Properties

Label 650.4.b.m.599.1
Level $650$
Weight $4$
Character 650.599
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{51})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 25x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.1
Root \(-3.57071 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.4.b.m.599.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -6.14143i q^{3} -4.00000 q^{4} -12.2829 q^{6} -22.2829i q^{7} +8.00000i q^{8} -10.7171 q^{9} +43.8586 q^{11} +24.5657i q^{12} +13.0000i q^{13} -44.5657 q^{14} +16.0000 q^{16} -99.9800i q^{17} +21.4343i q^{18} -93.2729 q^{19} -136.849 q^{21} -87.7171i q^{22} -154.990i q^{23} +49.1314 q^{24} +26.0000 q^{26} -100.000i q^{27} +89.1314i q^{28} -191.677 q^{29} -213.839 q^{31} -32.0000i q^{32} -269.354i q^{33} -199.960 q^{34} +42.8686 q^{36} +401.697i q^{37} +186.546i q^{38} +79.8386 q^{39} +458.809 q^{41} +273.697i q^{42} -251.799i q^{43} -175.434 q^{44} -309.980 q^{46} +261.071i q^{47} -98.2629i q^{48} -153.526 q^{49} -614.020 q^{51} -52.0000i q^{52} +151.374i q^{53} -200.000 q^{54} +178.263 q^{56} +572.829i q^{57} +383.354i q^{58} -263.899 q^{59} +644.203 q^{61} +427.677i q^{62} +238.809i q^{63} -64.0000 q^{64} -538.709 q^{66} -387.577i q^{67} +399.920i q^{68} -951.860 q^{69} -544.990 q^{71} -85.7371i q^{72} +301.737i q^{73} +803.394 q^{74} +373.091 q^{76} -977.294i q^{77} -159.677i q^{78} +562.991 q^{79} -903.506 q^{81} -917.617i q^{82} -938.689i q^{83} +547.394 q^{84} -503.597 q^{86} +1177.17i q^{87} +350.869i q^{88} -261.514 q^{89} +289.677 q^{91} +619.960i q^{92} +1313.27i q^{93} +522.143 q^{94} -196.526 q^{96} +1371.50i q^{97} +307.051i q^{98} -470.039 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 8 q^{6} - 100 q^{9} + 204 q^{11} - 64 q^{14} + 64 q^{16} - 116 q^{19} - 376 q^{21} - 32 q^{24} + 104 q^{26} - 24 q^{29} - 484 q^{31} + 400 q^{36} - 52 q^{39} + 864 q^{41} - 816 q^{44} - 840 q^{46}+ \cdots - 5508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 6.14143i − 1.18192i −0.806701 0.590959i \(-0.798749\pi\)
0.806701 0.590959i \(-0.201251\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −12.2829 −0.835743
\(7\) − 22.2829i − 1.20316i −0.798812 0.601581i \(-0.794538\pi\)
0.798812 0.601581i \(-0.205462\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −10.7171 −0.396931
\(10\) 0 0
\(11\) 43.8586 1.20217 0.601084 0.799186i \(-0.294736\pi\)
0.601084 + 0.799186i \(0.294736\pi\)
\(12\) 24.5657i 0.590959i
\(13\) 13.0000i 0.277350i
\(14\) −44.5657 −0.850763
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 99.9800i − 1.42639i −0.700963 0.713197i \(-0.747246\pi\)
0.700963 0.713197i \(-0.252754\pi\)
\(18\) 21.4343i 0.280673i
\(19\) −93.2729 −1.12622 −0.563112 0.826381i \(-0.690396\pi\)
−0.563112 + 0.826381i \(0.690396\pi\)
\(20\) 0 0
\(21\) −136.849 −1.42204
\(22\) − 87.7171i − 0.850062i
\(23\) − 154.990i − 1.40512i −0.711627 0.702558i \(-0.752041\pi\)
0.711627 0.702558i \(-0.247959\pi\)
\(24\) 49.1314 0.417871
\(25\) 0 0
\(26\) 26.0000 0.196116
\(27\) − 100.000i − 0.712778i
\(28\) 89.1314i 0.601581i
\(29\) −191.677 −1.22736 −0.613682 0.789553i \(-0.710312\pi\)
−0.613682 + 0.789553i \(0.710312\pi\)
\(30\) 0 0
\(31\) −213.839 −1.23892 −0.619460 0.785028i \(-0.712649\pi\)
−0.619460 + 0.785028i \(0.712649\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 269.354i − 1.42087i
\(34\) −199.960 −1.00861
\(35\) 0 0
\(36\) 42.8686 0.198466
\(37\) 401.697i 1.78483i 0.451218 + 0.892414i \(0.350990\pi\)
−0.451218 + 0.892414i \(0.649010\pi\)
\(38\) 186.546i 0.796361i
\(39\) 79.8386 0.327805
\(40\) 0 0
\(41\) 458.809 1.74766 0.873828 0.486236i \(-0.161630\pi\)
0.873828 + 0.486236i \(0.161630\pi\)
\(42\) 273.697i 1.00553i
\(43\) − 251.799i − 0.892998i −0.894784 0.446499i \(-0.852671\pi\)
0.894784 0.446499i \(-0.147329\pi\)
\(44\) −175.434 −0.601084
\(45\) 0 0
\(46\) −309.980 −0.993566
\(47\) 261.071i 0.810238i 0.914264 + 0.405119i \(0.132770\pi\)
−0.914264 + 0.405119i \(0.867230\pi\)
\(48\) − 98.2629i − 0.295480i
\(49\) −153.526 −0.447597
\(50\) 0 0
\(51\) −614.020 −1.68588
\(52\) − 52.0000i − 0.138675i
\(53\) 151.374i 0.392318i 0.980572 + 0.196159i \(0.0628469\pi\)
−0.980572 + 0.196159i \(0.937153\pi\)
\(54\) −200.000 −0.504010
\(55\) 0 0
\(56\) 178.263 0.425382
\(57\) 572.829i 1.33111i
\(58\) 383.354i 0.867877i
\(59\) −263.899 −0.582316 −0.291158 0.956675i \(-0.594041\pi\)
−0.291158 + 0.956675i \(0.594041\pi\)
\(60\) 0 0
\(61\) 644.203 1.35216 0.676080 0.736829i \(-0.263677\pi\)
0.676080 + 0.736829i \(0.263677\pi\)
\(62\) 427.677i 0.876049i
\(63\) 238.809i 0.477572i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −538.709 −1.00470
\(67\) − 387.577i − 0.706718i −0.935488 0.353359i \(-0.885039\pi\)
0.935488 0.353359i \(-0.114961\pi\)
\(68\) 399.920i 0.713197i
\(69\) −951.860 −1.66073
\(70\) 0 0
\(71\) −544.990 −0.910964 −0.455482 0.890245i \(-0.650533\pi\)
−0.455482 + 0.890245i \(0.650533\pi\)
