L(s) = 1 | + (−0.182 + 0.315i)3-s + (−2.11 − 1.58i)7-s + (1.43 + 2.48i)9-s + (−0.682 + 1.18i)11-s + 2.63·13-s + (1.11 − 1.93i)17-s + (3.11 + 5.39i)19-s + (0.886 − 0.378i)21-s + (3.29 + 5.71i)23-s − 2.13·27-s + 5.50·29-s + (−2.25 + 3.89i)31-s + (−0.248 − 0.430i)33-s + (−1.04 − 1.81i)37-s + (−0.480 + 0.831i)39-s + ⋯ |
L(s) = 1 | + (−0.105 + 0.182i)3-s + (−0.799 − 0.600i)7-s + (0.477 + 0.827i)9-s + (−0.205 + 0.356i)11-s + 0.730·13-s + (0.270 − 0.468i)17-s + (0.714 + 1.23i)19-s + (0.193 − 0.0825i)21-s + (0.687 + 1.19i)23-s − 0.411·27-s + 1.02·29-s + (−0.404 + 0.700i)31-s + (−0.0432 − 0.0749i)33-s + (−0.172 − 0.298i)37-s + (−0.0769 + 0.133i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.649 - 0.760i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.649 - 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24132 + 0.571872i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24132 + 0.571872i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.11 + 1.58i)T \) |
good | 3 | \( 1 + (0.182 - 0.315i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (0.682 - 1.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.63T + 13T^{2} \) |
| 17 | \( 1 + (-1.11 + 1.93i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 - 5.39i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.29 - 5.71i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.50T + 29T^{2} \) |
| 31 | \( 1 + (2.25 - 3.89i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.04 + 1.81i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.32T + 41T^{2} \) |
| 43 | \( 1 - 1.86T + 43T^{2} \) |
| 47 | \( 1 + (3.43 + 5.94i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.06 - 8.78i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.817 + 1.41i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0197 + 0.0341i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.36 - 5.82i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.27T + 71T^{2} \) |
| 73 | \( 1 + (2 - 3.46i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.66 + 4.61i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 14.7T + 83T^{2} \) |
| 89 | \( 1 + (0.433 + 0.750i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42296801869602138294887997125, −9.888476230580024713683258809604, −8.990777498961610380829792006565, −7.72371136466273983188492854175, −7.24963655436797893622745058435, −6.07266227347176109416138001432, −5.13445904525932564127026061811, −4.02841221779841345790359649366, −3.05797896196846614435038902612, −1.37615855224713727997930630784,
0.840092265976339611520267030470, 2.67274931935209273404792181731, 3.62439840066523524138147477277, 4.89086796154537272969591766369, 6.14610410950778575252468832652, 6.54594580483616926248958204345, 7.68605959734251952473897049459, 8.831664295351448736464417796466, 9.323585695794864133027662555787, 10.30882598134297734047422274268