Properties

Label 2-650-5.4-c3-0-50
Degree $2$
Conductor $650$
Sign $-0.447 - 0.894i$
Analytic cond. $38.3512$
Root an. cond. $6.19283$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s − 6.14i·3-s − 4·4-s − 12.2·6-s − 22.2i·7-s + 8i·8-s − 10.7·9-s + 43.8·11-s + 24.5i·12-s + 13i·13-s − 44.5·14-s + 16·16-s − 99.9i·17-s + 21.4i·18-s − 93.2·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 1.18i·3-s − 0.5·4-s − 0.835·6-s − 1.20i·7-s + 0.353i·8-s − 0.396·9-s + 1.20·11-s + 0.590i·12-s + 0.277i·13-s − 0.850·14-s + 0.250·16-s − 1.42i·17-s + 0.280i·18-s − 1.12·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(38.3512\)
Root analytic conductor: \(6.19283\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :3/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.387507098\)
\(L(\frac12)\) \(\approx\) \(1.387507098\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
5 \( 1 \)
13 \( 1 - 13iT \)
good3 \( 1 + 6.14iT - 27T^{2} \)
7 \( 1 + 22.2iT - 343T^{2} \)
11 \( 1 - 43.8T + 1.33e3T^{2} \)
17 \( 1 + 99.9iT - 4.91e3T^{2} \)
19 \( 1 + 93.2T + 6.85e3T^{2} \)
23 \( 1 + 154. iT - 1.21e4T^{2} \)
29 \( 1 + 191.T + 2.43e4T^{2} \)
31 \( 1 + 213.T + 2.97e4T^{2} \)
37 \( 1 - 401. iT - 5.06e4T^{2} \)
41 \( 1 - 458.T + 6.89e4T^{2} \)
43 \( 1 + 251. iT - 7.95e4T^{2} \)
47 \( 1 - 261. iT - 1.03e5T^{2} \)
53 \( 1 - 151. iT - 1.48e5T^{2} \)
59 \( 1 + 263.T + 2.05e5T^{2} \)
61 \( 1 - 644.T + 2.26e5T^{2} \)
67 \( 1 + 387. iT - 3.00e5T^{2} \)
71 \( 1 + 544.T + 3.57e5T^{2} \)
73 \( 1 - 301. iT - 3.89e5T^{2} \)
79 \( 1 - 562.T + 4.93e5T^{2} \)
83 \( 1 + 938. iT - 5.71e5T^{2} \)
89 \( 1 + 261.T + 7.04e5T^{2} \)
97 \( 1 - 1.37e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.583134750783927182731931162000, −8.783064540855245872261815101393, −7.63564410740955374899030179025, −6.98148891071440943876842982072, −6.23450185824611668639685535895, −4.61342032717304698235071367362, −3.83871973484181012606047081883, −2.39265691802691178142350942157, −1.30887164959187708916911587928, −0.41783268480622967312699676645, 1.86005630512049669765424506836, 3.65859151428014854921268074816, 4.17164660630640255851015875600, 5.54444899720194462599125002847, 5.91560385242636328222508725378, 7.18125147808258148951357098536, 8.343281363618609285283165272451, 9.208549362300445401806837737369, 9.439144960605225633287249505673, 10.66961331563339887486717256018

Graph of the $Z$-function along the critical line