\(72\) − 85.7371i − 0.140336i
\(73\) 301.737i 0.483776i 0.970304 + 0.241888i \(0.0777667\pi\)
−0.970304 + 0.241888i \(0.922233\pi\)
\(74\) 803.394 1.26206
\(75\) 0 0
\(76\) 373.091 0.563112
\(77\) − 977.294i − 1.44640i
\(78\) − 159.677i − 0.231793i
\(79\) 562.991 0.801791 0.400895 0.916124i \(-0.368699\pi\)
0.400895 + 0.916124i \(0.368699\pi\)
\(80\) 0 0
\(81\) −903.506 −1.23938
\(82\) − 917.617i − 1.23578i
\(83\) − 938.689i − 1.24138i −0.784056 0.620689i \(-0.786853\pi\)
0.784056 0.620689i \(-0.213147\pi\)
\(84\) 547.394 0.711019
\(85\) 0 0
\(86\) −503.597 −0.631445
\(87\) 1177.17i 1.45064i
\(88\) 350.869i 0.425031i
\(89\) −261.514 −0.311466 −0.155733 0.987799i \(-0.549774\pi\)
−0.155733 + 0.987799i \(0.549774\pi\)
\(90\) 0 0
\(91\) 289.677 0.333697
\(92\) 619.960i 0.702558i
\(93\) 1313.27i 1.46430i
\(94\) 522.143 0.572925
\(95\) 0 0
\(96\) −196.526 −0.208936
\(97\) 1371.50i 1.43561i 0.696243 + 0.717806i \(0.254854\pi\)
−0.696243 + 0.717806i \(0.745146\pi\)
\(98\) 307.051i 0.316499i
\(99\) −470.039 −0.477178
\(100\) 0 0
\(101\) 259.697 0.255850 0.127925 0.991784i \(-0.459168\pi\)
0.127925 + 0.991784i \(0.459168\pi\)
\(102\) 1228.04i 1.19210i
\(103\) 749.053i 0.716567i 0.933613 + 0.358283i \(0.116638\pi\)
−0.933613 + 0.358283i \(0.883362\pi\)
\(104\) −104.000 −0.0980581
\(105\) 0 0
\(106\) 302.749 0.277411
\(107\) − 797.133i − 0.720203i −0.932913 0.360102i \(-0.882742\pi\)
0.932913 0.360102i \(-0.117258\pi\)
\(108\) 400.000i 0.356389i
\(109\) −648.949 −0.570257 −0.285128 0.958489i \(-0.592036\pi\)
−0.285128 + 0.958489i \(0.592036\pi\)
\(110\) 0 0
\(111\) 2466.99 2.10952
\(112\) − 356.526i − 0.300790i
\(113\) 600.060i 0.499548i 0.968304 + 0.249774i \(0.0803563\pi\)
−0.968304 + 0.249774i \(0.919644\pi\)
\(114\) 1145.66 0.941234
\(115\) 0 0
\(116\) 766.709 0.613682
\(117\) − 139.323i − 0.110089i
\(118\) 527.797i 0.411760i
\(119\) −2227.84 −1.71618
\(120\) 0 0
\(121\) 592.574 0.445210
\(122\) − 1288.41i − 0.956121i
\(123\) − 2817.74i − 2.06559i
\(124\) 855.354 0.619460
\(125\) 0 0
\(126\) 477.617 0.337695
\(127\) 1918.42i 1.34041i 0.742174 + 0.670207i \(0.233795\pi\)
−0.742174 + 0.670207i \(0.766205\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −1546.40 −1.05545
\(130\) 0 0
\(131\) 1428.12 0.952484 0.476242 0.879314i \(-0.341999\pi\)
0.476242 + 0.879314i \(0.341999\pi\)
\(132\) 1077.42i 0.710433i
\(133\) 2078.39i 1.35503i
\(134\) −775.154 −0.499725
\(135\) 0 0
\(136\) 799.840 0.504307
\(137\) 1129.19i 0.704187i 0.935965 + 0.352093i \(0.114530\pi\)
−0.935965 + 0.352093i \(0.885470\pi\)
\(138\) 1903.72i 1.17431i
\(139\) −180.889 −0.110380 −0.0551898 0.998476i \(-0.517576\pi\)
−0.0551898 + 0.998476i \(0.517576\pi\)
\(140\) 0 0
\(141\) 1603.35 0.957635
\(142\) 1089.98i 0.644149i
\(143\) 570.161i 0.333422i
\(144\) −171.474 −0.0992328
\(145\) 0 0
\(146\) 603.474 0.342081
\(147\) 942.867i 0.529023i
\(148\) − 1606.79i − 0.892414i
\(149\) 1515.13 0.833050 0.416525 0.909124i \(-0.363248\pi\)
0.416525 + 0.909124i \(0.363248\pi\)
\(150\) 0 0
\(151\) −258.970 −0.139567 −0.0697837 0.997562i \(-0.522231\pi\)
−0.0697837 + 0.997562i \(0.522231\pi\)
\(152\) − 746.183i − 0.398180i
\(153\) 1071.50i 0.566181i
\(154\) −1954.59 −1.02276
\(155\) 0 0
\(156\) −319.354 −0.163903
\(157\) 512.949i 0.260750i 0.991465 + 0.130375i \(0.0416181\pi\)
−0.991465 + 0.130375i \(0.958382\pi\)
\(158\) − 1125.98i − 0.566952i
\(159\) 929.654 0.463688
\(160\) 0 0
\(161\) −3453.62 −1.69058
\(162\) 1807.01i 0.876372i
\(163\) − 3299.58i − 1.58554i −0.609522 0.792769i \(-0.708638\pi\)
0.609522 0.792769i \(-0.291362\pi\)
\(164\) −1835.23 −0.873828
\(165\) 0 0
\(166\) −1877.38 −0.877787
\(167\) − 81.4315i − 0.0377327i −0.999822 0.0188663i \(-0.993994\pi\)
0.999822 0.0188663i \(-0.00600570\pi\)
\(168\) − 1094.79i − 0.502766i
\(169\) −169.000 −0.0769231
\(170\) 0 0
\(171\) 999.619 0.447034
\(172\) 1007.19i 0.446499i
\(173\) − 1038.49i − 0.456386i −0.973616 0.228193i \(-0.926718\pi\)
0.973616 0.228193i \(-0.0732818\pi\)
\(174\) 2354.34 1.02576
\(175\) 0 0
\(176\) 701.737 0.300542
\(177\) 1620.71i 0.688251i
\(178\) 523.029i 0.220240i
\(179\) −2001.70 −0.835834 −0.417917 0.908485i \(-0.637240\pi\)
−0.417917 + 0.908485i \(0.637240\pi\)
\(180\) 0 0
\(181\) −3417.70 −1.40351 −0.701756 0.712417i \(-0.747600\pi\)
−0.701756 + 0.712417i \(0.747600\pi\)
\(182\) − 579.354i − 0.235959i
\(183\) − 3956.33i − 1.59814i
\(184\) 1239.92 0.496783
\(185\) 0 0
\(186\) 2626.55 1.03542
\(187\) − 4384.98i − 1.71477i
\(188\) − 1044.29i − 0.405119i
\(189\) −2228.29 −0.857587
\(190\) 0 0
\(191\) −2415.03 −0.914899 −0.457450 0.889236i \(-0.651237\pi\)
−0.457450 + 0.889236i \(0.651237\pi\)
\(192\) 393.051i 0.147740i
\(193\) − 3899.05i − 1.45420i −0.686534 0.727098i \(-0.740869\pi\)
0.686534 0.727098i \(-0.259131\pi\)
\(194\) 2742.99 1.01513
\(195\) 0 0
\(196\) 614.103 0.223798
\(197\) − 1664.75i − 0.602073i −0.953613 0.301037i \(-0.902667\pi\)
