Properties

Label 7056.2.b.u.1567.4
Level $7056$
Weight $2$
Character 7056.1567
Analytic conductor $56.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(1567,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.1567");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.4
Root \(1.84776i\) of defining polynomial
Character \(\chi\) \(=\) 7056.1567
Dual form 7056.2.b.u.1567.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84776i q^{5} +5.22625i q^{11} +4.46088i q^{13} -2.93015i q^{17} +5.65685 q^{19} +2.16478i q^{23} +1.58579 q^{25} +5.41421 q^{29} +9.65685 q^{31} +1.41421 q^{37} +4.01254i q^{41} -3.06147i q^{43} -1.65685 q^{47} +9.65685 q^{53} -9.65685 q^{55} -5.65685 q^{59} -1.39942i q^{61} -8.24264 q^{65} -13.5140i q^{67} -6.49435i q^{71} +4.90923i q^{73} -11.7206i q^{79} +17.6569 q^{83} +5.41421 q^{85} +9.05309i q^{89} +10.4525i q^{95} +9.23880i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{25} + 16 q^{29} + 16 q^{31} + 16 q^{47} + 16 q^{53} - 16 q^{55} - 16 q^{65} + 48 q^{83} + 16 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.84776i 0.826343i 0.910653 + 0.413171i \(0.135579\pi\)
−0.910653 + 0.413171i \(0.864421\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.22625i 1.57577i 0.615820 + 0.787887i \(0.288825\pi\)
−0.615820 + 0.787887i \(0.711175\pi\)
\(12\) 0 0
\(13\) 4.46088i 1.23723i 0.785695 + 0.618613i \(0.212305\pi\)
−0.785695 + 0.618613i \(0.787695\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.93015i − 0.710666i −0.934740 0.355333i \(-0.884367\pi\)
0.934740 0.355333i \(-0.115633\pi\)
\(18\) 0 0
\(19\) 5.65685 1.29777 0.648886 0.760886i \(-0.275235\pi\)
0.648886 + 0.760886i \(0.275235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.16478i 0.451389i 0.974198 + 0.225694i \(0.0724651\pi\)
−0.974198 + 0.225694i \(0.927535\pi\)
\(24\) 0 0
\(25\) 1.58579 0.317157
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.41421 1.00539 0.502697 0.864463i \(-0.332341\pi\)
0.502697 + 0.864463i \(0.332341\pi\)
\(30\) 0 0
\(31\) 9.65685 1.73442 0.867211 0.497941i \(-0.165910\pi\)
0.867211 + 0.497941i \(0.165910\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.41421 0.232495 0.116248 0.993220i \(-0.462913\pi\)
0.116248 + 0.993220i \(0.462913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.01254i 0.626654i 0.949645 + 0.313327i \(0.101444\pi\)
−0.949645 + 0.313327i \(0.898556\pi\)
\(42\) 0 0
\(43\) − 3.06147i − 0.466869i −0.972372 0.233435i \(-0.925003\pi\)
0.972372 0.233435i \(-0.0749965\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.65685 −0.241677 −0.120839 0.992672i \(-0.538558\pi\)
−0.120839 + 0.992672i \(0.538558\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.65685 1.32647 0.663235 0.748411i \(-0.269183\pi\)
0.663235 + 0.748411i \(0.269183\pi\)
\(54\) 0 0
\(55\) −9.65685 −1.30213
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.65685 −0.736460 −0.368230 0.929735i \(-0.620036\pi\)
−0.368230 + 0.929735i \(0.620036\pi\)
\(60\) 0 0
\(61\) − 1.39942i − 0.179177i −0.995979 0.0895885i \(-0.971445\pi\)
0.995979 0.0895885i \(-0.0285552\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.24264 −1.02237
\(66\) 0 0
\(67\) − 13.5140i − 1.65099i −0.564406 0.825497i \(-0.690895\pi\)
0.564406 0.825497i \(-0.309105\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 6.49435i − 0.770738i −0.922763 0.385369i \(-0.874074\pi\)
0.922763 0.385369i \(-0.125926\pi\)
\(72\) 0 0
\(73\) 4.90923i 0.574582i 0.957843 + 0.287291i \(0.0927546\pi\)
−0.957843 + 0.287291i \(0.907245\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 11.7206i − 1.31867i −0.751849 0.659336i \(-0.770838\pi\)
0.751849 0.659336i \(-0.229162\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.6569 1.93809 0.969046 0.246881i \(-0.0794057\pi\)
