Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7056,2,Mod(1567,7056)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7056.1567");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7056.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(56.3424436662\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.0.2048.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 4x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 2352) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1567.4 | ||
Root | \(1.84776i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 7056.1567 |
Dual form | 7056.2.b.u.1567.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).
\(n\) | \(785\) | \(1765\) | \(4609\) | \(6175\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.84776i | 0.826343i | 0.910653 | + | 0.413171i | \(0.135579\pi\) | ||||
−0.910653 | + | 0.413171i | \(0.864421\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 5.22625i | 1.57577i | 0.615820 | + | 0.787887i | \(0.288825\pi\) | ||||
−0.615820 | + | 0.787887i | \(0.711175\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.46088i | 1.23723i | 0.785695 | + | 0.618613i | \(0.212305\pi\) | ||||
−0.785695 | + | 0.618613i | \(0.787695\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 2.93015i | − 0.710666i | −0.934740 | − | 0.355333i | \(-0.884367\pi\) | ||||
0.934740 | − | 0.355333i | \(-0.115633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.65685 | 1.29777 | 0.648886 | − | 0.760886i | \(-0.275235\pi\) | ||||
0.648886 | + | 0.760886i | \(0.275235\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 2.16478i | 0.451389i | 0.974198 | + | 0.225694i | \(0.0724651\pi\) | ||||
−0.974198 | + | 0.225694i | \(0.927535\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.58579 | 0.317157 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 5.41421 | 1.00539 | 0.502697 | − | 0.864463i | \(-0.332341\pi\) | ||||
0.502697 | + | 0.864463i | \(0.332341\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 9.65685 | 1.73442 | 0.867211 | − | 0.497941i | \(-0.165910\pi\) | ||||
0.867211 | + | 0.497941i | \(0.165910\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.41421 | 0.232495 | 0.116248 | − | 0.993220i | \(-0.462913\pi\) | ||||
0.116248 | + | 0.993220i | \(0.462913\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 4.01254i | 0.626654i | 0.949645 | + | 0.313327i | \(0.101444\pi\) | ||||
−0.949645 | + | 0.313327i | \(0.898556\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 3.06147i | − 0.466869i | −0.972372 | − | 0.233435i | \(-0.925003\pi\) | ||||
0.972372 | − | 0.233435i | \(-0.0749965\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −1.65685 | −0.241677 | −0.120839 | − | 0.992672i | \(-0.538558\pi\) | ||||
−0.120839 | + | 0.992672i | \(0.538558\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 9.65685 | 1.32647 | 0.663235 | − | 0.748411i | \(-0.269183\pi\) | ||||
0.663235 | + | 0.748411i | \(0.269183\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −9.65685 | −1.30213 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −5.65685 | −0.736460 | −0.368230 | − | 0.929735i | \(-0.620036\pi\) | ||||
−0.368230 | + | 0.929735i | \(0.620036\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − 1.39942i | − 0.179177i | −0.995979 | − | 0.0895885i | \(-0.971445\pi\) | ||||
0.995979 | − | 0.0895885i | \(-0.0285552\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −8.24264 | −1.02237 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 13.5140i | − 1.65099i | −0.564406 | − | 0.825497i | \(-0.690895\pi\) | ||||
0.564406 | − | 0.825497i | \(-0.309105\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 6.49435i | − 0.770738i | −0.922763 | − | 0.385369i | \(-0.874074\pi\) | ||||
0.922763 | − | 0.385369i | \(-0.125926\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 4.90923i | 0.574582i | 0.957843 | + | 0.287291i | \(0.0927546\pi\) | ||||
−0.957843 | + | 0.287291i | \(0.907245\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 11.7206i | − 1.31867i | −0.751849 | − | 0.659336i | \(-0.770838\pi\) | ||||
0.751849 | − | 0.659336i | \(-0.229162\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 17.6569 | 1.93809 | 0.969046 | − | 0.246881i | \(-0.0794057\pi\) | ||||
0.969046 | + | 0.246881i | \(0.0794057\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 5.41421 | 0.587254 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 9.05309i | 0.959625i | 0.877371 | + | 0.479813i | \(0.159295\pi\) | ||||
−0.877371 | + | 0.479813i | \(0.840705\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 10.4525i | 1.07240i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 9.23880i | 0.938058i | 0.883183 | + | 0.469029i | \(0.155396\pi\) | ||||
−0.883183 | + | 0.469029i | \(0.844604\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 6.88830i | 0.685412i | 0.939443 | + | 0.342706i | \(0.111343\pi\) | ||||