0.953613 0.301037i \(-0.0973326\pi\)
\(198\) 940.077i 0.337416i
\(199\) 4671.64 1.66414 0.832070 0.554671i \(-0.187156\pi\)
0.832070 + 0.554671i \(0.187156\pi\)
\(200\) 0 0
\(201\) −2380.28 −0.835283
\(202\) − 519.394i − 0.180913i
\(203\) 4271.11i 1.47672i
\(204\) 2456.08 0.842941
\(205\) 0 0
\(206\) 1498.11 0.506689
\(207\) 1661.05i 0.557734i
\(208\) 208.000i 0.0693375i
\(209\) −4090.81 −1.35391
\(210\) 0 0
\(211\) −1405.82 −0.458677 −0.229338 0.973347i \(-0.573656\pi\)
−0.229338 + 0.973347i \(0.573656\pi\)
\(212\) − 605.497i − 0.196159i
\(213\) 3347.02i 1.07668i
\(214\) −1594.27 −0.509261
\(215\) 0 0
\(216\) 800.000 0.252005
\(217\) 4764.93i 1.49062i
\(218\) 1297.90i 0.403233i
\(219\) 1853.10 0.571784
\(220\) 0 0
\(221\) 1299.74 0.395611
\(222\) − 4933.99i − 1.49166i
\(223\) − 2423.95i − 0.727890i −0.931420 0.363945i \(-0.881430\pi\)
0.931420 0.363945i \(-0.118570\pi\)
\(224\) −713.051 −0.212691
\(225\) 0 0
\(226\) 1200.12 0.353234
\(227\) − 185.926i − 0.0543626i −0.999631 0.0271813i \(-0.991347\pi\)
0.999631 0.0271813i \(-0.00865315\pi\)
\(228\) − 2291.31i − 0.665553i
\(229\) −6353.04 −1.83328 −0.916639 0.399715i \(-0.869109\pi\)
−0.916639 + 0.399715i \(0.869109\pi\)
\(230\) 0 0
\(231\) −6001.98 −1.70953
\(232\) − 1533.42i − 0.433939i
\(233\) − 1088.91i − 0.306168i −0.988213 0.153084i \(-0.951079\pi\)
0.988213 0.153084i \(-0.0489205\pi\)
\(234\) −278.646 −0.0778446
\(235\) 0 0
\(236\) 1055.59 0.291158
\(237\) − 3457.57i − 0.947651i
\(238\) 4455.68i 1.21352i
\(239\) 1555.66 0.421036 0.210518 0.977590i \(-0.432485\pi\)
0.210518 + 0.977590i \(0.432485\pi\)
\(240\) 0 0
\(241\) 520.786 0.139198 0.0695991 0.997575i \(-0.477828\pi\)
0.0695991 + 0.997575i \(0.477828\pi\)
\(242\) − 1185.15i − 0.314811i
\(243\) 2848.82i 0.752064i
\(244\) −2576.81 −0.676080
\(245\) 0 0
\(246\) −5635.48 −1.46059
\(247\) − 1212.55i − 0.312358i
\(248\) − 1710.71i − 0.438025i
\(249\) −5764.89 −1.46721
\(250\) 0 0
\(251\) −7079.53 −1.78030 −0.890151 0.455665i \(-0.849401\pi\)
−0.890151 + 0.455665i \(0.849401\pi\)
\(252\) − 955.234i − 0.238786i
\(253\) − 6797.64i − 1.68919i
\(254\) 3836.85 0.947816
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 437.806i 0.106263i 0.998588 + 0.0531315i \(0.0169202\pi\)
−0.998588 + 0.0531315i \(0.983080\pi\)
\(258\) 3092.81i 0.746317i
\(259\) 8950.96 2.14743
\(260\) 0 0
\(261\) 2054.23 0.487179
\(262\) − 2856.24i − 0.673508i
\(263\) 1237.18i 0.290067i 0.989427 + 0.145033i \(0.0463289\pi\)
−0.989427 + 0.145033i \(0.953671\pi\)
\(264\) 2154.83 0.502352
\(265\) 0 0
\(266\) 4156.77 0.958150
\(267\) 1606.07i 0.368127i
\(268\) 1550.31i 0.353359i
\(269\) 6507.75 1.47504 0.737518 0.675328i \(-0.235998\pi\)
0.737518 + 0.675328i \(0.235998\pi\)
\(270\) 0 0
\(271\) 2547.66 0.571069 0.285534 0.958368i \(-0.407829\pi\)
0.285534 + 0.958368i \(0.407829\pi\)
\(272\) − 1599.68i − 0.356599i
\(273\) − 1779.03i − 0.394402i
\(274\) 2258.39 0.497935
\(275\) 0 0
\(276\) 3807.44 0.830366
\(277\) − 5214.12i − 1.13100i −0.824749 0.565499i \(-0.808684\pi\)
0.824749 0.565499i \(-0.191316\pi\)
\(278\) 361.777i 0.0780502i
\(279\) 2291.74 0.491766
\(280\) 0 0
\(281\) 7359.26 1.56234 0.781168 0.624320i \(-0.214624\pi\)
0.781168 + 0.624320i \(0.214624\pi\)
\(282\) − 3206.70i − 0.677150i
\(283\) − 2985.29i − 0.627057i −0.949579 0.313528i \(-0.898489\pi\)
0.949579 0.313528i \(-0.101511\pi\)
\(284\) 2179.96 0.455482
\(285\) 0 0
\(286\) 1140.32 0.235765
\(287\) − 10223.6i − 2.10271i
\(288\) 342.949i 0.0701682i
\(289\) −5083.00 −1.03460
\(290\) 0 0
\(291\) 8422.95 1.69678
\(292\) − 1206.95i − 0.241888i
\(293\) 9607.65i 1.91565i 0.287357 + 0.957824i \(0.407223\pi\)
−0.287357 + 0.957824i \(0.592777\pi\)
\(294\) 1885.73 0.374076
\(295\) 0 0
\(296\) −3213.58 −0.631032
\(297\) − 4385.86i − 0.856880i
\(298\) − 3030.26i − 0.589055i
\(299\) 2014.87 0.389709
\(300\) 0 0
\(301\) −5610.79 −1.07442
\(302\) 517.940i 0.0986891i
\(303\) − 1594.91i − 0.302394i
\(304\) −1492.37 −0.281556
\(305\) 0 0
\(306\) 2143.00 0.400350
\(307\) 8851.79i 1.64560i 0.568334 + 0.822798i \(0.307588\pi\)
−0.568334 + 0.822798i \(0.692412\pi\)
\(308\) 3909.18i 0.723201i
\(309\) 4600.25 0.846923
\(310\) 0 0
\(311\) 2645.58 0.482370 0.241185 0.970479i \(-0.422464\pi\)
0.241185 + 0.970479i \(0.422464\pi\)
\(312\) 638.709i 0.115897i
\(313\) − 6088.30i − 1.09946i −0.835342 0.549730i \(-0.814731\pi\)
0.835342 0.549730i \(-0.185269\pi\)
\(314\) 1025.90 0.184378
\(315\) 0 0
\(316\) −2251.97 −0.400895
\(317\) − 9945.91i − 1.76220i −0.472928 0.881101i \(-0.656803\pi\)
0.472928 0.881101i \(-0.343197\pi\)
\(318\) − 1859.31i − 0.327877i
\(319\) −8406.69 −1.47550
\(320\) 0 0
\(321\) −4895.53 −0.851221
\(322\) 6907.24i 1.19542i
\(323\) 9325.42i 1.60644i
\(324\) 3614.02 0.619688
\(325\) 0 0
\(326\) −6599.15 −1.12115
\(327\) 3985.47i 0.673997i
\(328\) 3670.47i 0.617889i
\(329\) 5817.42 0.974847
\(330\) 0 0
\(331\) 2735.14 0.454189 0.227095 0.973873i \(-0.427077\pi\)