0.969046 + 0.246881i \(0.0794057\pi\)
\(84\) 0 0
\(85\) 5.41421 0.587254
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.05309i 0.959625i 0.877371 + 0.479813i \(0.159295\pi\)
−0.877371 + 0.479813i \(0.840705\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.4525i 1.07240i
\(96\) 0 0
\(97\) 9.23880i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.88830i 0.685412i 0.939443 + 0.342706i \(0.111343\pi\)
−0.939443 + 0.342706i \(0.888657\pi\)
\(102\) 0 0
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.0083i 1.93428i 0.254249 + 0.967139i \(0.418172\pi\)
−0.254249 + 0.967139i \(0.581828\pi\)
\(108\) 0 0
\(109\) 20.7279 1.98537 0.992687 0.120713i \(-0.0385181\pi\)
0.992687 + 0.120713i \(0.0385181\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.9706 −1.59646 −0.798228 0.602355i \(-0.794229\pi\)
−0.798228 + 0.602355i \(0.794229\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −16.3137 −1.48306
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1689i 1.08842i
\(126\) 0 0
\(127\) 11.7206i 1.04004i 0.854155 + 0.520018i \(0.174075\pi\)
−0.854155 + 0.520018i \(0.825925\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.31371 −0.639002 −0.319501 0.947586i \(-0.603515\pi\)
−0.319501 + 0.947586i \(0.603515\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5858 0.904405 0.452202 0.891915i \(-0.350638\pi\)
0.452202 + 0.891915i \(0.350638\pi\)
\(138\) 0 0
\(139\) −6.34315 −0.538019 −0.269009 0.963138i \(-0.586696\pi\)
−0.269009 + 0.963138i \(0.586696\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −23.3137 −1.94959
\(144\) 0 0
\(145\) 10.0042i 0.830800i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.9706 −1.71798 −0.858988 0.511996i \(-0.828906\pi\)
−0.858988 + 0.511996i \(0.828906\pi\)
\(150\) 0 0
\(151\) − 14.7821i − 1.20295i −0.798892 0.601474i \(-0.794580\pi\)
0.798892 0.601474i \(-0.205420\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.8435i 1.43323i
\(156\) 0 0
\(157\) − 4.64659i − 0.370839i −0.982659 0.185419i \(-0.940636\pi\)
0.982659 0.185419i \(-0.0593643\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 14.7821i − 1.15782i −0.815391 0.578911i \(-0.803478\pi\)
0.815391 0.578911i \(-0.196522\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.65685 0.128211 0.0641056 0.997943i \(-0.479581\pi\)
0.0641056 + 0.997943i \(0.479581\pi\)
\(168\) 0 0
\(169\) −6.89949 −0.530730
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.0572i 1.44890i 0.689330 + 0.724448i \(0.257905\pi\)
−0.689330 + 0.724448i \(0.742095\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.95815i 0.295846i 0.988999 + 0.147923i \(0.0472588\pi\)
−0.988999 + 0.147923i \(0.952741\pi\)
\(180\) 0 0
\(181\) − 13.1969i − 0.980921i −0.871463 0.490461i \(-0.836829\pi\)
0.871463 0.490461i \(-0.163171\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.61313i 0.192121i
\(186\) 0 0
\(187\) 15.3137 1.11985
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 18.7402i − 1.35599i −0.735064 0.677997i \(-0.762848\pi\)
0.735064 0.677997i \(-0.237152\pi\)
\(192\) 0 0
\(193\) −19.3137 −1.39023 −0.695116 0.718898i \(-0.744647\pi\)
−0.695116 + 0.718898i \(0.744647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.68629 0.191390 0.0956952 0.995411i \(-0.469493\pi\)
0.0956952 + 0.995411i \(0.469493\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.41421 −0.517831
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 29.5641i 2.04499i
\(210\) 0 0
\(211\) 3.06147i 0.210760i 0.994432 + 0.105380i \(0.0336059\pi\)
−0.994432 + 0.105380i \(0.966394\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.65685 0.385794
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.0711 0.879255