−0.939443 | + | 0.342706i | \(0.888657\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −12.0000 | −1.18240 | −0.591198 | − | 0.806527i | \(-0.701345\pi\) | ||||
−0.591198 | + | 0.806527i | \(0.701345\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 20.0083i | 1.93428i | 0.254249 | + | 0.967139i | \(0.418172\pi\) | ||||
−0.254249 | + | 0.967139i | \(0.581828\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 20.7279 | 1.98537 | 0.992687 | − | 0.120713i | \(-0.0385181\pi\) | ||||
0.992687 | + | 0.120713i | \(0.0385181\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −16.9706 | −1.59646 | −0.798228 | − | 0.602355i | \(-0.794229\pi\) | ||||
−0.798228 | + | 0.602355i | \(0.794229\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −4.00000 | −0.373002 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −16.3137 | −1.48306 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 12.1689i | 1.08842i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 11.7206i | 1.04004i | 0.854155 | + | 0.520018i | \(0.174075\pi\) | ||||
−0.854155 | + | 0.520018i | \(0.825925\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −7.31371 | −0.639002 | −0.319501 | − | 0.947586i | \(-0.603515\pi\) | ||||
−0.319501 | + | 0.947586i | \(0.603515\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 10.5858 | 0.904405 | 0.452202 | − | 0.891915i | \(-0.350638\pi\) | ||||
0.452202 | + | 0.891915i | \(0.350638\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −6.34315 | −0.538019 | −0.269009 | − | 0.963138i | \(-0.586696\pi\) | ||||
−0.269009 | + | 0.963138i | \(0.586696\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −23.3137 | −1.94959 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 10.0042i | 0.830800i | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −20.9706 | −1.71798 | −0.858988 | − | 0.511996i | \(-0.828906\pi\) | ||||
−0.858988 | + | 0.511996i | \(0.828906\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | − 14.7821i | − 1.20295i | −0.798892 | − | 0.601474i | \(-0.794580\pi\) | ||||
0.798892 | − | 0.601474i | \(-0.205420\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 17.8435i | 1.43323i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 4.64659i | − 0.370839i | −0.982659 | − | 0.185419i | \(-0.940636\pi\) | ||||
0.982659 | − | 0.185419i | \(-0.0593643\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 14.7821i | − 1.15782i | −0.815391 | − | 0.578911i | \(-0.803478\pi\) | ||||
0.815391 | − | 0.578911i | \(-0.196522\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 1.65685 | 0.128211 | 0.0641056 | − | 0.997943i | \(-0.479581\pi\) | ||||
0.0641056 | + | 0.997943i | \(0.479581\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −6.89949 | −0.530730 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 19.0572i | 1.44890i | 0.689330 | + | 0.724448i | \(0.257905\pi\) | ||||
−0.689330 | + | 0.724448i | \(0.742095\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.95815i | 0.295846i | 0.988999 | + | 0.147923i | \(0.0472588\pi\) | ||||
−0.988999 | + | 0.147923i | \(0.952741\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | − 13.1969i | − 0.980921i | −0.871463 | − | 0.490461i | \(-0.836829\pi\) | ||||
0.871463 | − | 0.490461i | \(-0.163171\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 2.61313i | 0.192121i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 15.3137 | 1.11985 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | − 18.7402i | − 1.35599i | −0.735064 | − | 0.677997i | \(-0.762848\pi\) | ||||
0.735064 | − | 0.677997i | \(-0.237152\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −19.3137 | −1.39023 | −0.695116 | − | 0.718898i | \(-0.744647\pi\) | ||||
−0.695116 | + | 0.718898i | \(0.744647\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 2.68629 | 0.191390 | 0.0956952 | − | 0.995411i | \(-0.469493\pi\) | ||||
0.0956952 | + | 0.995411i | \(0.469493\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 5.65685 | 0.401004 | 0.200502 | − | 0.979693i | \(-0.435743\pi\) | ||||
0.200502 | + | 0.979693i | \(0.435743\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −7.41421 | −0.517831 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 29.5641i | 2.04499i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 3.06147i | 0.210760i | 0.994432 | + | 0.105380i | \(0.0336059\pi\) | ||||
−0.994432 | + | 0.105380i | \(0.966394\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 5.65685 | 0.385794 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 13.0711 | 0.879255 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −3.31371 | −0.221902 | −0.110951 | − | 0.993826i | \(-0.535390\pi\) | ||||
−0.110951 | + | 0.993826i | \(0.535390\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 19.3137 | 1.28190 | 0.640948 | − | 0.767584i | \(-0.278541\pi\) | ||||
