Properties

Label 845.2.c.d
Level $845$
Weight $2$
Character orbit 845.c
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(506,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.506");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + (\beta_{3} - 2) q^{4} - \beta_{2} q^{5} + \beta_1 q^{6} + \beta_{2} q^{7} + 3 \beta_{2} q^{8} - 2 q^{9} + (\beta_{3} - 1) q^{10} + (3 \beta_{2} + 2 \beta_1) q^{11} + (\beta_{3} - 2) q^{12}+ \cdots + ( - 6 \beta_{2} - 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 6 q^{4} - 8 q^{9} - 2 q^{10} - 6 q^{12} + 2 q^{14} - 6 q^{16} - 16 q^{17} - 22 q^{22} + 12 q^{23} - 4 q^{25} - 20 q^{27} + 4 q^{29} - 2 q^{30} + 4 q^{35} + 12 q^{36} - 30 q^{38} + 12 q^{40}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
506.1
2.30278i
1.30278i
1.30278i
2.30278i
2.30278i 1.00000 −3.30278 1.00000i 2.30278i 1.00000i 3.00000i −2.00000 −2.30278
506.2 1.30278i 1.00000 0.302776 1.00000i 1.30278i 1.00000i 3.00000i −2.00000 1.30278
506.3 1.30278i 1.00000 0.302776 1.00000i 1.30278i 1.00000i 3.00000i −2.00000 1.30278
506.4 2.30278i 1.00000 −3.30278 1.00000i 2.30278i 1.00000i 3.00000i −2.00000 −2.30278
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.c.d 4
13.b even 2 1 inner 845.2.c.d 4
13.c even 3 2 845.2.m.d 8
13.d odd 4 1 845.2.a.c 2
13.d odd 4 1 845.2.a.f 2
13.e even 6 2 845.2.m.d 8
13.f odd 12 2 65.2.e.b 4
13.f odd 12 2 845.2.e.d 4
39.f even 4 1 7605.2.a.bb 2
39.f even 4 1 7605.2.a.bg 2
39.k even 12 2 585.2.j.d 4
52.l even 12 2 1040.2.q.o 4
65.g odd 4 1 4225.2.a.t 2
65.g odd 4 1 4225.2.a.x 2
65.o even 12 2 325.2.o.b 8
65.s odd 12 2 325.2.e.a 4
65.t even 12 2 325.2.o.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.e.b 4 13.f odd 12 2
325.2.e.a 4 65.s odd 12 2
325.2.o.b 8 65.o even 12 2
325.2.o.b 8 65.t even 12 2
585.2.j.d 4 39.k even 12 2
845.2.a.c 2 13.d odd 4 1
845.2.a.f 2 13.d odd 4 1
845.2.c.d 4 1.a even 1 1 trivial
845.2.c.d 4 13.b even 2 1 inner
845.2.e.d 4 13.f odd 12 2
845.2.m.d 8 13.c even 3 2
845.2.m.d 8 13.e even 6 2
1040.2.q.o 4 52.l even 12 2
4225.2.a.t 2 65.g odd 4 1
4225.2.a.x 2 65.g odd 4 1
7605.2.a.bb 2 39.f even 4 1
7605.2.a.bg 2 39.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 7T_{2}^{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 7T^{2} + 9 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 34T^{2} + 81 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8 T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 34T^{2} + 81 \) Copy content Toggle raw display
$23$ \( (T - 3)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 2 T - 51)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 13)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 6 T - 43)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T - 36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 117)^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 306T^{2} + 6561 \) Copy content Toggle raw display
$73$ \( T^{4} + 232T^{2} + 144 \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$89$ \( T^{4} + 106T^{2} + 2601 \) Copy content Toggle raw display
$97$ \( T^{4} + 314 T^{2} + 17161 \) Copy content Toggle raw display
show more
show less