Properties

Label 845.2.c.d
Level 845845
Weight 22
Character orbit 845.c
Analytic conductor 6.7476.747
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(506,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.506");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 845=5132 845 = 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 845.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.747358970806.74735897080
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,13)\Q(i, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+9 x^{4} + 7x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+q3+(β32)q4β2q5+β1q6+β2q7+3β2q82q9+(β31)q10+(3β2+2β1)q11+(β32)q12++(6β24β1)q99+O(q100) q + \beta_1 q^{2} + q^{3} + (\beta_{3} - 2) q^{4} - \beta_{2} q^{5} + \beta_1 q^{6} + \beta_{2} q^{7} + 3 \beta_{2} q^{8} - 2 q^{9} + (\beta_{3} - 1) q^{10} + (3 \beta_{2} + 2 \beta_1) q^{11} + (\beta_{3} - 2) q^{12}+ \cdots + ( - 6 \beta_{2} - 4 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q36q48q92q106q12+2q146q1616q1722q22+12q234q2520q27+4q292q30+4q35+12q3630q38+12q40+8q95+O(q100) 4 q + 4 q^{3} - 6 q^{4} - 8 q^{9} - 2 q^{10} - 6 q^{12} + 2 q^{14} - 6 q^{16} - 16 q^{17} - 22 q^{22} + 12 q^{23} - 4 q^{25} - 20 q^{27} + 4 q^{29} - 2 q^{30} + 4 q^{35} + 12 q^{36} - 30 q^{38} + 12 q^{40}+ \cdots - 8 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+9 x^{4} + 7x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν)/3 ( \nu^{3} + 4\nu ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν2+4 \nu^{2} + 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β34 \beta_{3} - 4 Copy content Toggle raw display
ν3\nu^{3}== 3β24β1 3\beta_{2} - 4\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/845Z)×\left(\mathbb{Z}/845\mathbb{Z}\right)^\times.

nn 171171 677677
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
506.1
2.30278i
1.30278i
1.30278i
2.30278i
2.30278i 1.00000 −3.30278 1.00000i 2.30278i 1.00000i 3.00000i −2.00000 −2.30278
506.2 1.30278i 1.00000 0.302776 1.00000i 1.30278i 1.00000i 3.00000i −2.00000 1.30278
506.3 1.30278i 1.00000 0.302776 1.00000i 1.30278i 1.00000i 3.00000i −2.00000 1.30278
506.4 2.30278i 1.00000 −3.30278 1.00000i 2.30278i 1.00000i 3.00000i −2.00000 −2.30278
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.c.d 4
13.b even 2 1 inner 845.2.c.d 4
13.c even 3 2 845.2.m.d 8
13.d odd 4 1 845.2.a.c 2
13.d odd 4 1 845.2.a.f 2
13.e even 6 2 845.2.m.d 8
13.f odd 12 2 65.2.e.b 4
13.f odd 12 2 845.2.e.d 4
39.f even 4 1 7605.2.a.bb 2
39.f even 4 1 7605.2.a.bg 2
39.k even 12 2 585.2.j.d 4
52.l even 12 2 1040.2.q.o 4
65.g odd 4 1 4225.2.a.t 2
65.g odd 4 1 4225.2.a.x 2
65.o even 12 2 325.2.o.b 8
65.s odd 12 2 325.2.e.a 4
65.t even 12 2 325.2.o.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.e.b 4 13.f odd 12 2
325.2.e.a 4 65.s odd 12 2
325.2.o.b 8 65.o even 12 2
325.2.o.b 8 65.t even 12 2
585.2.j.d 4 39.k even 12 2
845.2.a.c 2 13.d odd 4 1
845.2.a.f 2 13.d odd 4 1
845.2.c.d 4 1.a even 1 1 trivial
845.2.c.d 4 13.b even 2 1 inner
845.2.e.d 4 13.f odd 12 2
845.2.m.d 8 13.c even 3 2
845.2.m.d 8 13.e even 6 2
1040.2.q.o 4 52.l even 12 2
4225.2.a.t 2 65.g odd 4 1
4225.2.a.x 2 65.g odd 4 1
7605.2.a.bb 2 39.f even 4 1
7605.2.a.bg 2 39.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+7T22+9 T_{2}^{4} + 7T_{2}^{2} + 9 acting on S2new(845,[χ])S_{2}^{\mathrm{new}}(845, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+7T2+9 T^{4} + 7T^{2} + 9 Copy content Toggle raw display
33 (T1)4 (T - 1)^{4} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1111 T4+34T2+81 T^{4} + 34T^{2} + 81 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T2+8T+3)2 (T^{2} + 8 T + 3)^{2} Copy content Toggle raw display
1919 T4+34T2+81 T^{4} + 34T^{2} + 81 Copy content Toggle raw display
2323 (T3)4 (T - 3)^{4} Copy content Toggle raw display
2929 (T22T51)2 (T^{2} - 2 T - 51)^{2} Copy content Toggle raw display
3131 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
3737 (T2+13)2 (T^{2} + 13)^{2} Copy content Toggle raw display
4141 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
4343 (T26T43)2 (T^{2} - 6 T - 43)^{2} Copy content Toggle raw display
4747 T4+112T2+2304 T^{4} + 112T^{2} + 2304 Copy content Toggle raw display
5353 (T28T36)2 (T^{2} - 8 T - 36)^{2} Copy content Toggle raw display
5959 (T2+117)2 (T^{2} + 117)^{2} Copy content Toggle raw display
6161 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
6767 (T2+49)2 (T^{2} + 49)^{2} Copy content Toggle raw display
7171 T4+306T2+6561 T^{4} + 306T^{2} + 6561 Copy content Toggle raw display
7373 T4+232T2+144 T^{4} + 232T^{2} + 144 Copy content Toggle raw display
7979 (T2+4T48)2 (T^{2} + 4 T - 48)^{2} Copy content Toggle raw display
8383 T4+112T2+2304 T^{4} + 112T^{2} + 2304 Copy content Toggle raw display
8989 T4+106T2+2601 T^{4} + 106T^{2} + 2601 Copy content Toggle raw display
9797 T4+314T2+17161 T^{4} + 314 T^{2} + 17161 Copy content Toggle raw display
show more
show less