Properties

Label 7056.2.b.u
Level $7056$
Weight $2$
Character orbit 7056.b
Analytic conductor $56.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(1567,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.1567");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + ( - 2 \beta_{3} + 2 \beta_1) q^{11} + ( - \beta_{3} + 2 \beta_1) q^{13} + ( - \beta_{3} - 2 \beta_1) q^{17} - 4 \beta_{2} q^{19} + (2 \beta_{3} + 2 \beta_1) q^{23} + (\beta_{2} + 3) q^{25}+ \cdots + 5 \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{25} + 16 q^{29} + 16 q^{31} + 16 q^{47} + 16 q^{53} - 16 q^{55} - 16 q^{65} + 48 q^{83} + 16 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1567.1
1.84776i
0.765367i
0.765367i
1.84776i
0 0 0 1.84776i 0 0 0 0 0
1567.2 0 0 0 0.765367i 0 0 0 0 0
1567.3 0 0 0 0.765367i 0 0 0 0 0
1567.4 0 0 0 1.84776i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7056.2.b.u 4
3.b odd 2 1 2352.2.b.i 4
4.b odd 2 1 7056.2.b.t 4
7.b odd 2 1 7056.2.b.t 4
12.b even 2 1 2352.2.b.j yes 4
21.c even 2 1 2352.2.b.j yes 4
21.g even 6 2 2352.2.bl.p 8
21.h odd 6 2 2352.2.bl.s 8
28.d even 2 1 inner 7056.2.b.u 4
84.h odd 2 1 2352.2.b.i 4
84.j odd 6 2 2352.2.bl.s 8
84.n even 6 2 2352.2.bl.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2352.2.b.i 4 3.b odd 2 1
2352.2.b.i 4 84.h odd 2 1
2352.2.b.j yes 4 12.b even 2 1
2352.2.b.j yes 4 21.c even 2 1
2352.2.bl.p 8 21.g even 6 2
2352.2.bl.p 8 84.n even 6 2
2352.2.bl.s 8 21.h odd 6 2
2352.2.bl.s 8 84.j odd 6 2
7056.2.b.t 4 4.b odd 2 1
7056.2.b.t 4 7.b odd 2 1
7056.2.b.u 4 1.a even 1 1 trivial
7056.2.b.u 4 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7056, [\chi])\):

\( T_{5}^{4} + 4T_{5}^{2} + 2 \) Copy content Toggle raw display
\( T_{11}^{4} + 32T_{11}^{2} + 128 \) Copy content Toggle raw display
\( T_{13}^{4} + 20T_{13}^{2} + 2 \) Copy content Toggle raw display
\( T_{17}^{4} + 20T_{17}^{2} + 98 \) Copy content Toggle raw display
\( T_{19}^{2} - 32 \) Copy content Toggle raw display
\( T_{31}^{2} - 8T_{31} - 16 \) Copy content Toggle raw display
\( T_{53}^{2} - 8T_{53} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4T^{2} + 2 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 32T^{2} + 128 \) Copy content Toggle raw display
$13$ \( T^{4} + 20T^{2} + 2 \) Copy content Toggle raw display
$17$ \( T^{4} + 20T^{2} + 98 \) Copy content Toggle raw display
$19$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 32T^{2} + 128 \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T + 14)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 52T^{2} + 578 \) Copy content Toggle raw display
$43$ \( T^{4} + 64T^{2} + 512 \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 52T^{2} + 98 \) Copy content Toggle raw display
$67$ \( T^{4} + 320 T^{2} + 25088 \) Copy content Toggle raw display
$71$ \( T^{4} + 288 T^{2} + 10368 \) Copy content Toggle raw display
$73$ \( T^{4} + 68T^{2} + 1058 \) Copy content Toggle raw display
$79$ \( T^{4} + 320 T^{2} + 25088 \) Copy content Toggle raw display
$83$ \( (T^{2} - 24 T + 112)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 212 T^{2} + 10658 \) Copy content Toggle raw display
$97$ \( T^{4} + 100T^{2} + 1250 \) Copy content Toggle raw display
show more
show less