\(222\) 0 0
\(223\) −3.31371 −0.221902 −0.110951 0.993826i \(-0.535390\pi\)
−0.110951 + 0.993826i \(0.535390\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.3137 1.28190 0.640948 0.767584i \(-0.278541\pi\)
0.640948 + 0.767584i \(0.278541\pi\)
\(228\) 0 0
\(229\) 21.8561i 1.44429i 0.691741 + 0.722145i \(0.256844\pi\)
−0.691741 + 0.722145i \(0.743156\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.24264 0.539993 0.269997 0.962861i \(-0.412977\pi\)
0.269997 + 0.962861i \(0.412977\pi\)
\(234\) 0 0
\(235\) − 3.06147i − 0.199708i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 12.6173i − 0.816145i −0.912950 0.408072i \(-0.866201\pi\)
0.912950 0.408072i \(-0.133799\pi\)
\(240\) 0 0
\(241\) − 18.6089i − 1.19871i −0.800485 0.599353i \(-0.795425\pi\)
0.800485 0.599353i \(-0.204575\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 25.2346i 1.60564i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.9706 −1.57613 −0.788064 0.615593i \(-0.788916\pi\)
−0.788064 + 0.615593i \(0.788916\pi\)
\(252\) 0 0
\(253\) −11.3137 −0.711287
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.3450i 1.70573i 0.522130 + 0.852866i \(0.325138\pi\)
−0.522130 + 0.852866i \(0.674862\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.8239i 0.667432i 0.942674 + 0.333716i \(0.108303\pi\)
−0.942674 + 0.333716i \(0.891697\pi\)
\(264\) 0 0
\(265\) 17.8435i 1.09612i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 24.2066i − 1.47590i −0.674855 0.737951i \(-0.735794\pi\)
0.674855 0.737951i \(-0.264206\pi\)
\(270\) 0 0
\(271\) −1.65685 −0.100647 −0.0503234 0.998733i \(-0.516025\pi\)
−0.0503234 + 0.998733i \(0.516025\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.28772i 0.499768i
\(276\) 0 0
\(277\) 13.3137 0.799943 0.399972 0.916528i \(-0.369020\pi\)
0.399972 + 0.916528i \(0.369020\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.3848 −0.858124 −0.429062 0.903275i \(-0.641156\pi\)
−0.429062 + 0.903275i \(0.641156\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.41421 0.494954
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 13.0112i − 0.760125i −0.924961 0.380062i \(-0.875903\pi\)
0.924961 0.380062i \(-0.124097\pi\)
\(294\) 0 0
\(295\) − 10.4525i − 0.608568i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.65685 −0.558470
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.58579 0.148062
\(306\) 0 0
\(307\) 19.3137 1.10229 0.551146 0.834409i \(-0.314191\pi\)
0.551146 + 0.834409i \(0.314191\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 14.7277i 0.832458i 0.909260 + 0.416229i \(0.136648\pi\)
−0.909260 + 0.416229i \(0.863352\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.3137 −0.972435 −0.486217 0.873838i \(-0.661624\pi\)
−0.486217 + 0.873838i \(0.661624\pi\)
\(318\) 0 0
\(319\) 28.2960i 1.58427i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 16.5754i − 0.922282i
\(324\) 0 0
\(325\) 7.07401i 0.392396i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 1.79337i − 0.0985723i −0.998785 0.0492862i \(-0.984305\pi\)
0.998785 0.0492862i \(-0.0156946\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 24.9706 1.36429
\(336\) 0 0
\(337\) −4.72792 −0.257546 −0.128773 0.991674i \(-0.541104\pi\)
−0.128773 + 0.991674i \(0.541104\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 50.4692i 2.73306i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 23.0698i − 1.23845i −0.785213 0.619226i \(-0.787447\pi\)
0.785213 0.619226i \(-0.212553\pi\)
\(348\) 0 0
\(349\) − 2.11039i − 0.112967i −0.998404 0.0564833i \(-0.982011\pi\)
0.998404 0.0564833i \(-0.0179888\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 4.64659i − 0.247313i −0.992325 0.123657i \(-0.960538\pi\)