0.227095 + 0.973873i \(0.427077\pi\)
\(332\) 3754.75i 0.620689i
\(333\) − 4305.05i − 0.708454i
\(334\) −162.863 −0.0266810
\(335\) 0 0
\(336\) −2189.58 −0.355510
\(337\) − 7468.44i − 1.20722i −0.797281 0.603608i \(-0.793729\pi\)
0.797281 0.603608i \(-0.206271\pi\)
\(338\) 338.000i 0.0543928i
\(339\) 3685.23 0.590425
\(340\) 0 0
\(341\) −9378.65 −1.48939
\(342\) − 1999.24i − 0.316100i
\(343\) − 4222.03i − 0.664630i
\(344\) 2014.39 0.315723
\(345\) 0 0
\(346\) −2076.98 −0.322714
\(347\) − 9931.82i − 1.53651i −0.640146 0.768253i \(-0.721126\pi\)
0.640146 0.768253i \(-0.278874\pi\)
\(348\) − 4708.69i − 0.725322i
\(349\) −1573.92 −0.241404 −0.120702 0.992689i \(-0.538514\pi\)
−0.120702 + 0.992689i \(0.538514\pi\)
\(350\) 0 0
\(351\) 1300.00 0.197689
\(352\) − 1403.47i − 0.212515i
\(353\) 10869.2i 1.63884i 0.573194 + 0.819420i \(0.305704\pi\)
−0.573194 + 0.819420i \(0.694296\pi\)
\(354\) 3241.43 0.486667
\(355\) 0 0
\(356\) 1046.06 0.155733
\(357\) 13682.1i 2.02839i
\(358\) 4003.41i 0.591024i
\(359\) 7001.85 1.02937 0.514684 0.857380i \(-0.327909\pi\)
0.514684 + 0.857380i \(0.327909\pi\)
\(360\) 0 0
\(361\) 1840.83 0.268381
\(362\) 6835.40i 0.992433i
\(363\) − 3639.25i − 0.526202i
\(364\) −1158.71 −0.166848
\(365\) 0 0
\(366\) −7912.65 −1.13006
\(367\) − 11254.8i − 1.60081i −0.599462 0.800403i \(-0.704619\pi\)
0.599462 0.800403i \(-0.295381\pi\)
\(368\) − 2479.84i − 0.351279i
\(369\) −4917.12 −0.693699
\(370\) 0 0
\(371\) 3373.05 0.472022
\(372\) − 5253.10i − 0.732152i
\(373\) − 9551.67i − 1.32592i −0.748657 0.662958i \(-0.769301\pi\)
0.748657 0.662958i \(-0.230699\pi\)
\(374\) −8769.96 −1.21252
\(375\) 0 0
\(376\) −2088.57 −0.286462
\(377\) − 2491.80i − 0.340409i
\(378\) 4456.57i 0.606406i
\(379\) −6124.55 −0.830071 −0.415036 0.909805i \(-0.636231\pi\)
−0.415036 + 0.909805i \(0.636231\pi\)
\(380\) 0 0
\(381\) 11781.9 1.58426
\(382\) 4830.07i 0.646931i
\(383\) 2206.62i 0.294394i 0.989107 + 0.147197i \(0.0470252\pi\)
−0.989107 + 0.147197i \(0.952975\pi\)
\(384\) 786.103 0.104468
\(385\) 0 0
\(386\) −7798.10 −1.02827
\(387\) 2698.56i 0.354459i
\(388\) − 5485.99i − 0.717806i
\(389\) 8458.16 1.10243 0.551216 0.834363i \(-0.314164\pi\)
0.551216 + 0.834363i \(0.314164\pi\)
\(390\) 0 0
\(391\) −15495.9 −2.00425
\(392\) − 1228.21i − 0.158249i
\(393\) − 8770.70i − 1.12576i
\(394\) −3329.50 −0.425730
\(395\) 0 0
\(396\) 1880.15 0.238589
\(397\) − 10377.1i − 1.31186i −0.754821 0.655931i \(-0.772276\pi\)
0.754821 0.655931i \(-0.227724\pi\)
\(398\) − 9343.28i − 1.17672i
\(399\) 12764.3 1.60153
\(400\) 0 0
\(401\) 8962.85 1.11617 0.558084 0.829784i \(-0.311537\pi\)
0.558084 + 0.829784i \(0.311537\pi\)
\(402\) 4760.55i 0.590634i
\(403\) − 2779.90i − 0.343615i
\(404\) −1038.79 −0.127925
\(405\) 0 0
\(406\) 8542.23 1.04420
\(407\) 17617.9i 2.14566i
\(408\) − 4912.16i − 0.596049i
\(409\) 1133.52 0.137039 0.0685193 0.997650i \(-0.478173\pi\)
0.0685193 + 0.997650i \(0.478173\pi\)
\(410\) 0 0
\(411\) 6934.87 0.832291
\(412\) − 2996.21i − 0.358283i
\(413\) 5880.41i 0.700620i
\(414\) 3322.10 0.394378
\(415\) 0 0
\(416\) 416.000 0.0490290
\(417\) 1110.91i 0.130460i
\(418\) 8181.63i 0.957360i
\(419\) −10588.0 −1.23450 −0.617251 0.786766i \(-0.711754\pi\)
−0.617251 + 0.786766i \(0.711754\pi\)
\(420\) 0 0
\(421\) −8296.85 −0.960484 −0.480242 0.877136i \(-0.659451\pi\)
−0.480242 + 0.877136i \(0.659451\pi\)
\(422\) 2811.65i 0.324334i
\(423\) − 2797.94i − 0.321609i
\(424\) −1210.99 −0.138705
\(425\) 0 0
\(426\) 6694.03 0.761331
\(427\) − 14354.7i − 1.62687i
\(428\) 3188.53i 0.360102i
\(429\) 3501.61 0.394077
\(430\) 0 0
\(431\) 3010.89 0.336496 0.168248 0.985745i \(-0.446189\pi\)
0.168248 + 0.985745i \(0.446189\pi\)
\(432\) − 1600.00i − 0.178195i
\(433\) − 3310.31i − 0.367399i −0.982982 0.183699i \(-0.941193\pi\)
0.982982 0.183699i \(-0.0588073\pi\)
\(434\) 9529.87 1.05403
\(435\) 0 0
\(436\) 2595.79 0.285128
\(437\) 14456.4i 1.58247i
\(438\) − 3706.19i − 0.404312i
\(439\) −2597.90 −0.282439 −0.141220 0.989978i \(-0.545102\pi\)
−0.141220 + 0.989978i \(0.545102\pi\)
\(440\) 0 0
\(441\) 1645.36 0.177665
\(442\) − 2599.48i − 0.279739i
\(443\) − 16570.8i − 1.77721i −0.458671 0.888606i \(-0.651675\pi\)
0.458671 0.888606i \(-0.348325\pi\)
\(444\) −9867.98 −1.05476
\(445\) 0 0
\(446\) −4847.89 −0.514696
\(447\) − 9305.07i − 0.984597i
\(448\) 1426.10i 0.150395i
\(449\) 6153.27 0.646750 0.323375 0.946271i \(-0.395183\pi\)
0.323375 + 0.946271i \(0.395183\pi\)
\(450\) 0 0
\(451\) 20122.7 2.10098
\(452\) − 2400.24i − 0.249774i
\(453\) 1590.45i 0.164957i
\(454\) −371.851 −0.0384402
\(455\) 0 0
\(456\) −4582.63 −0.470617
\(457\) 12968.9i 1.32748i 0.747961 + 0.663742i \(0.231033\pi\)
−0.747961 + 0.663742i \(0.768967\pi\)
\(458\) 12706.1i 1.29632i
\(459\) −9998.00 −1.01670
\(460\) 0 0
\(461\) −12449.4 −1.25776 −0.628878 0.777504i \(-0.716485\pi\)
−0.628878 + 0.777504i \(0.716485\pi\)
\(462\) 12004.0i 1.20882i
