L(s) = 1 | − 1.30i·2-s + 3-s + 0.302·4-s + i·5-s − 1.30i·6-s − i·7-s − 3i·8-s − 2·9-s + 1.30·10-s − 5.60i·11-s + 0.302·12-s − 1.30·14-s + i·15-s − 3.30·16-s − 0.394·17-s + 2.60i·18-s + ⋯ |
L(s) = 1 | − 0.921i·2-s + 0.577·3-s + 0.151·4-s + 0.447i·5-s − 0.531i·6-s − 0.377i·7-s − 1.06i·8-s − 0.666·9-s + 0.411·10-s − 1.69i·11-s + 0.0874·12-s − 0.348·14-s + 0.258i·15-s − 0.825·16-s − 0.0956·17-s + 0.614i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.900838 - 1.68323i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.900838 - 1.68323i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 1.30iT - 2T^{2} \) |
| 3 | \( 1 - T + 3T^{2} \) |
| 7 | \( 1 + iT - 7T^{2} \) |
| 11 | \( 1 + 5.60iT - 11T^{2} \) |
| 17 | \( 1 + 0.394T + 17T^{2} \) |
| 19 | \( 1 + 1.60iT - 19T^{2} \) |
| 23 | \( 1 - 3T + 23T^{2} \) |
| 29 | \( 1 - 8.21T + 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + 3.60iT - 37T^{2} \) |
| 41 | \( 1 + 3iT - 41T^{2} \) |
| 43 | \( 1 + 4.21T + 43T^{2} \) |
| 47 | \( 1 + 5.21iT - 47T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 - 10.8iT - 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 - 7iT - 67T^{2} \) |
| 71 | \( 1 - 16.8iT - 71T^{2} \) |
| 73 | \( 1 + 15.2iT - 73T^{2} \) |
| 79 | \( 1 + 9.21T + 79T^{2} \) |
| 83 | \( 1 + 5.21iT - 83T^{2} \) |
| 89 | \( 1 - 8.21iT - 89T^{2} \) |
| 97 | \( 1 - 15.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27054069105437725934949483021, −8.980216828612454222552741662373, −8.522671620932501222916620042011, −7.33783845192385672678610007151, −6.50498729328812230102940576659, −5.52035299801190722034314116864, −3.93929568582082845433700094046, −3.12614132770711678065679383745, −2.51561191865469427255836164011, −0.859888855228293190432234916455,
1.93123094981391850820771288660, 2.87673393773674537621593673624, 4.46615198507554606612259603737, 5.27961296603731997183166957700, 6.25447385130200532533504173511, 7.11750543823000065923678209129, 7.949827979854183553008647373506, 8.569863572290455158754656281074, 9.390240678583582840597506413423, 10.26849664446102584539420330658