0.640948 | + | 0.767584i | \(0.278541\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 21.8561i | 1.44429i | 0.691741 | + | 0.722145i | \(0.256844\pi\) | ||||
−0.691741 | + | 0.722145i | \(0.743156\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 8.24264 | 0.539993 | 0.269997 | − | 0.962861i | \(-0.412977\pi\) | ||||
0.269997 | + | 0.962861i | \(0.412977\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | − 3.06147i | − 0.199708i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 12.6173i | − 0.816145i | −0.912950 | − | 0.408072i | \(-0.866201\pi\) | ||||
0.912950 | − | 0.408072i | \(-0.133799\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | − 18.6089i | − 1.19871i | −0.800485 | − | 0.599353i | \(-0.795425\pi\) | ||||
0.800485 | − | 0.599353i | \(-0.204575\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 25.2346i | 1.60564i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.9706 | −1.57613 | −0.788064 | − | 0.615593i | \(-0.788916\pi\) | ||||
−0.788064 | + | 0.615593i | \(0.788916\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −11.3137 | −0.711287 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 27.3450i | 1.70573i | 0.522130 | + | 0.852866i | \(0.325138\pi\) | ||||
−0.522130 | + | 0.852866i | \(0.674862\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 10.8239i | 0.667432i | 0.942674 | + | 0.333716i | \(0.108303\pi\) | ||||
−0.942674 | + | 0.333716i | \(0.891697\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 17.8435i | 1.09612i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 24.2066i | − 1.47590i | −0.674855 | − | 0.737951i | \(-0.735794\pi\) | ||||
0.674855 | − | 0.737951i | \(-0.264206\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −1.65685 | −0.100647 | −0.0503234 | − | 0.998733i | \(-0.516025\pi\) | ||||
−0.0503234 | + | 0.998733i | \(0.516025\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 8.28772i | 0.499768i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 13.3137 | 0.799943 | 0.399972 | − | 0.916528i | \(-0.369020\pi\) | ||||
0.399972 | + | 0.916528i | \(0.369020\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −14.3848 | −0.858124 | −0.429062 | − | 0.903275i | \(-0.641156\pi\) | ||||
−0.429062 | + | 0.903275i | \(0.641156\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.41421 | 0.494954 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 13.0112i | − 0.760125i | −0.924961 | − | 0.380062i | \(-0.875903\pi\) | ||||
0.924961 | − | 0.380062i | \(-0.124097\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | − 10.4525i | − 0.608568i | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −9.65685 | −0.558470 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 2.58579 | 0.148062 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 19.3137 | 1.10229 | 0.551146 | − | 0.834409i | \(-0.314191\pi\) | ||||
0.551146 | + | 0.834409i | \(0.314191\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 4.00000 | 0.226819 | 0.113410 | − | 0.993548i | \(-0.463823\pi\) | ||||
0.113410 | + | 0.993548i | \(0.463823\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 14.7277i | 0.832458i | 0.909260 | + | 0.416229i | \(0.136648\pi\) | ||||
−0.909260 | + | 0.416229i | \(0.863352\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −17.3137 | −0.972435 | −0.486217 | − | 0.873838i | \(-0.661624\pi\) | ||||
−0.486217 | + | 0.873838i | \(0.661624\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 28.2960i | 1.58427i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 16.5754i | − 0.922282i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 7.07401i | 0.392396i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 1.79337i | − 0.0985723i | −0.998785 | − | 0.0492862i | \(-0.984305\pi\) | ||||
0.998785 | − | 0.0492862i | \(-0.0156946\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 24.9706 | 1.36429 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −4.72792 | −0.257546 | −0.128773 | − | 0.991674i | \(-0.541104\pi\) | ||||
−0.128773 | + | 0.991674i | \(0.541104\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 50.4692i | 2.73306i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 23.0698i | − 1.23845i | −0.785213 | − | 0.619226i | \(-0.787447\pi\) | ||||
0.785213 | − | 0.619226i | \(-0.212553\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 2.11039i | − 0.112967i | −0.998404 | − | 0.0564833i | \(-0.982011\pi\) | ||||
0.998404 | − | 0.0564833i | \(-0.0179888\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 4.64659i | − 0.247313i | −0.992325 | − | 0.123657i | \(-0.960538\pi\) | ||||
0.992325 | − | 0.123657i | \(-0.0394621\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 12.0000 | 0.636894 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 6.49435i | − 0.342759i | −0.985205 | − | 0.171379i | \(-0.945178\pi\) | ||||
