L(s) = 1 | − 2i·2-s − 6.14i·3-s − 4·4-s − 12.2·6-s − 22.2i·7-s + 8i·8-s − 10.7·9-s + 43.8·11-s + 24.5i·12-s + 13i·13-s − 44.5·14-s + 16·16-s − 99.9i·17-s + 21.4i·18-s − 93.2·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.18i·3-s − 0.5·4-s − 0.835·6-s − 1.20i·7-s + 0.353i·8-s − 0.396·9-s + 1.20·11-s + 0.590i·12-s + 0.277i·13-s − 0.850·14-s + 0.250·16-s − 1.42i·17-s + 0.280i·18-s − 1.12·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(650s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
38.3512 |
Root analytic conductor: |
6.19283 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.387507098 |
L(21) |
≈ |
1.387507098 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 5 | 1 |
| 13 | 1−13iT |
good | 3 | 1+6.14iT−27T2 |
| 7 | 1+22.2iT−343T2 |
| 11 | 1−43.8T+1.33e3T2 |
| 17 | 1+99.9iT−4.91e3T2 |
| 19 | 1+93.2T+6.85e3T2 |
| 23 | 1+154.iT−1.21e4T2 |
| 29 | 1+191.T+2.43e4T2 |
| 31 | 1+213.T+2.97e4T2 |
| 37 | 1−401.iT−5.06e4T2 |
| 41 | 1−458.T+6.89e4T2 |
| 43 | 1+251.iT−7.95e4T2 |
| 47 | 1−261.iT−1.03e5T2 |
| 53 | 1−151.iT−1.48e5T2 |
| 59 | 1+263.T+2.05e5T2 |
| 61 | 1−644.T+2.26e5T2 |
| 67 | 1+387.iT−3.00e5T2 |
| 71 | 1+544.T+3.57e5T2 |
| 73 | 1−301.iT−3.89e5T2 |
| 79 | 1−562.T+4.93e5T2 |
| 83 | 1+938.iT−5.71e5T2 |
| 89 | 1+261.T+7.04e5T2 |
| 97 | 1−1.37e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.583134750783927182731931162000, −8.783064540855245872261815101393, −7.63564410740955374899030179025, −6.98148891071440943876842982072, −6.23450185824611668639685535895, −4.61342032717304698235071367362, −3.83871973484181012606047081883, −2.39265691802691178142350942157, −1.30887164959187708916911587928, −0.41783268480622967312699676645,
1.86005630512049669765424506836, 3.65859151428014854921268074816, 4.17164660630640255851015875600, 5.54444899720194462599125002847, 5.91560385242636328222508725378, 7.18125147808258148951357098536, 8.343281363618609285283165272451, 9.208549362300445401806837737369, 9.439144960605225633287249505673, 10.66961331563339887486717256018