0.992325 0.123657i \(-0.0394621\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 6.49435i − 0.342759i −0.985205 0.171379i \(-0.945178\pi\)
0.985205 0.171379i \(-0.0548224\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.07107 −0.474801
\(366\) 0 0
\(367\) 10.3431 0.539908 0.269954 0.962873i \(-0.412992\pi\)
0.269954 + 0.962873i \(0.412992\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.6274 −0.550267 −0.275133 0.961406i \(-0.588722\pi\)
−0.275133 + 0.961406i \(0.588722\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.1522i 1.24390i
\(378\) 0 0
\(379\) − 38.2233i − 1.96340i −0.190439 0.981699i \(-0.560991\pi\)
0.190439 0.981699i \(-0.439009\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.2843 1.03648 0.518239 0.855236i \(-0.326588\pi\)
0.518239 + 0.855236i \(0.326588\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.0416 1.42177 0.710884 0.703310i \(-0.248295\pi\)
0.710884 + 0.703310i \(0.248295\pi\)
\(390\) 0 0
\(391\) 6.34315 0.320787
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.6569 1.08967
\(396\) 0 0
\(397\) 21.0363i 1.05578i 0.849312 + 0.527891i \(0.177017\pi\)
−0.849312 + 0.527891i \(0.822983\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.8701 −1.54158 −0.770789 0.637091i \(-0.780138\pi\)
−0.770789 + 0.637091i \(0.780138\pi\)
\(402\) 0 0
\(403\) 43.0781i 2.14587i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.39104i 0.366360i
\(408\) 0 0
\(409\) 22.7528i 1.12505i 0.826780 + 0.562526i \(0.190170\pi\)
−0.826780 + 0.562526i \(0.809830\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.6256i 1.60153i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −22.6274 −1.10542 −0.552711 0.833373i \(-0.686407\pi\)
−0.552711 + 0.833373i \(0.686407\pi\)
\(420\) 0 0
\(421\) −29.3137 −1.42866 −0.714331 0.699808i \(-0.753269\pi\)
−0.714331 + 0.699808i \(0.753269\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 4.64659i − 0.225393i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 36.5838i − 1.76218i −0.472951 0.881089i \(-0.656811\pi\)
0.472951 0.881089i \(-0.343189\pi\)
\(432\) 0 0
\(433\) 12.7486i 0.612659i 0.951926 + 0.306329i \(0.0991009\pi\)
−0.951926 + 0.306329i \(0.900899\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.2459i 0.585799i
\(438\) 0 0
\(439\) −22.6274 −1.07995 −0.539974 0.841682i \(-0.681566\pi\)
−0.539974 + 0.841682i \(0.681566\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 10.8239i − 0.514260i −0.966377 0.257130i \(-0.917223\pi\)
0.966377 0.257130i \(-0.0827769\pi\)
\(444\) 0 0
\(445\) −16.7279 −0.792980
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.3431 0.865667 0.432833 0.901474i \(-0.357514\pi\)
0.432833 + 0.901474i \(0.357514\pi\)
\(450\) 0 0
\(451\) −20.9706 −0.987465
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.31371 0.155009 0.0775044 0.996992i \(-0.475305\pi\)
0.0775044 + 0.996992i \(0.475305\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 25.1802i − 1.17276i −0.810037 0.586379i \(-0.800553\pi\)
0.810037 0.586379i \(-0.199447\pi\)
\(462\) 0 0
\(463\) 25.2346i 1.17275i 0.810040 + 0.586375i \(0.199446\pi\)
−0.810040 + 0.586375i \(0.800554\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.31371 0.153340 0.0766701 0.997057i \(-0.475571\pi\)
0.0766701 + 0.997057i \(0.475571\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 8.97056 0.411598
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.6274 0.851108 0.425554 0.904933i \(-0.360079\pi\)
0.425554 + 0.904933i \(0.360079\pi\)
\(480\) 0 0
\(481\) 6.30864i 0.287649i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.0711 −0.775157
\(486\) 0 0
\(487\) − 2.53620i − 0.114926i −0.998348 0.0574632i \(-0.981699\pi\)
