.386929
\(973\) 23228.5 0.765337
\(974\) 14337.6 0.471669
\(975\) 353.001 0.0115949
\(976\) −46813.6 −1.53531
\(977\) −46382.5 −1.51884 −0.759420 0.650600i \(-0.774517\pi\)
−0.759420 + 0.650600i \(0.774517\pi\)
\(978\) 1148.89 0.0375637
\(979\) 0 0
\(980\) −1152.26 −0.0375589
\(981\) −54289.9 −1.76691
\(982\) 6161.44 0.200223
\(983\) 47620.6 1.54513 0.772564 0.634937i \(-0.218974\pi\)
0.772564 + 0.634937i \(0.218974\pi\)
\(984\) 2007.70 0.0650437
\(985\) −25835.8 −0.835732
\(986\) −685.126 −0.0221287
\(987\) −1031.80 −0.0332750
\(988\) −5328.19 −0.171571
\(989\) −32548.2 −1.04648
\(990\) 0 0
\(991\) −5116.46 −0.164006 −0.0820028 0.996632i \(-0.526132\pi\)
−0.0820028 + 0.996632i \(0.526132\pi\)
\(992\) 5832.57 0.186678
\(993\) 1557.43 0.0497720
\(994\) −13659.0 −0.435852
\(995\) 11126.4 0.354502
\(996\) 3511.36 0.111708
\(997\) −57836.2 −1.83720 −0.918601 0.395187i \(-0.870680\pi\)
−0.918601 + 0.395187i \(0.870680\pi\)
\(998\) −535.576 −0.0169873
\(999\) 13085.3 0.414416
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.n.1.4 yes 6
11.10 odd 2 605.4.a.m.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.4.a.m.1.3 6 11.10 odd 2
605.4.a.n.1.4 yes 6 1.1 even 1 trivial