Properties

Label 605.4.a.n
Level $605$
Weight $4$
Character orbit 605.a
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 33x^{4} + 67x^{3} + 256x^{2} - 236x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{4} - \beta_1 + 3) q^{3} + (\beta_{2} - \beta_1 + 5) q^{4} + 5 q^{5} + ( - \beta_{3} - 3 \beta_1 + 9) q^{6} + ( - \beta_{5} - \beta_{2} - 2) q^{7} + ( - \beta_{3} + \beta_{2} - 5 \beta_1 + 11) q^{8}+ \cdots + ( - 2 \beta_{5} + 10 \beta_{4} + \cdots + 1234) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 12 q^{3} + 27 q^{4} + 30 q^{5} + 45 q^{6} - 10 q^{7} + 51 q^{8} + 104 q^{9} + 15 q^{10} + 137 q^{12} + 80 q^{13} + 7 q^{14} + 60 q^{15} + 155 q^{16} - 12 q^{17} + 14 q^{18} + 86 q^{19} + 135 q^{20}+ \cdots + 6850 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 33x^{4} + 67x^{3} + 256x^{2} - 236x + 44 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 19\nu + 14 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 35\nu^{3} + 40\nu^{2} + 288\nu - 108 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{5} + 14\nu^{4} + 163\nu^{3} - 280\nu^{2} - 1264\nu + 596 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 21\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} + 10\beta_{4} + 3\beta_{3} + 26\beta_{2} + 39\beta _1 + 256 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} + 28\beta_{4} + 41\beta_{3} + 82\beta_{2} + 485\beta _1 + 490 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.49294
4.05333
0.554204
0.270958
−3.03437
−4.33707
−4.49294 5.00860 12.1865 5.00000 −22.5034 −9.87650 −18.8098 −1.91388 −22.4647
1.2 −3.05333 −8.55397 1.32283 5.00000 26.1181 −6.83056 20.3876 46.1704 −15.2667
1.3 0.445796 9.67111 −7.80127 5.00000 4.31134 30.4607 −7.04413 66.5304 2.22898
1.4 0.729042 −0.737592 −7.46850 5.00000 −0.537736 −19.3354 −11.2772 −26.4560 3.64521
1.5 4.03437 −1.78381 8.27611 5.00000 −7.19655 26.2015 1.11392 −23.8180 20.1718
1.6 5.33707 8.39566 20.4843 5.00000 44.8082 −30.6198 66.6296 43.4871 26.6853
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.4.a.n yes 6
11.b odd 2 1 605.4.a.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
605.4.a.m 6 11.b odd 2 1
605.4.a.n yes 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2}^{6} - 3T_{2}^{5} - 33T_{2}^{4} + 75T_{2}^{3} + 244T_{2}^{2} - 336T_{2} + 96 \) Copy content Toggle raw display
\( T_{3}^{6} - 12T_{3}^{5} - 61T_{3}^{4} + 978T_{3}^{3} - 835T_{3}^{2} - 7374T_{3} - 4577 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 96 \) Copy content Toggle raw display
$3$ \( T^{6} - 12 T^{5} + \cdots - 4577 \) Copy content Toggle raw display
$5$ \( (T - 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 10 T^{5} + \cdots + 31877147 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 80 T^{5} + \cdots - 9114688 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 3820861440 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 111603969216 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 4087676116032 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 11701424064 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 15269134498272 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 5305026789376 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 255688255776375 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 588984378067305 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 38794898412339 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 20\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 160905290704224 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 19\!\cdots\!87 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 17\!\cdots\!89 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 30\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 21\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 39\!\cdots\!12 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 88\!\cdots\!97 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 46\!\cdots\!36 \) Copy content Toggle raw display
show more
show less