Properties

Label 2-84e2-28.27-c1-0-42
Degree $2$
Conductor $7056$
Sign $-0.156 - 0.987i$
Analytic cond. $56.3424$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.84i·5-s + 5.22i·11-s + 4.46i·13-s − 2.93i·17-s + 5.65·19-s + 2.16i·23-s + 1.58·25-s + 5.41·29-s + 9.65·31-s + 1.41·37-s + 4.01i·41-s − 3.06i·43-s − 1.65·47-s + 9.65·53-s − 9.65·55-s + ⋯
L(s)  = 1  + 0.826i·5-s + 1.57i·11-s + 1.23i·13-s − 0.710i·17-s + 1.29·19-s + 0.451i·23-s + 0.317·25-s + 1.00·29-s + 1.73·31-s + 0.232·37-s + 0.626i·41-s − 0.466i·43-s − 0.241·47-s + 1.32·53-s − 1.30·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.156 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.156 - 0.987i$
Analytic conductor: \(56.3424\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7056} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ -0.156 - 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.232586715\)
\(L(\frac12)\) \(\approx\) \(2.232586715\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 1.84iT - 5T^{2} \)
11 \( 1 - 5.22iT - 11T^{2} \)
13 \( 1 - 4.46iT - 13T^{2} \)
17 \( 1 + 2.93iT - 17T^{2} \)
19 \( 1 - 5.65T + 19T^{2} \)
23 \( 1 - 2.16iT - 23T^{2} \)
29 \( 1 - 5.41T + 29T^{2} \)
31 \( 1 - 9.65T + 31T^{2} \)
37 \( 1 - 1.41T + 37T^{2} \)
41 \( 1 - 4.01iT - 41T^{2} \)
43 \( 1 + 3.06iT - 43T^{2} \)
47 \( 1 + 1.65T + 47T^{2} \)
53 \( 1 - 9.65T + 53T^{2} \)
59 \( 1 + 5.65T + 59T^{2} \)
61 \( 1 + 1.39iT - 61T^{2} \)
67 \( 1 + 13.5iT - 67T^{2} \)
71 \( 1 + 6.49iT - 71T^{2} \)
73 \( 1 - 4.90iT - 73T^{2} \)
79 \( 1 + 11.7iT - 79T^{2} \)
83 \( 1 - 17.6T + 83T^{2} \)
89 \( 1 - 9.05iT - 89T^{2} \)
97 \( 1 - 9.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83579472252377753158920600119, −7.44137298583665812534927151710, −6.63297071740897950788436102799, −6.42618885852681156658299596305, −5.02820007392449884684184592866, −4.73722040166251005319635602705, −3.76654697562102303034333084778, −2.85442764021979219022153888091, −2.19636398978447243626808199452, −1.12799044488498391171230841721, 0.69672725391247157257379945967, 1.12649419564575085522210429317, 2.71940036482702391433907704295, 3.21269425121853667255651378253, 4.18031370965333016131385011644, 5.01225636591815938654432695677, 5.65023013527957614959048326222, 6.15276009484494465860879470207, 7.07267326750012892728183554112, 8.072792751280945938801552804039

Graph of the $Z$-function along the critical line