\(463\) 2012.71i 0.202028i 0.994885 + 0.101014i \(0.0322086\pi\)
−0.994885 + 0.101014i \(0.967791\pi\)
\(464\) −3066.83 −0.306841
\(465\) 0 0
\(466\) −2177.83 −0.216493
\(467\) 4541.22i 0.449984i 0.974361 + 0.224992i \(0.0722356\pi\)
−0.974361 + 0.224992i \(0.927764\pi\)
\(468\) 557.291i 0.0550445i
\(469\) −8636.33 −0.850295
\(470\) 0 0
\(471\) 3150.24 0.308185
\(472\) − 2111.19i − 0.205880i
\(473\) − 11043.5i − 1.07353i
\(474\) −6915.14 −0.670091
\(475\) 0 0
\(476\) 8911.36 0.858091
\(477\) − 1622.30i − 0.155723i
\(478\) − 3111.33i − 0.297717i
\(479\) −5671.15 −0.540963 −0.270482 0.962725i \(-0.587183\pi\)
−0.270482 + 0.962725i \(0.587183\pi\)
\(480\) 0 0
\(481\) −5222.06 −0.495022
\(482\) − 1041.57i − 0.0984280i
\(483\) 21210.2i 1.99813i
\(484\) −2370.30 −0.222605
\(485\) 0 0
\(486\) 5697.63 0.531790
\(487\) − 5379.59i − 0.500560i −0.968174 0.250280i \(-0.919477\pi\)
0.968174 0.250280i \(-0.0805227\pi\)
\(488\) 5153.62i 0.478061i
\(489\) −20264.1 −1.87398
\(490\) 0 0
\(491\) −883.306 −0.0811874 −0.0405937 0.999176i \(-0.512925\pi\)
−0.0405937 + 0.999176i \(0.512925\pi\)
\(492\) 11271.0i 1.03279i
\(493\) 19163.9i 1.75071i
\(494\) −2425.09 −0.220871
\(495\) 0 0
\(496\) −3421.42 −0.309730
\(497\) 12143.9i 1.09604i
\(498\) 11529.8i 1.03747i
\(499\) 15251.5 1.36824 0.684119 0.729371i \(-0.260187\pi\)
0.684119 + 0.729371i \(0.260187\pi\)
\(500\) 0 0
\(501\) −500.105 −0.0445969
\(502\) 14159.1i 1.25886i
\(503\) − 9087.97i − 0.805592i −0.915290 0.402796i \(-0.868038\pi\)
0.915290 0.402796i \(-0.131962\pi\)
\(504\) −1910.47 −0.168847
\(505\) 0 0
\(506\) −13595.3 −1.19443
\(507\) 1037.90i 0.0909168i
\(508\) − 7673.70i − 0.670207i
\(509\) 19916.8 1.73438 0.867189 0.497979i \(-0.165924\pi\)
0.867189 + 0.497979i \(0.165924\pi\)
\(510\) 0 0
\(511\) 6723.57 0.582061
\(512\) − 512.000i − 0.0441942i
\(513\) 9327.29i 0.802748i
\(514\) 875.611 0.0751392
\(515\) 0 0
\(516\) 6185.61 0.527726
\(517\) 11450.2i 0.974043i
\(518\) − 17901.9i − 1.51847i
\(519\) −6377.80 −0.539411
\(520\) 0 0
\(521\) 6154.94 0.517568 0.258784 0.965935i \(-0.416678\pi\)
0.258784 + 0.965935i \(0.416678\pi\)
\(522\) − 4108.46i − 0.344488i
\(523\) 6032.73i 0.504384i 0.967677 + 0.252192i \(0.0811515\pi\)
−0.967677 + 0.252192i \(0.918848\pi\)
\(524\) −5712.48 −0.476242
\(525\) 0 0
\(526\) 2474.35 0.205108
\(527\) 21379.6i 1.76719i
\(528\) − 4309.67i − 0.355216i
\(529\) −11854.9 −0.974349
\(530\) 0 0
\(531\) 2828.24 0.231140
\(532\) − 8313.54i − 0.677515i
\(533\) 5964.51i 0.484712i
\(534\) 3212.14 0.260305
\(535\) 0 0
\(536\) 3100.62 0.249862
\(537\) 12293.3i 0.987888i
\(538\) − 13015.5i − 1.04301i
\(539\) −6733.42 −0.538087
\(540\) 0 0
\(541\) 9116.03 0.724452 0.362226 0.932090i \(-0.382017\pi\)
0.362226 + 0.932090i \(0.382017\pi\)
\(542\) − 5095.33i − 0.403806i
\(543\) 20989.6i 1.65884i
\(544\) −3199.36 −0.252153
\(545\) 0 0
\(546\) −3558.06 −0.278885
\(547\) 12356.8i 0.965885i 0.875652 + 0.482942i \(0.160432\pi\)
−0.875652 + 0.482942i \(0.839568\pi\)
\(548\) − 4516.78i − 0.352093i
\(549\) −6904.01 −0.536714
\(550\) 0 0
\(551\) 17878.3 1.38229
\(552\) − 7614.88i − 0.587157i
\(553\) − 12545.1i − 0.964684i
\(554\) −10428.2 −0.799736
\(555\) 0 0
\(556\) 723.554 0.0551898
\(557\) 10292.1i 0.782928i 0.920194 + 0.391464i \(0.128031\pi\)
−0.920194 + 0.391464i \(0.871969\pi\)
\(558\) − 4583.48i − 0.347731i
\(559\) 3273.38 0.247673
\(560\) 0 0
\(561\) −26930.0 −2.02672
\(562\) − 14718.5i − 1.10474i
\(563\) 21015.4i 1.57317i 0.617482 + 0.786585i \(0.288153\pi\)
−0.617482 + 0.786585i \(0.711847\pi\)
\(564\) −6413.41 −0.478818
\(565\) 0 0
\(566\) −5970.58 −0.443396
\(567\) 20132.7i 1.49117i
\(568\) − 4359.92i − 0.322074i
\(569\) −5207.27 −0.383656 −0.191828 0.981429i \(-0.561442\pi\)
−0.191828 + 0.981429i \(0.561442\pi\)
\(570\) 0 0
\(571\) 16827.8 1.23331 0.616655 0.787234i \(-0.288487\pi\)
0.616655 + 0.787234i \(0.288487\pi\)
\(572\) − 2280.65i − 0.166711i
\(573\) 14831.8i 1.08134i
\(574\) −20447.1 −1.48684
\(575\) 0 0
\(576\) 685.897 0.0496164
\(577\) − 7624.71i − 0.550123i −0.961427 0.275061i \(-0.911302\pi\)
0.961427 0.275061i \(-0.0886982\pi\)
\(578\) 10166.0i 0.731574i
\(579\) −23945.7 −1.71874
\(580\) 0 0
\(581\) −20916.7 −1.49358
\(582\) − 16845.9i − 1.19980i
\(583\) 6639.06i 0.471633i
\(584\) −2413.90 −0.171041
\(585\) 0 0
\(586\) 19215.3 1.35457
\(587\) − 18164.5i − 1.27722i −0.769529 0.638612i \(-0.779509\pi\)
0.769529 0.638612i \(-0.220491\pi\)
\(588\) − 3771.47i − 0.264511i
\(589\) 19945.3 1.39530
\(590\) 0 0
\(591\) −10223.9 −0.711601
\(592\) 6427.15i 0.446207i
\(593\) − 13329.0i − 0.923029i −0.887133 0.461514i \(-0.847306\pi\)
0.887133 0.461514i \(-0.152694\pi\)
\(594\) −8771.71 −0.605905
\(595\) 0 0
\(596\) −6060.53 −0.416525
\(597\) − 28690.5i − 1.96688i
\(598\) − 4029.74i − 0.275566i
\(599\) 10495.5 0.715920 0.357960 0.933737i \(-0.383472\pi\)
0.357960 + 0.933737i \(0.383472\pi\)
\(600\) 0 0
