Properties

Label 4900.2.a.bb
Level $4900$
Weight $2$
Character orbit 4900.a
Self dual yes
Analytic conductor $39.127$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4900,2,Mod(1,4900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.1266969904\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 700)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{2} + 1) q^{11} + ( - \beta_{2} - 3) q^{13} + (\beta_1 - 3) q^{17} + (\beta_1 + 1) q^{19} + (\beta_{2} - \beta_1 - 1) q^{23} + (3 \beta_{2} + \beta_1 - 2) q^{27}+ \cdots + ( - 7 \beta_{2} - 2 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 8 q^{9} + 4 q^{11} - 8 q^{13} - 10 q^{17} + 2 q^{19} - 3 q^{23} - 10 q^{27} + 3 q^{31} - 18 q^{33} + 6 q^{37} - 14 q^{39} - 11 q^{41} - 11 q^{43} - 4 q^{47} - 3 q^{51} + 14 q^{53} - 7 q^{57}+ \cdots + 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + 2\nu - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 10 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
2.19869
−1.91223
0 −3.20440 0 0 0 0 0 7.26819 0
1.2 0 −0.364448 0 0 0 0 0 −2.86718 0
1.3 0 2.56885 0 0 0 0 0 3.59899 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.a.bb 3
5.b even 2 1 4900.2.a.bd 3
5.c odd 4 2 4900.2.e.s 6
7.b odd 2 1 4900.2.a.bc 3
7.d odd 6 2 700.2.i.d 6
35.c odd 2 1 4900.2.a.ba 3
35.f even 4 2 4900.2.e.t 6
35.i odd 6 2 700.2.i.e yes 6
35.k even 12 4 700.2.r.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.2.i.d 6 7.d odd 6 2
700.2.i.e yes 6 35.i odd 6 2
700.2.r.d 12 35.k even 12 4
4900.2.a.ba 3 35.c odd 2 1
4900.2.a.bb 3 1.a even 1 1 trivial
4900.2.a.bc 3 7.b odd 2 1
4900.2.a.bd 3 5.b even 2 1
4900.2.e.s 6 5.c odd 4 2
4900.2.e.t 6 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4900))\):

\( T_{3}^{3} + T_{3}^{2} - 8T_{3} - 3 \) Copy content Toggle raw display
\( T_{11}^{3} - 4T_{11}^{2} - 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{13}^{3} + 8T_{13}^{2} + 13T_{13} - 3 \) Copy content Toggle raw display
\( T_{19}^{3} - 2T_{19}^{2} - 23T_{19} - 21 \) Copy content Toggle raw display
\( T_{23}^{3} + 3T_{23}^{2} - 36T_{23} - 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 8T - 3 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$17$ \( T^{3} + 10 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$19$ \( T^{3} - 2 T^{2} + \cdots - 21 \) Copy content Toggle raw display
$23$ \( T^{3} + 3 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$29$ \( T^{3} - 45T + 81 \) Copy content Toggle raw display
$31$ \( T^{3} - 3 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$37$ \( T^{3} - 6 T^{2} + \cdots + 149 \) Copy content Toggle raw display
$41$ \( T^{3} + 11 T^{2} + \cdots - 873 \) Copy content Toggle raw display
$43$ \( T^{3} + 11 T^{2} + \cdots - 71 \) Copy content Toggle raw display
$47$ \( T^{3} + 4 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$53$ \( T^{3} - 14 T^{2} + \cdots + 549 \) Copy content Toggle raw display
$59$ \( T^{3} - 5T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{3} + 17 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{3} - 20 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$71$ \( T^{3} + 19 T^{2} + \cdots + 45 \) Copy content Toggle raw display
$73$ \( (T + 4)^{3} \) Copy content Toggle raw display
$79$ \( T^{3} + T^{2} + \cdots + 449 \) Copy content Toggle raw display
$83$ \( T^{3} + 28 T^{2} + \cdots - 981 \) Copy content Toggle raw display
$89$ \( T^{3} - 14 T^{2} + \cdots + 45 \) Copy content Toggle raw display
$97$ \( T^{3} + 15 T^{2} + \cdots - 5 \) Copy content Toggle raw display
show more
show less