Properties

Label 4900.2.a.bb
Level 49004900
Weight 22
Character orbit 4900.a
Self dual yes
Analytic conductor 39.12739.127
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4900,2,Mod(1,4900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4900=225272 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 39.126696990439.1266969904
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+3 x^{3} - x^{2} - 4x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 700)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β2β1+2)q9+(β2+1)q11+(β23)q13+(β13)q17+(β1+1)q19+(β2β11)q23+(3β2+β12)q27++(7β22β1+4)q99+O(q100) q + \beta_{2} q^{3} + ( - \beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{2} + 1) q^{11} + ( - \beta_{2} - 3) q^{13} + (\beta_1 - 3) q^{17} + (\beta_1 + 1) q^{19} + (\beta_{2} - \beta_1 - 1) q^{23} + (3 \beta_{2} + \beta_1 - 2) q^{27}+ \cdots + ( - 7 \beta_{2} - 2 \beta_1 + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq3+8q9+4q118q1310q17+2q193q2310q27+3q3118q33+6q3714q3911q4111q434q473q51+14q537q57++21q99+O(q100) 3 q - q^{3} + 8 q^{9} + 4 q^{11} - 8 q^{13} - 10 q^{17} + 2 q^{19} - 3 q^{23} - 10 q^{27} + 3 q^{31} - 18 q^{33} + 6 q^{37} - 14 q^{39} - 11 q^{41} - 11 q^{43} - 4 q^{47} - 3 q^{51} + 14 q^{53} - 7 q^{57}+ \cdots + 21 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x24x+3 x^{3} - x^{2} - 4x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν2+2ν4 \nu^{2} + 2\nu - 4 Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
ν\nu== (β2+β1+1)/3 ( -\beta_{2} + \beta _1 + 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β2+β1+10)/3 ( 2\beta_{2} + \beta _1 + 10 ) / 3 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.713538
2.19869
−1.91223
0 −3.20440 0 0 0 0 0 7.26819 0
1.2 0 −0.364448 0 0 0 0 0 −2.86718 0
1.3 0 2.56885 0 0 0 0 0 3.59899 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.a.bb 3
5.b even 2 1 4900.2.a.bd 3
5.c odd 4 2 4900.2.e.s 6
7.b odd 2 1 4900.2.a.bc 3
7.d odd 6 2 700.2.i.d 6
35.c odd 2 1 4900.2.a.ba 3
35.f even 4 2 4900.2.e.t 6
35.i odd 6 2 700.2.i.e yes 6
35.k even 12 4 700.2.r.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.2.i.d 6 7.d odd 6 2
700.2.i.e yes 6 35.i odd 6 2
700.2.r.d 12 35.k even 12 4
4900.2.a.ba 3 35.c odd 2 1
4900.2.a.bb 3 1.a even 1 1 trivial
4900.2.a.bc 3 7.b odd 2 1
4900.2.a.bd 3 5.b even 2 1
4900.2.e.s 6 5.c odd 4 2
4900.2.e.t 6 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4900))S_{2}^{\mathrm{new}}(\Gamma_0(4900)):

T33+T328T33 T_{3}^{3} + T_{3}^{2} - 8T_{3} - 3 Copy content Toggle raw display
T1134T1123T11+9 T_{11}^{3} - 4T_{11}^{2} - 3T_{11} + 9 Copy content Toggle raw display
T133+8T132+13T133 T_{13}^{3} + 8T_{13}^{2} + 13T_{13} - 3 Copy content Toggle raw display
T1932T19223T1921 T_{19}^{3} - 2T_{19}^{2} - 23T_{19} - 21 Copy content Toggle raw display
T233+3T23236T2381 T_{23}^{3} + 3T_{23}^{2} - 36T_{23} - 81 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+T28T3 T^{3} + T^{2} - 8T - 3 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3 T^{3} Copy content Toggle raw display
1111 T34T2++9 T^{3} - 4 T^{2} + \cdots + 9 Copy content Toggle raw display
1313 T3+8T2+3 T^{3} + 8 T^{2} + \cdots - 3 Copy content Toggle raw display
1717 T3+10T2+81 T^{3} + 10 T^{2} + \cdots - 81 Copy content Toggle raw display
1919 T32T2+21 T^{3} - 2 T^{2} + \cdots - 21 Copy content Toggle raw display
2323 T3+3T2+81 T^{3} + 3 T^{2} + \cdots - 81 Copy content Toggle raw display
2929 T345T+81 T^{3} - 45T + 81 Copy content Toggle raw display
3131 T33T2+37 T^{3} - 3 T^{2} + \cdots - 37 Copy content Toggle raw display
3737 T36T2++149 T^{3} - 6 T^{2} + \cdots + 149 Copy content Toggle raw display
4141 T3+11T2+873 T^{3} + 11 T^{2} + \cdots - 873 Copy content Toggle raw display
4343 T3+11T2+71 T^{3} + 11 T^{2} + \cdots - 71 Copy content Toggle raw display
4747 T3+4T2+9 T^{3} + 4 T^{2} + \cdots - 9 Copy content Toggle raw display
5353 T314T2++549 T^{3} - 14 T^{2} + \cdots + 549 Copy content Toggle raw display
5959 T35T2+9 T^{3} - 5T^{2} + 9 Copy content Toggle raw display
6161 T3+17T2++1 T^{3} + 17 T^{2} + \cdots + 1 Copy content Toggle raw display
6767 T320T2+72 T^{3} - 20 T^{2} + \cdots - 72 Copy content Toggle raw display
7171 T3+19T2++45 T^{3} + 19 T^{2} + \cdots + 45 Copy content Toggle raw display
7373 (T+4)3 (T + 4)^{3} Copy content Toggle raw display
7979 T3+T2++449 T^{3} + T^{2} + \cdots + 449 Copy content Toggle raw display
8383 T3+28T2+981 T^{3} + 28 T^{2} + \cdots - 981 Copy content Toggle raw display
8989 T314T2++45 T^{3} - 14 T^{2} + \cdots + 45 Copy content Toggle raw display
9797 T3+15T2+5 T^{3} + 15 T^{2} + \cdots - 5 Copy content Toggle raw display
show more
show less