0.985205 | − | 0.171379i | \(-0.0548224\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 13.0000 | 0.684211 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −9.07107 | −0.474801 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 10.3431 | 0.539908 | 0.269954 | − | 0.962873i | \(-0.412992\pi\) | ||||
0.269954 | + | 0.962873i | \(0.412992\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.6274 | −0.550267 | −0.275133 | − | 0.961406i | \(-0.588722\pi\) | ||||
−0.275133 | + | 0.961406i | \(0.588722\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 24.1522i | 1.24390i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 38.2233i | − 1.96340i | −0.190439 | − | 0.981699i | \(-0.560991\pi\) | ||||
0.190439 | − | 0.981699i | \(-0.439009\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 20.2843 | 1.03648 | 0.518239 | − | 0.855236i | \(-0.326588\pi\) | ||||
0.518239 | + | 0.855236i | \(0.326588\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 28.0416 | 1.42177 | 0.710884 | − | 0.703310i | \(-0.248295\pi\) | ||||
0.710884 | + | 0.703310i | \(0.248295\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 6.34315 | 0.320787 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 21.6569 | 1.08967 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 21.0363i | 1.05578i | 0.849312 | + | 0.527891i | \(0.177017\pi\) | ||||
−0.849312 | + | 0.527891i | \(0.822983\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.8701 | −1.54158 | −0.770789 | − | 0.637091i | \(-0.780138\pi\) | ||||
−0.770789 | + | 0.637091i | \(0.780138\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 43.0781i | 2.14587i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 7.39104i | 0.366360i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 22.7528i | 1.12505i | 0.826780 | + | 0.562526i | \(0.190170\pi\) | ||||
−0.826780 | + | 0.562526i | \(0.809830\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 32.6256i | 1.60153i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −22.6274 | −1.10542 | −0.552711 | − | 0.833373i | \(-0.686407\pi\) | ||||
−0.552711 | + | 0.833373i | \(0.686407\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −29.3137 | −1.42866 | −0.714331 | − | 0.699808i | \(-0.753269\pi\) | ||||
−0.714331 | + | 0.699808i | \(0.753269\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − 4.64659i | − 0.225393i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 36.5838i | − 1.76218i | −0.472951 | − | 0.881089i | \(-0.656811\pi\) | ||||
0.472951 | − | 0.881089i | \(-0.343189\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 12.7486i | 0.612659i | 0.951926 | + | 0.306329i | \(0.0991009\pi\) | ||||
−0.951926 | + | 0.306329i | \(0.900899\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 12.2459i | 0.585799i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −22.6274 | −1.07995 | −0.539974 | − | 0.841682i | \(-0.681566\pi\) | ||||
−0.539974 | + | 0.841682i | \(0.681566\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 10.8239i | − 0.514260i | −0.966377 | − | 0.257130i | \(-0.917223\pi\) | ||||
0.966377 | − | 0.257130i | \(-0.0827769\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −16.7279 | −0.792980 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.3431 | 0.865667 | 0.432833 | − | 0.901474i | \(-0.357514\pi\) | ||||
0.432833 | + | 0.901474i | \(0.357514\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −20.9706 | −0.987465 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 3.31371 | 0.155009 | 0.0775044 | − | 0.996992i | \(-0.475305\pi\) | ||||
0.0775044 | + | 0.996992i | \(0.475305\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 25.1802i | − 1.17276i | −0.810037 | − | 0.586379i | \(-0.800553\pi\) | ||||
0.810037 | − | 0.586379i | \(-0.199447\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 25.2346i | 1.17275i | 0.810040 | + | 0.586375i | \(0.199446\pi\) | ||||
−0.810040 | + | 0.586375i | \(0.800554\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 3.31371 | 0.153340 | 0.0766701 | − | 0.997057i | \(-0.475571\pi\) | ||||
0.0766701 | + | 0.997057i | \(0.475571\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 16.0000 | 0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 8.97056 | 0.411598 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 18.6274 | 0.851108 | 0.425554 | − | 0.904933i | \(-0.360079\pi\) | ||||
0.425554 | + | 0.904933i | \(0.360079\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 6.30864i | 0.287649i | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −17.0711 | −0.775157 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 2.53620i | − 0.114926i | −0.998348 | − | 0.0574632i | \(-0.981699\pi\) | ||||
0.998348 | − | 0.0574632i | \(-0.0183012\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 24.3379i | 1.09835i | 0.835706 | + | 0.549177i | \(0.185059\pi\) | ||||