0.998348 0.0574632i \(-0.0183012\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.3379i 1.09835i 0.835706 + 0.549177i \(0.185059\pi\)
−0.835706 + 0.549177i \(0.814941\pi\)
\(492\) 0 0
\(493\) − 15.8645i − 0.714500i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 41.8100i − 1.87167i −0.352434 0.935837i \(-0.614646\pi\)
0.352434 0.935837i \(-0.385354\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.3431 −1.17458 −0.587291 0.809376i \(-0.699806\pi\)
−0.587291 + 0.809376i \(0.699806\pi\)
\(504\) 0 0
\(505\) −12.7279 −0.566385
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 21.6704i − 0.960522i −0.877126 0.480261i \(-0.840542\pi\)
0.877126 0.480261i \(-0.159458\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 22.1731i − 0.977064i
\(516\) 0 0
\(517\) − 8.65914i − 0.380828i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.4650i 0.633725i 0.948471 + 0.316863i \(0.102629\pi\)
−0.948471 + 0.316863i \(0.897371\pi\)
\(522\) 0 0
\(523\) −34.6274 −1.51415 −0.757076 0.653327i \(-0.773373\pi\)
−0.757076 + 0.653327i \(0.773373\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 28.2960i − 1.23260i
\(528\) 0 0
\(529\) 18.3137 0.796248
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.8995 −0.775313
\(534\) 0 0
\(535\) −36.9706 −1.59838
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −12.0000 −0.515920 −0.257960 0.966156i \(-0.583050\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 38.3002i 1.64060i
\(546\) 0 0
\(547\) 30.0894i 1.28653i 0.765644 + 0.643265i \(0.222421\pi\)
−0.765644 + 0.643265i \(0.777579\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.6274 1.30477
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.31371 0.0556636 0.0278318 0.999613i \(-0.491140\pi\)
0.0278318 + 0.999613i \(0.491140\pi\)
\(558\) 0 0
\(559\) 13.6569 0.577623
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.970563 0.0409043 0.0204522 0.999791i \(-0.493489\pi\)
0.0204522 + 0.999791i \(0.493489\pi\)
\(564\) 0 0
\(565\) − 31.3575i − 1.31922i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.41421 −0.226976 −0.113488 0.993539i \(-0.536202\pi\)
−0.113488 + 0.993539i \(0.536202\pi\)
\(570\) 0 0
\(571\) 9.18440i 0.384355i 0.981360 + 0.192178i \(0.0615550\pi\)
−0.981360 + 0.192178i \(0.938445\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.43289i 0.143161i
\(576\) 0 0
\(577\) − 5.35757i − 0.223038i −0.993762 0.111519i \(-0.964428\pi\)
0.993762 0.111519i \(-0.0355717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 50.4692i 2.09022i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.9706 −1.03065 −0.515323 0.856996i \(-0.672328\pi\)
−0.515323 + 0.856996i \(0.672328\pi\)
\(588\) 0 0
\(589\) 54.6274 2.25088
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5671i 0.926718i 0.886171 + 0.463359i \(0.153356\pi\)
−0.886171 + 0.463359i \(0.846644\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 8.28772i − 0.338627i −0.985562 0.169314i \(-0.945845\pi\)
0.985562 0.169314i \(-0.0541550\pi\)
\(600\) 0 0
\(601\) 22.8616i 0.932542i 0.884642 + 0.466271i \(0.154403\pi\)
−0.884642 + 0.466271i \(0.845597\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 30.1438i − 1.22552i
\(606\) 0 0
\(607\) 20.6863 0.839631 0.419815 0.907610i \(-0.362095\pi\)
0.419815 + 0.907610i \(0.362095\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 7.39104i − 0.299009i
\(612\) 0 0
\(613\) 4.24264 0.171359 0.0856793 0.996323i \(-0.472694\pi\)
0.0856793 + 0.996323i \(0.472694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.5563 −1.10938 −0.554688 0.832058i \(-0.687163\pi\)
−0.554688 + 0.832058i \(0.687163\pi\)
\(618\) 0 0
\(619\) −41.6569 −1.67433 −0.837165 0.546950i \(-0.815789\pi\)
−0.837165 + 0.546950i \(0.815789\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −14.5563 −0.582254
