L(s) = 1 | − 1.30i·2-s + 3-s + 0.302·4-s + i·5-s − 1.30i·6-s − i·7-s − 3i·8-s − 2·9-s + 1.30·10-s − 5.60i·11-s + 0.302·12-s − 1.30·14-s + i·15-s − 3.30·16-s − 0.394·17-s + 2.60i·18-s + ⋯ |
L(s) = 1 | − 0.921i·2-s + 0.577·3-s + 0.151·4-s + 0.447i·5-s − 0.531i·6-s − 0.377i·7-s − 1.06i·8-s − 0.666·9-s + 0.411·10-s − 1.69i·11-s + 0.0874·12-s − 0.348·14-s + 0.258i·15-s − 0.825·16-s − 0.0956·17-s + 0.614i·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.554+0.832i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.554+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.554+0.832i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(506,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.554+0.832i)
|
Particular Values
L(1) |
≈ |
0.900838−1.68323i |
L(21) |
≈ |
0.900838−1.68323i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−iT |
| 13 | 1 |
good | 2 | 1+1.30iT−2T2 |
| 3 | 1−T+3T2 |
| 7 | 1+iT−7T2 |
| 11 | 1+5.60iT−11T2 |
| 17 | 1+0.394T+17T2 |
| 19 | 1+1.60iT−19T2 |
| 23 | 1−3T+23T2 |
| 29 | 1−8.21T+29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+3.60iT−37T2 |
| 41 | 1+3iT−41T2 |
| 43 | 1+4.21T+43T2 |
| 47 | 1+5.21iT−47T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1−10.8iT−59T2 |
| 61 | 1+T+61T2 |
| 67 | 1−7iT−67T2 |
| 71 | 1−16.8iT−71T2 |
| 73 | 1+15.2iT−73T2 |
| 79 | 1+9.21T+79T2 |
| 83 | 1+5.21iT−83T2 |
| 89 | 1−8.21iT−89T2 |
| 97 | 1−15.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27054069105437725934949483021, −8.980216828612454222552741662373, −8.522671620932501222916620042011, −7.33783845192385672678610007151, −6.50498729328812230102940576659, −5.52035299801190722034314116864, −3.93929568582082845433700094046, −3.12614132770711678065679383745, −2.51561191865469427255836164011, −0.859888855228293190432234916455,
1.93123094981391850820771288660, 2.87673393773674537621593673624, 4.46615198507554606612259603737, 5.27961296603731997183166957700, 6.25447385130200532533504173511, 7.11750543823000065923678209129, 7.949827979854183553008647373506, 8.569863572290455158754656281074, 9.390240678583582840597506413423, 10.26849664446102584539420330658