−0.835706 | + | 0.549177i | \(0.814941\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 15.8645i | − 0.714500i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 41.8100i | − 1.87167i | −0.352434 | − | 0.935837i | \(-0.614646\pi\) | ||||
0.352434 | − | 0.935837i | \(-0.385354\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −26.3431 | −1.17458 | −0.587291 | − | 0.809376i | \(-0.699806\pi\) | ||||
−0.587291 | + | 0.809376i | \(0.699806\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −12.7279 | −0.566385 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 21.6704i | − 0.960522i | −0.877126 | − | 0.480261i | \(-0.840542\pi\) | ||||
0.877126 | − | 0.480261i | \(-0.159458\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 22.1731i | − 0.977064i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 8.65914i | − 0.380828i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 14.4650i | 0.633725i | 0.948471 | + | 0.316863i | \(0.102629\pi\) | ||||
−0.948471 | + | 0.316863i | \(0.897371\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −34.6274 | −1.51415 | −0.757076 | − | 0.653327i | \(-0.773373\pi\) | ||||
−0.757076 | + | 0.653327i | \(0.773373\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 28.2960i | − 1.23260i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 18.3137 | 0.796248 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −17.8995 | −0.775313 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −36.9706 | −1.59838 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −12.0000 | −0.515920 | −0.257960 | − | 0.966156i | \(-0.583050\pi\) | ||||
−0.257960 | + | 0.966156i | \(0.583050\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 38.3002i | 1.64060i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 30.0894i | 1.28653i | 0.765644 | + | 0.643265i | \(0.222421\pi\) | ||||
−0.765644 | + | 0.643265i | \(0.777579\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 30.6274 | 1.30477 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 1.31371 | 0.0556636 | 0.0278318 | − | 0.999613i | \(-0.491140\pi\) | ||||
0.0278318 | + | 0.999613i | \(0.491140\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 13.6569 | 0.577623 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0.970563 | 0.0409043 | 0.0204522 | − | 0.999791i | \(-0.493489\pi\) | ||||
0.0204522 | + | 0.999791i | \(0.493489\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | − 31.3575i | − 1.31922i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −5.41421 | −0.226976 | −0.113488 | − | 0.993539i | \(-0.536202\pi\) | ||||
−0.113488 | + | 0.993539i | \(0.536202\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 9.18440i | 0.384355i | 0.981360 | + | 0.192178i | \(0.0615550\pi\) | ||||
−0.981360 | + | 0.192178i | \(0.938445\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 3.43289i | 0.143161i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 5.35757i | − 0.223038i | −0.993762 | − | 0.111519i | \(-0.964428\pi\) | ||||
0.993762 | − | 0.111519i | \(-0.0355717\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 50.4692i | 2.09022i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −24.9706 | −1.03065 | −0.515323 | − | 0.856996i | \(-0.672328\pi\) | ||||
−0.515323 | + | 0.856996i | \(0.672328\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 54.6274 | 2.25088 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 22.5671i | 0.926718i | 0.886171 | + | 0.463359i | \(0.153356\pi\) | ||||
−0.886171 | + | 0.463359i | \(0.846644\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 8.28772i | − 0.338627i | −0.985562 | − | 0.169314i | \(-0.945845\pi\) | ||||
0.985562 | − | 0.169314i | \(-0.0541550\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 22.8616i | 0.932542i | 0.884642 | + | 0.466271i | \(0.154403\pi\) | ||||
−0.884642 | + | 0.466271i | \(0.845597\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 30.1438i | − 1.22552i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 20.6863 | 0.839631 | 0.419815 | − | 0.907610i | \(-0.362095\pi\) | ||||
0.419815 | + | 0.907610i | \(0.362095\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 7.39104i | − 0.299009i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 4.24264 | 0.171359 | 0.0856793 | − | 0.996323i | \(-0.472694\pi\) | ||||
0.0856793 | + | 0.996323i | \(0.472694\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −27.5563 | −1.10938 | −0.554688 | − | 0.832058i | \(-0.687163\pi\) | ||||
−0.554688 | + | 0.832058i | \(0.687163\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −41.6569 | −1.67433 | −0.837165 | − | 0.546950i | \(-0.815789\pi\) | ||||
−0.837165 | + | 0.546950i | \(0.815789\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −14.5563 | −0.582254 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 4.14386i | − 0.165227i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 14.7821i | 0.588465i | 0.955734 | + | 0.294233i | \(0.0950640\pi\) | ||||
