Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [650,4,Mod(599,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.599");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 650.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 130) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
599.1 |
|
− | 2.00000i | − | 6.14143i | −4.00000 | 0 | −12.2829 | − | 22.2829i | 8.00000i | −10.7171 | 0 | |||||||||||||||||||||||||||
599.2 | − | 2.00000i | 8.14143i | −4.00000 | 0 | 16.2829 | 6.28286i | 8.00000i | −39.2829 | 0 | ||||||||||||||||||||||||||||||
599.3 | 2.00000i | − | 8.14143i | −4.00000 | 0 | 16.2829 | − | 6.28286i | − | 8.00000i | −39.2829 | 0 | ||||||||||||||||||||||||||||
599.4 | 2.00000i | 6.14143i | −4.00000 | 0 | −12.2829 | 22.2829i | − | 8.00000i | −10.7171 | 0 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 650.4.b.m | 4 | |
5.b | even | 2 | 1 | inner | 650.4.b.m | 4 | |
5.c | odd | 4 | 1 | 130.4.a.f | ✓ | 2 | |
5.c | odd | 4 | 1 | 650.4.a.k | 2 | ||
15.e | even | 4 | 1 | 1170.4.a.t | 2 | ||
20.e | even | 4 | 1 | 1040.4.a.h | 2 | ||
65.h | odd | 4 | 1 | 1690.4.a.o | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
130.4.a.f | ✓ | 2 | 5.c | odd | 4 | 1 | |
650.4.a.k | 2 | 5.c | odd | 4 | 1 | ||
650.4.b.m | 4 | 1.a | even | 1 | 1 | trivial | |
650.4.b.m | 4 | 5.b | even | 2 | 1 | inner | |
1040.4.a.h | 2 | 20.e | even | 4 | 1 | ||
1170.4.a.t | 2 | 15.e | even | 4 | 1 | ||
1690.4.a.o | 2 | 65.h | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|