Properties

Label 1040.4.a.h
Level $1040$
Weight $4$
Character orbit 1040.a
Self dual yes
Analytic conductor $61.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,4,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{51}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{51}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} - 5 q^{5} + ( - 2 \beta - 8) q^{7} + ( - 2 \beta + 25) q^{9} + (\beta - 51) q^{11} + 13 q^{13} + ( - 5 \beta + 5) q^{15} + 14 \beta q^{17} + ( - 9 \beta - 29) q^{19} + ( - 6 \beta - 94) q^{21}+ \cdots + (127 \beta - 1377) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 10 q^{5} - 16 q^{7} + 50 q^{9} - 102 q^{11} + 26 q^{13} + 10 q^{15} - 58 q^{19} - 188 q^{21} + 210 q^{23} + 50 q^{25} - 200 q^{27} + 12 q^{29} + 242 q^{31} + 204 q^{33} + 80 q^{35} - 632 q^{37}+ \cdots - 2754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.14143
7.14143
0 −8.14143 0 −5.00000 0 6.28286 0 39.2829 0
1.2 0 6.14143 0 −5.00000 0 −22.2829 0 10.7171 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.4.a.h 2
4.b odd 2 1 130.4.a.f 2
12.b even 2 1 1170.4.a.t 2
20.d odd 2 1 650.4.a.k 2
20.e even 4 2 650.4.b.m 4
52.b odd 2 1 1690.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.f 2 4.b odd 2 1
650.4.a.k 2 20.d odd 2 1
650.4.b.m 4 20.e even 4 2
1040.4.a.h 2 1.a even 1 1 trivial
1170.4.a.t 2 12.b even 2 1
1690.4.a.o 2 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1040))\):

\( T_{3}^{2} + 2T_{3} - 50 \) Copy content Toggle raw display
\( T_{7}^{2} + 16T_{7} - 140 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 50 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 140 \) Copy content Toggle raw display
$11$ \( T^{2} + 102T + 2550 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 9996 \) Copy content Toggle raw display
$19$ \( T^{2} + 58T - 3290 \) Copy content Toggle raw display
$23$ \( T^{2} - 210T + 8526 \) Copy content Toggle raw display
$29$ \( T^{2} - 12T - 34440 \) Copy content Toggle raw display
$31$ \( T^{2} - 242T + 6022 \) Copy content Toggle raw display
$37$ \( T^{2} + 632T + 92512 \) Copy content Toggle raw display
$41$ \( T^{2} - 432T - 12300 \) Copy content Toggle raw display
$43$ \( T^{2} + 82T - 84050 \) Copy content Toggle raw display
$47$ \( T^{2} + 192T - 118284 \) Copy content Toggle raw display
$53$ \( T^{2} + 240T - 59244 \) Copy content Toggle raw display
$59$ \( T^{2} + 942T + 178950 \) Copy content Toggle raw display
$61$ \( T^{2} - 460T - 118664 \) Copy content Toggle raw display
$67$ \( T^{2} - 596T - 381212 \) Copy content Toggle raw display
$71$ \( T^{2} - 990T + 242526 \) Copy content Toggle raw display
$73$ \( T^{2} - 832T + 160000 \) Copy content Toggle raw display
$79$ \( T^{2} + 388T - 535400 \) Copy content Toggle raw display
$83$ \( T^{2} - 192T - 700908 \) Copy content Toggle raw display
$89$ \( T^{2} - 1380 T + 292500 \) Copy content Toggle raw display
$97$ \( T^{2} + 572 T - 1096508 \) Copy content Toggle raw display
show more
show less