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4.14386i − 0.165227i
\(630\) 0 0
\(631\) 14.7821i 0.588465i 0.955734 + 0.294233i \(0.0950640\pi\)
−0.955734 + 0.294233i \(0.904936\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21.6569 −0.859426
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.8701 −0.587332 −0.293666 0.955908i \(-0.594875\pi\)
−0.293666 + 0.955908i \(0.594875\pi\)
\(642\) 0 0
\(643\) 10.3431 0.407894 0.203947 0.978982i \(-0.434623\pi\)
0.203947 + 0.978982i \(0.434623\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.9706 −0.824438 −0.412219 0.911085i \(-0.635246\pi\)
−0.412219 + 0.911085i \(0.635246\pi\)
\(648\) 0 0
\(649\) − 29.5641i − 1.16049i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.9289 −0.819012 −0.409506 0.912307i \(-0.634299\pi\)
−0.409506 + 0.912307i \(0.634299\pi\)
\(654\) 0 0
\(655\) − 13.5140i − 0.528035i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.76245i 0.302382i 0.988505 + 0.151191i \(0.0483109\pi\)
−0.988505 + 0.151191i \(0.951689\pi\)
\(660\) 0 0
\(661\) 33.4679i 1.30175i 0.759185 + 0.650875i \(0.225598\pi\)
−0.759185 + 0.650875i \(0.774402\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.7206i 0.453824i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.31371 0.282343
\(672\) 0 0
\(673\) 7.07107 0.272570 0.136285 0.990670i \(-0.456484\pi\)
0.136285 + 0.990670i \(0.456484\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.23880i 0.355076i 0.984114 + 0.177538i \(0.0568132\pi\)
−0.984114 + 0.177538i \(0.943187\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.2764i 0.814120i 0.913401 + 0.407060i \(0.133446\pi\)
−0.913401 + 0.407060i \(0.866554\pi\)
\(684\) 0 0
\(685\) 19.5600i 0.747349i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 43.0781i 1.64115i
\(690\) 0 0
\(691\) −9.65685 −0.367364 −0.183682 0.982986i \(-0.558802\pi\)
−0.183682 + 0.982986i \(0.558802\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 11.7206i − 0.444588i
\(696\) 0 0
\(697\) 11.7574 0.445342
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.3848 1.14762 0.573809 0.818989i \(-0.305465\pi\)
0.573809 + 0.818989i \(0.305465\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −14.1005 −0.529556 −0.264778 0.964309i \(-0.585299\pi\)
−0.264778 + 0.964309i \(0.585299\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.9050i 0.782899i
\(714\) 0 0
\(715\) − 43.0781i − 1.61103i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −36.2843 −1.35317 −0.676587 0.736362i \(-0.736542\pi\)
−0.676587 + 0.736362i \(0.736542\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.58579 0.318868
\(726\) 0 0
\(727\) 20.9706 0.777755 0.388878 0.921289i \(-0.372863\pi\)
0.388878 + 0.921289i \(0.372863\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.97056 −0.331788
\(732\) 0 0
\(733\) 50.2609i 1.85643i 0.372045 + 0.928215i \(0.378657\pi\)
−0.372045 + 0.928215i \(0.621343\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 70.6274 2.60159
\(738\) 0 0
\(739\) 17.3183i 0.637063i 0.947912 + 0.318532i \(0.103190\pi\)
−0.947912 + 0.318532i \(0.896810\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 18.2150i − 0.668242i −0.942530 0.334121i \(-0.891561\pi\)
0.942530 0.334121i \(-0.108439\pi\)
\(744\) 0 0
\(745\) − 38.7485i − 1.41964i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 5.59767i − 0.204262i −0.994771 0.102131i \(-0.967434\pi\)
0.994771 0.102131i \(-0.0325661\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 27.3137 0.994048
\(756\) 0 0
\(757\) 26.3848 0.958971 0.479486 0.877550i \(-0.340823\pi\)
0.479486 + 0.877550i \(0.340823\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 25.1033i − 0.909992i −0.890493 0.454996i \(-0.849641\pi\)