−0.955734 | + | 0.294233i | \(0.904936\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −21.6569 | −0.859426 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −14.8701 | −0.587332 | −0.293666 | − | 0.955908i | \(-0.594875\pi\) | ||||
−0.293666 | + | 0.955908i | \(0.594875\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 10.3431 | 0.407894 | 0.203947 | − | 0.978982i | \(-0.434623\pi\) | ||||
0.203947 | + | 0.978982i | \(0.434623\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −20.9706 | −0.824438 | −0.412219 | − | 0.911085i | \(-0.635246\pi\) | ||||
−0.412219 | + | 0.911085i | \(0.635246\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | − 29.5641i | − 1.16049i | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −20.9289 | −0.819012 | −0.409506 | − | 0.912307i | \(-0.634299\pi\) | ||||
−0.409506 | + | 0.912307i | \(0.634299\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | − 13.5140i | − 0.528035i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 7.76245i | 0.302382i | 0.988505 | + | 0.151191i | \(0.0483109\pi\) | ||||
−0.988505 | + | 0.151191i | \(0.951689\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 33.4679i | 1.30175i | 0.759185 | + | 0.650875i | \(0.225598\pi\) | ||||
−0.759185 | + | 0.650875i | \(0.774402\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 11.7206i | 0.453824i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 7.31371 | 0.282343 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 7.07107 | 0.272570 | 0.136285 | − | 0.990670i | \(-0.456484\pi\) | ||||
0.136285 | + | 0.990670i | \(0.456484\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 9.23880i | 0.355076i | 0.984114 | + | 0.177538i | \(0.0568132\pi\) | ||||
−0.984114 | + | 0.177538i | \(0.943187\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 21.2764i | 0.814120i | 0.913401 | + | 0.407060i | \(0.133446\pi\) | ||||
−0.913401 | + | 0.407060i | \(0.866554\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 19.5600i | 0.747349i | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 43.0781i | 1.64115i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −9.65685 | −0.367364 | −0.183682 | − | 0.982986i | \(-0.558802\pi\) | ||||
−0.183682 | + | 0.982986i | \(0.558802\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 11.7206i | − 0.444588i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 11.7574 | 0.445342 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 30.3848 | 1.14762 | 0.573809 | − | 0.818989i | \(-0.305465\pi\) | ||||
0.573809 | + | 0.818989i | \(0.305465\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 8.00000 | 0.301726 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −14.1005 | −0.529556 | −0.264778 | − | 0.964309i | \(-0.585299\pi\) | ||||
−0.264778 | + | 0.964309i | \(0.585299\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 20.9050i | 0.782899i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 43.0781i | − 1.61103i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −36.2843 | −1.35317 | −0.676587 | − | 0.736362i | \(-0.736542\pi\) | ||||
−0.676587 | + | 0.736362i | \(0.736542\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 8.58579 | 0.318868 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 20.9706 | 0.777755 | 0.388878 | − | 0.921289i | \(-0.372863\pi\) | ||||
0.388878 | + | 0.921289i | \(0.372863\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −8.97056 | −0.331788 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 50.2609i | 1.85643i | 0.372045 | + | 0.928215i | \(0.378657\pi\) | ||||
−0.372045 | + | 0.928215i | \(0.621343\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 70.6274 | 2.60159 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 17.3183i | 0.637063i | 0.947912 | + | 0.318532i | \(0.103190\pi\) | ||||
−0.947912 | + | 0.318532i | \(0.896810\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 18.2150i | − 0.668242i | −0.942530 | − | 0.334121i | \(-0.891561\pi\) | ||||
0.942530 | − | 0.334121i | \(-0.108439\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | − 38.7485i | − 1.41964i | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − 5.59767i | − 0.204262i | −0.994771 | − | 0.102131i | \(-0.967434\pi\) | ||||
0.994771 | − | 0.102131i | \(-0.0325661\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 27.3137 | 0.994048 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 26.3848 | 0.958971 | 0.479486 | − | 0.877550i | \(-0.340823\pi\) | ||||
0.479486 | + | 0.877550i | \(0.340823\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 25.1033i | − 0.909992i | −0.890493 | − | 0.454996i | \(-0.849641\pi\) | ||||