\(601\) −12575.5 −0.853518 −0.426759 0.904365i \(-0.640345\pi\)
−0.426759 + 0.904365i \(0.640345\pi\)
\(602\) 11221.6i 0.759730i
\(603\) 4153.72i 0.280518i
\(604\) 1035.88 0.0697837
\(605\) 0 0
\(606\) −3189.82 −0.213825
\(607\) − 4144.35i − 0.277124i −0.990354 0.138562i \(-0.955752\pi\)
0.990354 0.138562i \(-0.0442480\pi\)
\(608\) 2984.73i 0.199090i
\(609\) 26230.7 1.74536
\(610\) 0 0
\(611\) −3393.93 −0.224720
\(612\) − 4286.00i − 0.283090i
\(613\) 9975.52i 0.657272i 0.944457 + 0.328636i \(0.106589\pi\)
−0.944457 + 0.328636i \(0.893411\pi\)
\(614\) 17703.6 1.16361
\(615\) 0 0
\(616\) 7818.35 0.511381
\(617\) − 19244.9i − 1.25571i −0.778332 0.627853i \(-0.783934\pi\)
0.778332 0.627853i \(-0.216066\pi\)
\(618\) − 9200.51i − 0.598865i
\(619\) 9885.84 0.641915 0.320958 0.947094i \(-0.395995\pi\)
0.320958 + 0.947094i \(0.395995\pi\)
\(620\) 0 0
\(621\) −15499.0 −1.00154
\(622\) − 5291.16i − 0.341087i
\(623\) 5827.29i 0.374744i
\(624\) 1277.42 0.0819513
\(625\) 0 0
\(626\) −12176.6 −0.777436
\(627\) 25123.4i 1.60021i
\(628\) − 2051.79i − 0.130375i
\(629\) 40161.7 2.54587
\(630\) 0 0
\(631\) −5213.18 −0.328896 −0.164448 0.986386i \(-0.552584\pi\)
−0.164448 + 0.986386i \(0.552584\pi\)
\(632\) 4503.93i 0.283476i
\(633\) 8633.76i 0.542119i
\(634\) −19891.8 −1.24607
\(635\) 0 0
\(636\) −3718.62 −0.231844
\(637\) − 1995.83i − 0.124141i
\(638\) 16813.4i 1.04334i
\(639\) 5840.74 0.361590
\(640\) 0 0
\(641\) −1754.92 −0.108136 −0.0540680 0.998537i \(-0.517219\pi\)
−0.0540680 + 0.998537i \(0.517219\pi\)
\(642\) 9791.07i 0.601904i
\(643\) − 8477.04i − 0.519909i −0.965621 0.259955i \(-0.916292\pi\)
0.965621 0.259955i \(-0.0837076\pi\)
\(644\) 13814.5 0.845290
\(645\) 0 0
\(646\) 18650.8 1.13592
\(647\) 23346.4i 1.41861i 0.704901 + 0.709306i \(0.250992\pi\)
−0.704901 + 0.709306i \(0.749008\pi\)
\(648\) − 7228.05i − 0.438186i
\(649\) −11574.2 −0.700043
\(650\) 0 0
\(651\) 29263.5 1.76179
\(652\) 13198.3i 0.792769i
\(653\) − 18810.5i − 1.12727i −0.826022 0.563637i \(-0.809402\pi\)
0.826022 0.563637i \(-0.190598\pi\)
\(654\) 7970.94 0.476588
\(655\) 0 0
\(656\) 7340.94 0.436914
\(657\) − 3233.76i − 0.192026i
\(658\) − 11634.8i − 0.689321i
\(659\) −2823.49 −0.166901 −0.0834503 0.996512i \(-0.526594\pi\)
−0.0834503 + 0.996512i \(0.526594\pi\)
\(660\) 0 0
\(661\) 14353.1 0.844586 0.422293 0.906459i \(-0.361225\pi\)
0.422293 + 0.906459i \(0.361225\pi\)
\(662\) − 5470.27i − 0.321160i
\(663\) − 7982.26i − 0.467580i
\(664\) 7509.51 0.438894
\(665\) 0 0
\(666\) −8610.09 −0.500952
\(667\) 29708.0i 1.72459i
\(668\) 325.726i 0.0188663i
\(669\) −14886.5 −0.860306
\(670\) 0 0
\(671\) 28253.8 1.62552
\(672\) 4379.15i 0.251383i
\(673\) 2021.69i 0.115795i 0.998323 + 0.0578977i \(0.0184397\pi\)
−0.998323 + 0.0578977i \(0.981560\pi\)
\(674\) −14936.9 −0.853631
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) − 16670.5i − 0.946380i −0.880960 0.473190i \(-0.843102\pi\)
0.880960 0.473190i \(-0.156898\pi\)
\(678\) − 7370.45i − 0.417493i
\(679\) 30560.9 1.72727
\(680\) 0 0
\(681\) −1141.85 −0.0642522
\(682\) 18757.3i 1.05316i
\(683\) 19539.7i 1.09468i 0.836910 + 0.547341i \(0.184360\pi\)
−0.836910 + 0.547341i \(0.815640\pi\)
\(684\) −3998.47 −0.223517
\(685\) 0 0
\(686\) −8444.06 −0.469964
\(687\) 39016.8i 2.16679i
\(688\) − 4028.78i − 0.223250i
\(689\) −1967.87 −0.108809
\(690\) 0 0
\(691\) −26847.1 −1.47802 −0.739011 0.673694i \(-0.764707\pi\)
−0.739011 + 0.673694i \(0.764707\pi\)
\(692\) 4153.95i 0.228193i
\(693\) 10473.8i 0.574122i
\(694\) −19863.6 −1.08647
\(695\) 0 0
\(696\) −9417.37 −0.512880
\(697\) − 45871.7i − 2.49285i
\(698\) 3147.83i 0.170698i
\(699\) −6687.49 −0.361866
\(700\) 0 0
\(701\) −27878.5 −1.50208 −0.751039 0.660258i \(-0.770447\pi\)
−0.751039 + 0.660258i \(0.770447\pi\)
\(702\) − 2600.00i − 0.139787i
\(703\) − 37467.4i − 2.01012i
\(704\) −2806.95 −0.150271
\(705\) 0 0
\(706\) 21738.4 1.15883
\(707\) − 5786.79i − 0.307829i
\(708\) − 6482.86i − 0.344125i
\(709\) −27805.6 −1.47286 −0.736431 0.676512i \(-0.763491\pi\)
−0.736431 + 0.676512i \(0.763491\pi\)
\(710\) 0 0
\(711\) −6033.66 −0.318256
\(712\) − 2092.11i − 0.110120i
\(713\) 33142.8i 1.74083i
\(714\) 27364.2 1.43429
\(715\) 0 0
\(716\) 8006.81 0.417917
\(717\) − 9554.00i − 0.497630i
\(718\) − 14003.7i − 0.727874i
\(719\) 33653.6 1.74557 0.872787 0.488101i \(-0.162310\pi\)
0.872787 + 0.488101i \(0.162310\pi\)
\(720\) 0 0
\(721\) 16691.0 0.862145
\(722\) − 3681.65i − 0.189774i
\(723\) − 3198.37i − 0.164521i
\(724\) 13670.8 0.701756
\(725\) 0 0
\(726\) −7278.51 −0.372081
\(727\) − 1384.32i − 0.0706210i −0.999376 0.0353105i \(-0.988758\pi\)
0.999376 0.0353105i \(-0.0112420\pi\)
\(728\) 2317.42i 0.117980i
\(729\) −6898.86 −0.350498
\(730\) 0 0
\(731\) −25174.8 −1.27377
\(732\) 15825.3i 0.799071i
\(733\) − 1212.64i − 0.0611049i −0.999533 0.0305524i \(-0.990273\pi\)
0.999533 0.0305524i \(-0.00972666\pi\)
\(734\) −22509.6 −1.13194
\(735\) 0 0