0.890493 0.454996i \(-0.150359\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 25.2346i − 0.911168i
\(768\) 0 0
\(769\) − 9.16187i − 0.330386i −0.986261 0.165193i \(-0.947175\pi\)
0.986261 0.165193i \(-0.0528246\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 41.8644i − 1.50576i −0.658159 0.752879i \(-0.728665\pi\)
0.658159 0.752879i \(-0.271335\pi\)
\(774\) 0 0
\(775\) 15.3137 0.550085
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.6984i 0.813254i
\(780\) 0 0
\(781\) 33.9411 1.21451
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.58579 0.306440
\(786\) 0 0
\(787\) 0.686292 0.0244636 0.0122318 0.999925i \(-0.496106\pi\)
0.0122318 + 0.999925i \(0.496106\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.24264 0.221683
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.68714i 0.343136i 0.985172 + 0.171568i \(0.0548833\pi\)
−0.985172 + 0.171568i \(0.945117\pi\)
\(798\) 0 0
\(799\) 4.85483i 0.171752i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −25.6569 −0.905411
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −9.65685 −0.339098 −0.169549 0.985522i \(-0.554231\pi\)
−0.169549 + 0.985522i \(0.554231\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.3137 0.956757
\(816\) 0 0
\(817\) − 17.3183i − 0.605890i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.68629 0.0937522 0.0468761 0.998901i \(-0.485073\pi\)
0.0468761 + 0.998901i \(0.485073\pi\)
\(822\) 0 0
\(823\) − 20.3797i − 0.710393i −0.934792 0.355197i \(-0.884414\pi\)
0.934792 0.355197i \(-0.115586\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.896683i 0.0311807i 0.999878 + 0.0155904i \(0.00496277\pi\)
−0.999878 + 0.0155904i \(0.995037\pi\)
\(828\) 0 0
\(829\) − 47.2764i − 1.64198i −0.570945 0.820988i \(-0.693423\pi\)
0.570945 0.820988i \(-0.306577\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.06147i 0.105946i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.9411 −1.30987 −0.654937 0.755684i \(-0.727305\pi\)
−0.654937 + 0.755684i \(0.727305\pi\)
\(840\) 0 0
\(841\) 0.313708 0.0108175
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 12.7486i − 0.438565i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.06147i 0.104946i
\(852\) 0 0
\(853\) − 39.0656i − 1.33758i −0.743451 0.668790i \(-0.766813\pi\)
0.743451 0.668790i \(-0.233187\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.5612i 1.24891i 0.781062 + 0.624454i \(0.214678\pi\)
−0.781062 + 0.624454i \(0.785322\pi\)
\(858\) 0 0
\(859\) 6.62742 0.226125 0.113062 0.993588i \(-0.463934\pi\)
0.113062 + 0.993588i \(0.463934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 17.4721i − 0.594758i −0.954760 0.297379i \(-0.903888\pi\)
0.954760 0.297379i \(-0.0961125\pi\)
\(864\) 0 0
\(865\) −35.2132 −1.19728
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 61.2548 2.07793
\(870\) 0 0
\(871\) 60.2843 2.04265
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 27.7574 0.937299 0.468650 0.883384i \(-0.344741\pi\)
0.468650 + 0.883384i \(0.344741\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.04762i 0.271131i 0.990768 + 0.135566i \(0.0432851\pi\)
−0.990768 + 0.135566i \(0.956715\pi\)
\(882\) 0 0
\(883\) 19.1116i 0.643158i 0.946883 + 0.321579i \(0.104214\pi\)
−0.946883 + 0.321579i \(0.895786\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 47.3137 1.58864 0.794319 0.607500i \(-0.207828\pi\)
0.794319 + 0.607500i \(0.207828\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.37258 −0.313642
\(894\) 0 0
\(895\) −7.31371 −0.244470
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 52.2843 1.74378
\(900\) 0 0
\(901\) − 28.2960i − 0.942678i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.3848 0.810577
