Properties

Label 700.2.i.d
Level $700$
Weight $2$
Character orbit 700.i
Analytic conductor $5.590$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(401,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - \beta_{3}) q^{3} + (\beta_{5} - \beta_{3} - \beta_{2} + 1) q^{7} + ( - 2 \beta_{5} + 3 \beta_{4} + \cdots + \beta_1) q^{9} + (\beta_{5} - \beta_{4} - \beta_{3} - 1) q^{11} + ( - \beta_{3} + 3) q^{13}+ \cdots + (5 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 4 q^{7} - 8 q^{9} - 4 q^{11} + 16 q^{13} - 10 q^{17} + 2 q^{19} - 11 q^{21} + 3 q^{23} + 20 q^{27} + 3 q^{31} - 18 q^{33} - 6 q^{37} + 14 q^{39} + 22 q^{41} - 22 q^{43} - 4 q^{47} + 12 q^{49}+ \cdots + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{5} + 15\nu^{4} + 8\nu^{3} + 57\nu^{2} + 47\nu + 180 ) / 83 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{5} - 20\nu^{4} + 17\nu^{3} - 76\nu^{2} + 131\nu - 240 ) / 83 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{5} + 25\nu^{4} - 42\nu^{3} + 95\nu^{2} - 60\nu + 300 ) / 83 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -20\nu^{5} + 17\nu^{4} - 85\nu^{3} - 35\nu^{2} - 323\nu - 45 ) / 249 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16\nu^{5} + 3\nu^{4} + 68\nu^{3} + 28\nu^{2} + 358\nu + 36 ) / 83 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{5} - 9\beta_{4} + 2\beta_{3} + \beta_{2} + 2\beta _1 - 9 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7\beta_{3} - 5\beta_{2} + 5\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{5} + 12\beta_{4} - 2\beta_{3} - 4\beta_{2} - 2\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 18\beta_{5} + 9\beta_{4} + 5\beta_{3} - 23\beta_{2} - 46\beta _1 + 9 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(\beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
0.356769 0.617942i
1.09935 1.90412i
−0.956115 + 1.65604i
0.356769 + 0.617942i
1.09935 + 1.90412i
−0.956115 1.65604i
0 −1.60220 2.77509i 0 0 0 1.53189 2.15715i 0 −3.63409 + 6.29444i 0
401.2 0 −0.182224 0.315621i 0 0 0 −2.11581 + 1.58850i 0 1.43359 2.48305i 0
401.3 0 1.28442 + 2.22469i 0 0 0 2.58392 + 0.568650i 0 −1.79949 + 3.11682i 0
501.1 0 −1.60220 + 2.77509i 0 0 0 1.53189 + 2.15715i 0 −3.63409 6.29444i 0
501.2 0 −0.182224 + 0.315621i 0 0 0 −2.11581 1.58850i 0 1.43359 + 2.48305i 0
501.3 0 1.28442 2.22469i 0 0 0 2.58392 0.568650i 0 −1.79949 3.11682i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 401.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.i.d 6
5.b even 2 1 700.2.i.e yes 6
5.c odd 4 2 700.2.r.d 12
7.c even 3 1 inner 700.2.i.d 6
7.c even 3 1 4900.2.a.bc 3
7.d odd 6 1 4900.2.a.bb 3
35.i odd 6 1 4900.2.a.bd 3
35.j even 6 1 700.2.i.e yes 6
35.j even 6 1 4900.2.a.ba 3
35.k even 12 2 4900.2.e.s 6
35.l odd 12 2 700.2.r.d 12
35.l odd 12 2 4900.2.e.t 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.2.i.d 6 1.a even 1 1 trivial
700.2.i.d 6 7.c even 3 1 inner
700.2.i.e yes 6 5.b even 2 1
700.2.i.e yes 6 35.j even 6 1
700.2.r.d 12 5.c odd 4 2
700.2.r.d 12 35.l odd 12 2
4900.2.a.ba 3 35.j even 6 1
4900.2.a.bb 3 7.d odd 6 1
4900.2.a.bc 3 7.c even 3 1
4900.2.a.bd 3 35.i odd 6 1
4900.2.e.s 6 35.k even 12 2
4900.2.e.t 6 35.l odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):

\( T_{3}^{6} + T_{3}^{5} + 9T_{3}^{4} - 2T_{3}^{3} + 67T_{3}^{2} + 24T_{3} + 9 \) Copy content Toggle raw display
\( T_{11}^{6} + 4T_{11}^{5} + 19T_{11}^{4} + 6T_{11}^{3} + 45T_{11}^{2} + 27T_{11} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} + 9 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 4 T^{5} + \cdots + 343 \) Copy content Toggle raw display
$11$ \( T^{6} + 4 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( (T^{3} - 8 T^{2} + 13 T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 10 T^{5} + \cdots + 6561 \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots + 441 \) Copy content Toggle raw display
$23$ \( T^{6} - 3 T^{5} + \cdots + 6561 \) Copy content Toggle raw display
$29$ \( (T^{3} - 45 T + 81)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$37$ \( T^{6} + 6 T^{5} + \cdots + 22201 \) Copy content Toggle raw display
$41$ \( (T^{3} - 11 T^{2} + \cdots + 873)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + 11 T^{2} + \cdots - 71)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 4 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( T^{6} + 14 T^{5} + \cdots + 301401 \) Copy content Toggle raw display
$59$ \( T^{6} - 5 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{6} + 17 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{6} + 20 T^{5} + \cdots + 5184 \) Copy content Toggle raw display
$71$ \( (T^{3} + 19 T^{2} + \cdots + 45)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T + 16)^{3} \) Copy content Toggle raw display
$79$ \( T^{6} - T^{5} + \cdots + 201601 \) Copy content Toggle raw display
$83$ \( (T^{3} - 28 T^{2} + \cdots + 981)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 14 T^{5} + \cdots + 2025 \) Copy content Toggle raw display
$97$ \( (T^{3} - 15 T^{2} - 18 T + 5)^{2} \) Copy content Toggle raw display
show more
show less