Properties

Label 650.4.b.m
Level $650$
Weight $4$
Character orbit 650.b
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{51})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 25x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_1 q^{2} + ( - \beta_{3} - \beta_1) q^{3} - 4 q^{4} + (2 \beta_{2} + 2) q^{6} + ( - 2 \beta_{3} + 8 \beta_1) q^{7} - 8 \beta_1 q^{8} + ( - 2 \beta_{2} - 25) q^{9} + (\beta_{2} + 51) q^{11} + (4 \beta_{3} + 4 \beta_1) q^{12}+ \cdots + ( - 127 \beta_{2} - 1377) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 8 q^{6} - 100 q^{9} + 204 q^{11} - 64 q^{14} + 64 q^{16} - 116 q^{19} - 376 q^{21} - 32 q^{24} + 104 q^{26} - 24 q^{29} - 484 q^{31} + 400 q^{36} - 52 q^{39} + 864 q^{41} - 816 q^{44} - 840 q^{46}+ \cdots - 5508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 25x^{2} + 169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 12\nu ) / 13 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 38\nu ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 25 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 25 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{2} + 19\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
−3.57071 0.500000i
3.57071 0.500000i
3.57071 + 0.500000i
−3.57071 + 0.500000i
2.00000i 6.14143i −4.00000 0 −12.2829 22.2829i 8.00000i −10.7171 0
599.2 2.00000i 8.14143i −4.00000 0 16.2829 6.28286i 8.00000i −39.2829 0
599.3 2.00000i 8.14143i −4.00000 0 16.2829 6.28286i 8.00000i −39.2829 0
599.4 2.00000i 6.14143i −4.00000 0 −12.2829 22.2829i 8.00000i −10.7171 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.m 4
5.b even 2 1 inner 650.4.b.m 4
5.c odd 4 1 130.4.a.f 2
5.c odd 4 1 650.4.a.k 2
15.e even 4 1 1170.4.a.t 2
20.e even 4 1 1040.4.a.h 2
65.h odd 4 1 1690.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.f 2 5.c odd 4 1
650.4.a.k 2 5.c odd 4 1
650.4.b.m 4 1.a even 1 1 trivial
650.4.b.m 4 5.b even 2 1 inner
1040.4.a.h 2 20.e even 4 1
1170.4.a.t 2 15.e even 4 1
1690.4.a.o 2 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(650, [\chi])\):

\( T_{3}^{4} + 104T_{3}^{2} + 2500 \) Copy content Toggle raw display
\( T_{7}^{4} + 536T_{7}^{2} + 19600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 104T^{2} + 2500 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 536 T^{2} + 19600 \) Copy content Toggle raw display
$11$ \( (T^{2} - 102 T + 2550)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9996)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 58 T - 3290)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 27048 T^{2} + 72692676 \) Copy content Toggle raw display
$29$ \( (T^{2} + 12 T - 34440)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 242 T + 6022)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 8558470144 \) Copy content Toggle raw display
$41$ \( (T^{2} - 432 T - 12300)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 7064402500 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 13991104656 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 3509851536 \) Copy content Toggle raw display
$59$ \( (T^{2} + 942 T + 178950)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 460 T - 118664)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 145322588944 \) Copy content Toggle raw display
$71$ \( (T^{2} + 990 T + 242526)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 25600000000 \) Copy content Toggle raw display
$79$ \( (T^{2} + 388 T - 535400)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 491272024464 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1380 T + 292500)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 1202329794064 \) Copy content Toggle raw display
show more
show less