\(906\) 0 0
\(907\) − 25.2346i − 0.837900i −0.908009 0.418950i \(-0.862398\pi\)
0.908009 0.418950i \(-0.137602\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 53.9020i − 1.78585i −0.450201 0.892927i \(-0.648648\pi\)
0.450201 0.892927i \(-0.351352\pi\)
\(912\) 0 0
\(913\) 92.2792i 3.05399i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 55.3240i − 1.82497i −0.409110 0.912485i \(-0.634161\pi\)
0.409110 0.912485i \(-0.365839\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.9706 0.953578
\(924\) 0 0
\(925\) 2.24264 0.0737376
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.25972i 0.238184i 0.992883 + 0.119092i \(0.0379983\pi\)
−0.992883 + 0.119092i \(0.962002\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28.2960i 0.925380i
\(936\) 0 0
\(937\) 9.23880i 0.301818i 0.988548 + 0.150909i \(0.0482201\pi\)
−0.988548 + 0.150909i \(0.951780\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 21.4077i − 0.697872i −0.937146 0.348936i \(-0.886543\pi\)
0.937146 0.348936i \(-0.113457\pi\)
\(942\) 0 0
\(943\) −8.68629 −0.282865
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.3881i 1.31244i 0.754571 + 0.656218i \(0.227845\pi\)
−0.754571 + 0.656218i \(0.772155\pi\)
\(948\) 0 0
\(949\) −21.8995 −0.710888
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.0000 −1.23094 −0.615470 0.788160i \(-0.711034\pi\)
−0.615470 + 0.788160i \(0.711034\pi\)
\(954\) 0 0
\(955\) 34.6274 1.12052
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 62.2548 2.00822
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 35.6871i − 1.14881i
\(966\) 0 0
\(967\) − 46.6648i − 1.50064i −0.661075 0.750320i \(-0.729899\pi\)
0.661075 0.750320i \(-0.270101\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.9706 1.44317 0.721587 0.692324i \(-0.243413\pi\)
0.721587 + 0.692324i \(0.243413\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.1838 −1.09364 −0.546818 0.837252i \(-0.684161\pi\)
−0.546818 + 0.837252i \(0.684161\pi\)
\(978\) 0 0
\(979\) −47.3137 −1.51215
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −55.5980 −1.77330 −0.886650 0.462441i \(-0.846974\pi\)
−0.886650 + 0.462441i \(0.846974\pi\)
\(984\) 0 0
\(985\) 4.96362i 0.158154i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.62742 0.210740
\(990\) 0 0
\(991\) 36.9552i 1.17392i 0.809616 + 0.586960i \(0.199675\pi\)
−0.809616 + 0.586960i \(0.800325\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.4525i 0.331367i
\(996\) 0 0
\(997\) − 18.0518i − 0.571706i −0.958274 0.285853i \(-0.907723\pi\)
0.958274 0.285853i \(-0.0922768\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.b.u.1567.4 4
3.2 odd 2 2352.2.b.i.1567.1 4
4.3 odd 2 7056.2.b.t.1567.4 4
7.6 odd 2 7056.2.b.t.1567.1 4
12.11 even 2 2352.2.b.j.1567.1 yes 4
21.2 odd 6 2352.2.bl.s.31.1 8
21.5 even 6 2352.2.bl.p.31.4 8
21.11 odd 6 2352.2.bl.s.607.4 8
21.17 even 6 2352.2.bl.p.607.1 8
21.20 even 2 2352.2.b.j.1567.4 yes 4
28.27 even 2 inner 7056.2.b.u.1567.1 4
84.11 even 6 2352.2.bl.p.607.4 8
84.23 even 6 2352.2.bl.p.31.1 8
84.47 odd 6 2352.2.bl.s.31.4 8
84.59 odd 6 2352.2.bl.s.607.1 8
84.83 odd 2 2352.2.b.i.1567.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2352.2.b.i.1567.1 4 3.2 odd 2
2352.2.b.i.1567.4 yes 4 84.83 odd 2
2352.2.b.j.1567.1 yes 4 12.11 even 2
2352.2.b.j.1567.4 yes 4 21.20 even 2
2352.2.bl.p.31.1 8 84.23 even 6
2352.2.bl.p.31.4 8 21.5 even 6
2352.2.bl.p.607.1 8 21.17 even 6
2352.2.bl.p.607.4 8 84.11 even 6
2352.2.bl.s.31.1 8 21.2 odd 6
2352.2.bl.s.31.4 8 84.47 odd 6
2352.2.bl.s.607.1 8 84.59 odd 6
2352.2.bl.s.607.4 8 21.11 odd 6
7056.2.b.t.1567.1 4 7.6 odd 2
7056.2.b.t.1567.4 4 4.3 odd 2
7056.2.b.u.1567.1 4 28.27 even 2 inner
7056.2.b.u.1567.4 4 1.1 even 1 trivial