\(736\) −4959.68 −0.248392
\(737\) − 16998.6i − 0.849594i
\(738\) 9834.23i 0.490519i
\(739\) 8168.18 0.406592 0.203296 0.979117i \(-0.434835\pi\)
0.203296 + 0.979117i \(0.434835\pi\)
\(740\) 0 0
\(741\) −7446.77 −0.369182
\(742\) − 6746.10i − 0.333770i
\(743\) − 11712.7i − 0.578328i −0.957280 0.289164i \(-0.906623\pi\)
0.957280 0.289164i \(-0.0933773\pi\)
\(744\) −10506.2 −0.517709
\(745\) 0 0
\(746\) −19103.3 −0.937564
\(747\) 10060.1i 0.492742i
\(748\) 17539.9i 0.857384i
\(749\) −17762.4 −0.866521
\(750\) 0 0
\(751\) 29405.0 1.42877 0.714383 0.699754i \(-0.246707\pi\)
0.714383 + 0.699754i \(0.246707\pi\)
\(752\) 4177.14i 0.202559i
\(753\) 43478.4i 2.10417i
\(754\) −4983.61 −0.240706
\(755\) 0 0
\(756\) 8913.14 0.428793
\(757\) − 13612.9i − 0.653593i −0.945095 0.326797i \(-0.894031\pi\)
0.945095 0.326797i \(-0.105969\pi\)
\(758\) 12249.1i 0.586949i
\(759\) −41747.2 −1.99648
\(760\) 0 0
\(761\) 4598.55 0.219050 0.109525 0.993984i \(-0.465067\pi\)
0.109525 + 0.993984i \(0.465067\pi\)
\(762\) − 23563.7i − 1.12024i
\(763\) 14460.4i 0.686111i
\(764\) 9660.14 0.457450
\(765\) 0 0
\(766\) 4413.24 0.208168
\(767\) − 3430.68i − 0.161506i
\(768\) − 1572.21i − 0.0738699i
\(769\) 9640.19 0.452060 0.226030 0.974120i \(-0.427425\pi\)
0.226030 + 0.974120i \(0.427425\pi\)
\(770\) 0 0
\(771\) 2688.75 0.125594
\(772\) 15596.2i 0.727098i
\(773\) − 4369.66i − 0.203319i −0.994819 0.101660i \(-0.967585\pi\)
0.994819 0.101660i \(-0.0324152\pi\)
\(774\) 5397.12 0.250640
\(775\) 0 0
\(776\) −10972.0 −0.507566
\(777\) − 54971.7i − 2.53809i
\(778\) − 16916.3i − 0.779537i
\(779\) −42794.4 −1.96825
\(780\) 0 0
\(781\) −23902.5 −1.09513
\(782\) 30991.8i 1.41722i
\(783\) 19167.7i 0.874838i
\(784\) −2456.41 −0.111899
\(785\) 0 0
\(786\) −17541.4 −0.796032
\(787\) − 36670.3i − 1.66094i −0.557066 0.830468i \(-0.688073\pi\)
0.557066 0.830468i \(-0.311927\pi\)
\(788\) 6658.99i 0.301037i
\(789\) 7598.03 0.342835
\(790\) 0 0
\(791\) 13371.1 0.601036
\(792\) − 3760.31i − 0.168708i
\(793\) 8374.64i 0.375022i
\(794\) −20754.1 −0.927627
\(795\) 0 0
\(796\) −18686.6 −0.832070
\(797\) 2533.75i 0.112610i 0.998414 + 0.0563050i \(0.0179319\pi\)
−0.998414 + 0.0563050i \(0.982068\pi\)
\(798\) − 25528.5i − 1.13246i
\(799\) 26101.9 1.15572
\(800\) 0 0
\(801\) 2802.69 0.123631
\(802\) − 17925.7i − 0.789250i
\(803\) 13233.8i 0.581581i
\(804\) 9521.11 0.417641
\(805\) 0 0
\(806\) −5559.80 −0.242972
\(807\) − 39966.9i − 1.74337i
\(808\) 2077.58i 0.0904566i
\(809\) −20002.0 −0.869261 −0.434630 0.900609i \(-0.643121\pi\)
−0.434630 + 0.900609i \(0.643121\pi\)
\(810\) 0 0
\(811\) 45063.8 1.95118 0.975589 0.219605i \(-0.0704770\pi\)
0.975589 + 0.219605i \(0.0704770\pi\)
\(812\) − 17084.5i − 0.738358i
\(813\) − 15646.3i − 0.674956i
\(814\) 35235.7 1.51721
\(815\) 0 0
\(816\) −9824.32 −0.421471
\(817\) 23486.0i 1.00572i
\(818\) − 2267.03i − 0.0969010i
\(819\) −3104.51 −0.132455
\(820\) 0 0
\(821\) −17316.1 −0.736097 −0.368049 0.929807i \(-0.619974\pi\)
−0.368049 + 0.929807i \(0.619974\pi\)
\(822\) − 13869.7i − 0.588519i
\(823\) − 32263.9i − 1.36653i −0.730173 0.683263i \(-0.760560\pi\)
0.730173 0.683263i \(-0.239440\pi\)
\(824\) −5992.42 −0.253345
\(825\) 0 0
\(826\) 11760.8 0.495414
\(827\) 33244.3i 1.39784i 0.715198 + 0.698921i \(0.246336\pi\)
−0.715198 + 0.698921i \(0.753664\pi\)
\(828\) − 6644.20i − 0.278867i
\(829\) −30822.9 −1.29134 −0.645672 0.763614i \(-0.723423\pi\)
−0.645672 + 0.763614i \(0.723423\pi\)
\(830\) 0 0
\(831\) −32022.2 −1.33675
\(832\) − 832.000i − 0.0346688i
\(833\) 15349.5i 0.638450i
\(834\) 2221.83 0.0922490
\(835\) 0 0
\(836\) 16363.3 0.676956
\(837\) 21383.9i 0.883076i
\(838\) 21175.9i 0.872925i
\(839\) −21723.5 −0.893895 −0.446947 0.894560i \(-0.647489\pi\)
−0.446947 + 0.894560i \(0.647489\pi\)
\(840\) 0 0
\(841\) 12351.1 0.506422
\(842\) 16593.7i 0.679165i
\(843\) − 45196.4i − 1.84655i
\(844\) 5623.29 0.229338
\(845\) 0 0
\(846\) −5595.88 −0.227412
\(847\) − 13204.2i − 0.535659i
\(848\) 2421.99i 0.0980795i
\(849\) −18333.9 −0.741130
\(850\) 0 0
\(851\) 62259.0 2.50789
\(852\) − 13388.1i − 0.538342i
\(853\) − 15600.6i − 0.626206i −0.949719 0.313103i \(-0.898631\pi\)
0.949719 0.313103i \(-0.101369\pi\)
\(854\) −28709.4 −1.15037
\(855\) 0 0
\(856\) 6377.06 0.254630
\(857\) 34393.9i 1.37091i 0.728113 + 0.685457i \(0.240398\pi\)
−0.728113 + 0.685457i \(0.759602\pi\)
\(858\) − 7003.21i − 0.278655i
\(859\) −8181.69 −0.324978 −0.162489 0.986710i \(-0.551952\pi\)
−0.162489 + 0.986710i \(0.551952\pi\)
\(860\) 0 0
\(861\) −62787.3 −2.48523
\(862\) − 6021.79i − 0.237938i
\(863\) − 3270.88i − 0.129017i −0.997917 0.0645087i \(-0.979452\pi\)
0.997917 0.0645087i \(-0.0205480\pi\)
\(864\) −3200.00 −0.126003
\(865\) 0 0
\(866\) −6620.63 −0.259790
\(867\) 31216.9i 1.22282i
\(868\) − 19059.7i − 0.745311i
\(869\) 24692.0 0.963888
\(870\) 0 0
\(871\) 5038.50 0.196008
\(872\) − 5191.59i − 0.201616i
\(873\) − 14698.5i − 0.569840i