0.890493 | − | 0.454996i | \(-0.150359\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 25.2346i | − 0.911168i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − 9.16187i | − 0.330386i | −0.986261 | − | 0.165193i | \(-0.947175\pi\) | ||||
0.986261 | − | 0.165193i | \(-0.0528246\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 41.8644i | − 1.50576i | −0.658159 | − | 0.752879i | \(-0.728665\pi\) | ||||
0.658159 | − | 0.752879i | \(-0.271335\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 15.3137 | 0.550085 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 22.6984i | 0.813254i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 33.9411 | 1.21451 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 8.58579 | 0.306440 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0.686292 | 0.0244636 | 0.0122318 | − | 0.999925i | \(-0.496106\pi\) | ||||
0.0122318 | + | 0.999925i | \(0.496106\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 6.24264 | 0.221683 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 9.68714i | 0.343136i | 0.985172 | + | 0.171568i | \(0.0548833\pi\) | ||||
−0.985172 | + | 0.171568i | \(0.945117\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 4.85483i | 0.171752i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −25.6569 | −0.905411 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 10.0000 | 0.351581 | 0.175791 | − | 0.984428i | \(-0.443752\pi\) | ||||
0.175791 | + | 0.984428i | \(0.443752\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −9.65685 | −0.339098 | −0.169549 | − | 0.985522i | \(-0.554231\pi\) | ||||
−0.169549 | + | 0.985522i | \(0.554231\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 27.3137 | 0.956757 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 17.3183i | − 0.605890i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 2.68629 | 0.0937522 | 0.0468761 | − | 0.998901i | \(-0.485073\pi\) | ||||
0.0468761 | + | 0.998901i | \(0.485073\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 20.3797i | − 0.710393i | −0.934792 | − | 0.355197i | \(-0.884414\pi\) | ||||
0.934792 | − | 0.355197i | \(-0.115586\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0.896683i | 0.0311807i | 0.999878 | + | 0.0155904i | \(0.00496277\pi\) | ||||
−0.999878 | + | 0.0155904i | \(0.995037\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 47.2764i | − 1.64198i | −0.570945 | − | 0.820988i | \(-0.693423\pi\) | ||||
0.570945 | − | 0.820988i | \(-0.306577\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 3.06147i | 0.105946i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −37.9411 | −1.30987 | −0.654937 | − | 0.755684i | \(-0.727305\pi\) | ||||
−0.654937 | + | 0.755684i | \(0.727305\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 0.313708 | 0.0108175 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | − 12.7486i | − 0.438565i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 3.06147i | 0.104946i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 39.0656i | − 1.33758i | −0.743451 | − | 0.668790i | \(-0.766813\pi\) | ||||
0.743451 | − | 0.668790i | \(-0.233187\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 36.5612i | 1.24891i | 0.781062 | + | 0.624454i | \(0.214678\pi\) | ||||
−0.781062 | + | 0.624454i | \(0.785322\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 6.62742 | 0.226125 | 0.113062 | − | 0.993588i | \(-0.463934\pi\) | ||||
0.113062 | + | 0.993588i | \(0.463934\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 17.4721i | − 0.594758i | −0.954760 | − | 0.297379i | \(-0.903888\pi\) | ||||
0.954760 | − | 0.297379i | \(-0.0961125\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −35.2132 | −1.19728 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 61.2548 | 2.07793 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 60.2843 | 2.04265 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 27.7574 | 0.937299 | 0.468650 | − | 0.883384i | \(-0.344741\pi\) | ||||
0.468650 | + | 0.883384i | \(0.344741\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 8.04762i | 0.271131i | 0.990768 | + | 0.135566i | \(0.0432851\pi\) | ||||
−0.990768 | + | 0.135566i | \(0.956715\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 19.1116i | 0.643158i | 0.946883 | + | 0.321579i | \(0.104214\pi\) | ||||
−0.946883 | + | 0.321579i | \(0.895786\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 47.3137 | 1.58864 | 0.794319 | − | 0.607500i | \(-0.207828\pi\) | ||||
0.794319 | + | 0.607500i | \(0.207828\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −9.37258 | −0.313642 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −7.31371 | −0.244470 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 52.2843 | 1.74378 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | − 28.2960i | − 0.942678i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 24.3848 | 0.810577 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 25.2346i | − 0.837900i | −0.908009 | − | 0.418950i | \(-0.862398\pi\) | ||||
