Properties

Label 650.4.b.m
Level 650650
Weight 44
Character orbit 650.b
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,51)\Q(i, \sqrt{51})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x425x2+169 x^{4} - 25x^{2} + 169 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2β1q2+(β3β1)q34q4+(2β2+2)q6+(2β3+8β1)q78β1q8+(2β225)q9+(β2+51)q11+(4β3+4β1)q12++(127β21377)q99+O(q100) q + 2 \beta_1 q^{2} + ( - \beta_{3} - \beta_1) q^{3} - 4 q^{4} + (2 \beta_{2} + 2) q^{6} + ( - 2 \beta_{3} + 8 \beta_1) q^{7} - 8 \beta_1 q^{8} + ( - 2 \beta_{2} - 25) q^{9} + (\beta_{2} + 51) q^{11} + (4 \beta_{3} + 4 \beta_1) q^{12}+ \cdots + ( - 127 \beta_{2} - 1377) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q4+8q6100q9+204q1164q14+64q16116q19376q2132q24+104q2624q29484q31+400q3652q39+864q41816q44840q46+5508q99+O(q100) 4 q - 16 q^{4} + 8 q^{6} - 100 q^{9} + 204 q^{11} - 64 q^{14} + 64 q^{16} - 116 q^{19} - 376 q^{21} - 32 q^{24} + 104 q^{26} - 24 q^{29} - 484 q^{31} + 400 q^{36} - 52 q^{39} + 864 q^{41} - 816 q^{44} - 840 q^{46}+ \cdots - 5508 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x425x2+169 x^{4} - 25x^{2} + 169 : Copy content Toggle raw display

β1\beta_{1}== (ν312ν)/13 ( \nu^{3} - 12\nu ) / 13 Copy content Toggle raw display
β2\beta_{2}== (ν3+38ν)/13 ( -\nu^{3} + 38\nu ) / 13 Copy content Toggle raw display
β3\beta_{3}== 2ν225 2\nu^{2} - 25 Copy content Toggle raw display
ν\nu== (β2+β1)/2 ( \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+25)/2 ( \beta_{3} + 25 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 6β2+19β1 6\beta_{2} + 19\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
−3.57071 0.500000i
3.57071 0.500000i
3.57071 + 0.500000i
−3.57071 + 0.500000i
2.00000i 6.14143i −4.00000 0 −12.2829 22.2829i 8.00000i −10.7171 0
599.2 2.00000i 8.14143i −4.00000 0 16.2829 6.28286i 8.00000i −39.2829 0
599.3 2.00000i 8.14143i −4.00000 0 16.2829 6.28286i 8.00000i −39.2829 0
599.4 2.00000i 6.14143i −4.00000 0 −12.2829 22.2829i 8.00000i −10.7171 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.m 4
5.b even 2 1 inner 650.4.b.m 4
5.c odd 4 1 130.4.a.f 2
5.c odd 4 1 650.4.a.k 2
15.e even 4 1 1170.4.a.t 2
20.e even 4 1 1040.4.a.h 2
65.h odd 4 1 1690.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.f 2 5.c odd 4 1
650.4.a.k 2 5.c odd 4 1
650.4.b.m 4 1.a even 1 1 trivial
650.4.b.m 4 5.b even 2 1 inner
1040.4.a.h 2 20.e even 4 1
1170.4.a.t 2 15.e even 4 1
1690.4.a.o 2 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T34+104T32+2500 T_{3}^{4} + 104T_{3}^{2} + 2500 Copy content Toggle raw display
T74+536T72+19600 T_{7}^{4} + 536T_{7}^{2} + 19600 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
33 T4+104T2+2500 T^{4} + 104T^{2} + 2500 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+536T2+19600 T^{4} + 536 T^{2} + 19600 Copy content Toggle raw display
1111 (T2102T+2550)2 (T^{2} - 102 T + 2550)^{2} Copy content Toggle raw display
1313 (T2+169)2 (T^{2} + 169)^{2} Copy content Toggle raw display
1717 (T2+9996)2 (T^{2} + 9996)^{2} Copy content Toggle raw display
1919 (T2+58T3290)2 (T^{2} + 58 T - 3290)^{2} Copy content Toggle raw display
2323 T4+27048T2+72692676 T^{4} + 27048 T^{2} + 72692676 Copy content Toggle raw display
2929 (T2+12T34440)2 (T^{2} + 12 T - 34440)^{2} Copy content Toggle raw display
3131 (T2+242T+6022)2 (T^{2} + 242 T + 6022)^{2} Copy content Toggle raw display
3737 T4++8558470144 T^{4} + \cdots + 8558470144 Copy content Toggle raw display
4141 (T2432T12300)2 (T^{2} - 432 T - 12300)^{2} Copy content Toggle raw display
4343 T4++7064402500 T^{4} + \cdots + 7064402500 Copy content Toggle raw display
4747 T4++13991104656 T^{4} + \cdots + 13991104656 Copy content Toggle raw display
5353 T4++3509851536 T^{4} + \cdots + 3509851536 Copy content Toggle raw display
5959 (T2+942T+178950)2 (T^{2} + 942 T + 178950)^{2} Copy content Toggle raw display
6161 (T2460T118664)2 (T^{2} - 460 T - 118664)^{2} Copy content Toggle raw display
6767 T4++145322588944 T^{4} + \cdots + 145322588944 Copy content Toggle raw display
7171 (T2+990T+242526)2 (T^{2} + 990 T + 242526)^{2} Copy content Toggle raw display
7373 T4++25600000000 T^{4} + \cdots + 25600000000 Copy content Toggle raw display
7979 (T2+388T535400)2 (T^{2} + 388 T - 535400)^{2} Copy content Toggle raw display
8383 T4++491272024464 T^{4} + \cdots + 491272024464 Copy content Toggle raw display
8989 (T2+1380T+292500)2 (T^{2} + 1380 T + 292500)^{2} Copy content Toggle raw display
9797 T4++1202329794064 T^{4} + \cdots + 1202329794064 Copy content Toggle raw display
show more
show less