\(874\) 28912.7 1.11898
\(875\) 0 0
\(876\) −7412.39 −0.285892
\(877\) − 15309.4i − 0.589466i −0.955580 0.294733i \(-0.904769\pi\)
0.955580 0.294733i \(-0.0952307\pi\)
\(878\) 5195.79i 0.199715i
\(879\) 59004.7 2.26414
\(880\) 0 0
\(881\) 10407.6 0.398003 0.199001 0.979999i \(-0.436230\pi\)
0.199001 + 0.979999i \(0.436230\pi\)
\(882\) − 3290.71i − 0.125628i
\(883\) − 39646.5i − 1.51100i −0.655150 0.755499i \(-0.727395\pi\)
0.655150 0.755499i \(-0.272605\pi\)
\(884\) −5198.96 −0.197805
\(885\) 0 0
\(886\) −33141.7 −1.25668
\(887\) 33937.4i 1.28467i 0.766422 + 0.642337i \(0.222035\pi\)
−0.766422 + 0.642337i \(0.777965\pi\)
\(888\) 19736.0i 0.745828i
\(889\) 42748.0 1.61273
\(890\) 0 0
\(891\) −39626.5 −1.48994
\(892\) 9695.78i 0.363945i
\(893\) − 24350.9i − 0.912510i
\(894\) −18610.1 −0.696215
\(895\) 0 0
\(896\) 2852.21 0.106345
\(897\) − 12374.2i − 0.460604i
\(898\) − 12306.5i − 0.457321i
\(899\) 40988.0 1.52061
\(900\) 0 0
\(901\) 15134.4 0.559600
\(902\) − 40245.4i − 1.48561i
\(903\) 34458.3i 1.26988i
\(904\) −4800.48 −0.176617
\(905\) 0 0
\(906\) 3180.89 0.116642
\(907\) − 31969.4i − 1.17037i −0.810900 0.585185i \(-0.801022\pi\)
0.810900 0.585185i \(-0.198978\pi\)
\(908\) 743.703i 0.0271813i
\(909\) −2783.21 −0.101555
\(910\) 0 0
\(911\) 160.760 0.00584656 0.00292328 0.999996i \(-0.499069\pi\)
0.00292328 + 0.999996i \(0.499069\pi\)
\(912\) 9165.26i 0.332776i
\(913\) − 41169.5i − 1.49235i
\(914\) 25937.8 0.938673
\(915\) 0 0
\(916\) 25412.2 0.916639
\(917\) − 31822.6i − 1.14599i
\(918\) 19996.0i 0.718918i
\(919\) −7482.72 −0.268588 −0.134294 0.990942i \(-0.542877\pi\)
−0.134294 + 0.990942i \(0.542877\pi\)
\(920\) 0 0
\(921\) 54362.6 1.94496
\(922\) 24898.8i 0.889368i
\(923\) − 7084.87i − 0.252656i
\(924\) 24007.9 0.854765
\(925\) 0 0
\(926\) 4025.43 0.142855
\(927\) − 8027.71i − 0.284428i
\(928\) 6133.67i 0.216969i
\(929\) 34614.1 1.22245 0.611224 0.791458i \(-0.290678\pi\)
0.611224 + 0.791458i \(0.290678\pi\)
\(930\) 0 0
\(931\) 14319.8 0.504094
\(932\) 4355.66i 0.153084i
\(933\) − 16247.6i − 0.570122i
\(934\) 9082.43 0.318187
\(935\) 0 0
\(936\) 1114.58 0.0389223
\(937\) − 43467.7i − 1.51551i −0.652542 0.757753i \(-0.726297\pi\)
0.652542 0.757753i \(-0.273703\pi\)
\(938\) 17272.7i 0.601250i
\(939\) −37390.9 −1.29947
\(940\) 0 0
\(941\) 4890.69 0.169428 0.0847142 0.996405i \(-0.473002\pi\)
0.0847142 + 0.996405i \(0.473002\pi\)
\(942\) − 6300.47i − 0.217920i
\(943\) − 71110.7i − 2.45566i
\(944\) −4222.38 −0.145579
\(945\) 0 0
\(946\) −22087.1 −0.759104
\(947\) 20043.4i 0.687776i 0.939011 + 0.343888i \(0.111744\pi\)
−0.939011 + 0.343888i \(0.888256\pi\)
\(948\) 13830.3i 0.473826i
\(949\) −3922.58 −0.134175
\(950\) 0 0
\(951\) −61082.1 −2.08278
\(952\) − 17822.7i − 0.606762i
\(953\) − 33417.6i − 1.13589i −0.823067 0.567944i \(-0.807739\pi\)
0.823067 0.567944i \(-0.192261\pi\)
\(954\) −3244.60 −0.110113
\(955\) 0 0
\(956\) −6222.66 −0.210518
\(957\) 51629.1i 1.74392i
\(958\) 11342.3i 0.382519i
\(959\) 25161.7 0.847250
\(960\) 0 0
\(961\) 15935.9 0.534924
\(962\) 10444.1i 0.350033i
\(963\) 8542.99i 0.285871i
\(964\) −2083.14 −0.0695991
\(965\) 0 0
\(966\) 42420.3 1.41289
\(967\) 48557.9i 1.61481i 0.590000 + 0.807403i \(0.299128\pi\)
−0.590000 + 0.807403i \(0.700872\pi\)
\(968\) 4740.59i 0.157405i
\(969\) 57271.4 1.89868
\(970\) 0 0
\(971\) 2384.30 0.0788009 0.0394005 0.999223i \(-0.487455\pi\)
0.0394005 + 0.999223i \(0.487455\pi\)
\(972\) − 11395.3i − 0.376032i
\(973\) 4030.71i 0.132804i
\(974\) −10759.2 −0.353949
\(975\) 0 0
\(976\) 10307.2 0.338040
\(977\) − 37231.4i − 1.21918i −0.792717 0.609590i \(-0.791334\pi\)
0.792717 0.609590i \(-0.208666\pi\)
\(978\) 40528.2i 1.32510i
\(979\) −11469.6 −0.374435
\(980\) 0 0
\(981\) 6954.87 0.226353
\(982\) 1766.61i 0.0574082i
\(983\) 27677.9i 0.898055i 0.893518 + 0.449027i \(0.148229\pi\)
−0.893518 + 0.449027i \(0.851771\pi\)
\(984\) 22541.9 0.730295
\(985\) 0 0
\(986\) 38327.8 1.23794
\(987\) − 35727.3i − 1.15219i
\(988\) 4850.19i 0.156179i
\(989\) −39026.3 −1.25477
\(990\) 0 0
\(991\) 22073.3 0.707548 0.353774 0.935331i \(-0.384898\pi\)
0.353774 + 0.935331i \(0.384898\pi\)
\(992\) 6842.83i 0.219012i
\(993\) − 16797.6i − 0.536815i
\(994\) 24287.9 0.775014
\(995\) 0 0
\(996\) 23059.6 0.733604
\(997\) 11349.0i 0.360507i 0.983620 + 0.180253i \(0.0576918\pi\)
−0.983620 + 0.180253i \(0.942308\pi\)
\(998\) − 30503.0i − 0.967490i
\(999\) 40169.7 1.27219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.b.m.599.1 4
5.2 odd 4 130.4.a.f.1.1 2
5.3 odd 4 650.4.a.k.1.2 2
5.4 even 2 inner 650.4.b.m.599.4 4
15.2 even 4 1170.4.a.t.1.2 2
20.7 even 4 1040.4.a.h.1.2 2
65.12 odd 4 1690.4.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.f.1.1 2 5.2 odd 4
650.4.a.k.1.2 2 5.3 odd 4
650.4.b.m.599.1 4 1.1 even 1 trivial
650.4.b.m.599.4 4 5.4 even 2 inner
1040.4.a.h.1.2 2 20.7 even 4
1170.4.a.t.1.2 2 15.2 even 4
1690.4.a.o.1.1 2 65.12 odd 4