0.908009 | − | 0.418950i | \(-0.137602\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | − 53.9020i | − 1.78585i | −0.450201 | − | 0.892927i | \(-0.648648\pi\) | ||||
0.450201 | − | 0.892927i | \(-0.351352\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 92.2792i | 3.05399i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | − 55.3240i | − 1.82497i | −0.409110 | − | 0.912485i | \(-0.634161\pi\) | ||||
0.409110 | − | 0.912485i | \(-0.365839\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 28.9706 | 0.953578 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.24264 | 0.0737376 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 7.25972i | 0.238184i | 0.992883 | + | 0.119092i | \(0.0379983\pi\) | ||||
−0.992883 | + | 0.119092i | \(0.962002\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 28.2960i | 0.925380i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 9.23880i | 0.301818i | 0.988548 | + | 0.150909i | \(0.0482201\pi\) | ||||
−0.988548 | + | 0.150909i | \(0.951780\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 21.4077i | − 0.697872i | −0.937146 | − | 0.348936i | \(-0.886543\pi\) | ||||
0.937146 | − | 0.348936i | \(-0.113457\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −8.68629 | −0.282865 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 40.3881i | 1.31244i | 0.754571 | + | 0.656218i | \(0.227845\pi\) | ||||
−0.754571 | + | 0.656218i | \(0.772155\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −21.8995 | −0.710888 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −38.0000 | −1.23094 | −0.615470 | − | 0.788160i | \(-0.711034\pi\) | ||||
−0.615470 | + | 0.788160i | \(0.711034\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 34.6274 | 1.12052 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 62.2548 | 2.00822 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 35.6871i | − 1.14881i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 46.6648i | − 1.50064i | −0.661075 | − | 0.750320i | \(-0.729899\pi\) | ||||
0.661075 | − | 0.750320i | \(-0.270101\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 44.9706 | 1.44317 | 0.721587 | − | 0.692324i | \(-0.243413\pi\) | ||||
0.721587 | + | 0.692324i | \(0.243413\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −34.1838 | −1.09364 | −0.546818 | − | 0.837252i | \(-0.684161\pi\) | ||||
−0.546818 | + | 0.837252i | \(0.684161\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −47.3137 | −1.51215 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −55.5980 | −1.77330 | −0.886650 | − | 0.462441i | \(-0.846974\pi\) | ||||
−0.886650 | + | 0.462441i | \(0.846974\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 4.96362i | 0.158154i | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 6.62742 | 0.210740 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 36.9552i | 1.17392i | 0.809616 | + | 0.586960i | \(0.199675\pi\) | ||||
−0.809616 | + | 0.586960i | \(0.800325\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 10.4525i | 0.331367i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 18.0518i | − 0.571706i | −0.958274 | − | 0.285853i | \(-0.907723\pi\) | ||||
0.958274 | − | 0.285853i | \(-0.0922768\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7056.2.b.u.1567.4 | 4 | ||
3.2 | odd | 2 | 2352.2.b.i.1567.1 | ✓ | 4 | ||
4.3 | odd | 2 | 7056.2.b.t.1567.4 | 4 | |||
7.6 | odd | 2 | 7056.2.b.t.1567.1 | 4 | |||
12.11 | even | 2 | 2352.2.b.j.1567.1 | yes | 4 | ||
21.2 | odd | 6 | 2352.2.bl.s.31.1 | 8 | |||
21.5 | even | 6 | 2352.2.bl.p.31.4 | 8 | |||
21.11 | odd | 6 | 2352.2.bl.s.607.4 | 8 | |||
21.17 | even | 6 | 2352.2.bl.p.607.1 | 8 | |||
21.20 | even | 2 | 2352.2.b.j.1567.4 | yes | 4 | ||
28.27 | even | 2 | inner | 7056.2.b.u.1567.1 | 4 | ||
84.11 | even | 6 | 2352.2.bl.p.607.4 | 8 | |||
84.23 | even | 6 | 2352.2.bl.p.31.1 | 8 | |||
84.47 | odd | 6 | 2352.2.bl.s.31.4 | 8 | |||
84.59 | odd | 6 | 2352.2.bl.s.607.1 | 8 | |||
84.83 | odd | 2 | 2352.2.b.i.1567.4 | yes | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
2352.2.b.i.1567.1 | ✓ | 4 | 3.2 | odd | 2 | ||
2352.2.b.i.1567.4 | yes | 4 | 84.83 | odd | 2 | ||
2352.2.b.j.1567.1 | yes | 4 | 12.11 | even | 2 | ||
2352.2.b.j.1567.4 | yes | 4 | 21.20 | even | 2 | ||
2352.2.bl.p.31.1 | 8 | 84.23 | even | 6 | |||
2352.2.bl.p.31.4 | 8 | 21.5 | even | 6 | |||
2352.2.bl.p.607.1 | 8 | 21.17 | even | 6 | |||
2352.2.bl.p.607.4 | 8 | 84.11 | even | 6 | |||
2352.2.bl.s.31.1 | 8 | 21.2 | odd | 6 | |||
2352.2.bl.s.31.4 | 8 | 84.47 | odd | 6 | |||
2352.2.bl.s.607.1 | 8 | 84.59 | odd | 6 | |||
2352.2.bl.s.607.4 | 8 | 21.11 | odd | 6 | |||
7056.2.b.t.1567.1 | 4 | 7.6 | odd | 2 | |||
7056.2.b.t.1567.4 | 4 | 4.3 | odd | 2 | |||
7056.2.b.u.1567.1 | 4 | 28.27 | even | 2 | inner | ||
7056.2.b.u.1567.4 | 4 | 1.1 | even | 1 | trivial |