Properties

Label 585.2.j.d
Level $585$
Weight $2$
Character orbit 585.j
Analytic conductor $4.671$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(406,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{4} + q^{5} - \beta_{2} q^{7} + 3 q^{8} - \beta_1 q^{10} + ( - 3 \beta_{2} + 2 \beta_1 - 3) q^{11} + (2 \beta_{3} - 1) q^{13} + (\beta_{3} - 1) q^{14}+ \cdots + ( - 6 \beta_{3} - 6 \beta_1 + 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 3 q^{4} + 4 q^{5} + 2 q^{7} + 12 q^{8} - q^{10} - 4 q^{11} - 2 q^{14} + 3 q^{16} + 8 q^{17} + 4 q^{19} - 3 q^{20} + 11 q^{22} - 6 q^{23} + 4 q^{25} + 13 q^{26} + 3 q^{28} + 2 q^{29} - 16 q^{31}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 7 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} - 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
406.1
1.15139 + 1.99426i
−0.651388 1.12824i
1.15139 1.99426i
−0.651388 + 1.12824i
−1.15139 1.99426i 0 −1.65139 + 2.86029i 1.00000 0 0.500000 0.866025i 3.00000 0 −1.15139 1.99426i
406.2 0.651388 + 1.12824i 0 0.151388 0.262211i 1.00000 0 0.500000 0.866025i 3.00000 0 0.651388 + 1.12824i
451.1 −1.15139 + 1.99426i 0 −1.65139 2.86029i 1.00000 0 0.500000 + 0.866025i 3.00000 0 −1.15139 + 1.99426i
451.2 0.651388 1.12824i 0 0.151388 + 0.262211i 1.00000 0 0.500000 + 0.866025i 3.00000 0 0.651388 1.12824i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.j.d 4
3.b odd 2 1 65.2.e.b 4
12.b even 2 1 1040.2.q.o 4
13.c even 3 1 inner 585.2.j.d 4
13.c even 3 1 7605.2.a.bg 2
13.e even 6 1 7605.2.a.bb 2
15.d odd 2 1 325.2.e.a 4
15.e even 4 2 325.2.o.b 8
39.d odd 2 1 845.2.e.d 4
39.f even 4 2 845.2.m.d 8
39.h odd 6 1 845.2.a.f 2
39.h odd 6 1 845.2.e.d 4
39.i odd 6 1 65.2.e.b 4
39.i odd 6 1 845.2.a.c 2
39.k even 12 2 845.2.c.d 4
39.k even 12 2 845.2.m.d 8
156.p even 6 1 1040.2.q.o 4
195.x odd 6 1 325.2.e.a 4
195.x odd 6 1 4225.2.a.x 2
195.y odd 6 1 4225.2.a.t 2
195.bl even 12 2 325.2.o.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.e.b 4 3.b odd 2 1
65.2.e.b 4 39.i odd 6 1
325.2.e.a 4 15.d odd 2 1
325.2.e.a 4 195.x odd 6 1
325.2.o.b 8 15.e even 4 2
325.2.o.b 8 195.bl even 12 2
585.2.j.d 4 1.a even 1 1 trivial
585.2.j.d 4 13.c even 3 1 inner
845.2.a.c 2 39.i odd 6 1
845.2.a.f 2 39.h odd 6 1
845.2.c.d 4 39.k even 12 2
845.2.e.d 4 39.d odd 2 1
845.2.e.d 4 39.h odd 6 1
845.2.m.d 8 39.f even 4 2
845.2.m.d 8 39.k even 12 2
1040.2.q.o 4 12.b even 2 1
1040.2.q.o 4 156.p even 6 1
4225.2.a.t 2 195.y odd 6 1
4225.2.a.x 2 195.x odd 6 1
7605.2.a.bb 2 13.e even 6 1
7605.2.a.bg 2 13.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + T_{2}^{3} + 4T_{2}^{2} - 3T_{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(585, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + 4 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 2 T^{3} + \cdots + 2601 \) Copy content Toggle raw display
$31$ \( (T + 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 13T^{2} + 169 \) Copy content Toggle raw display
$41$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 1849 \) Copy content Toggle raw display
$47$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T - 36)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 117 T^{2} + 13689 \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 12 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$73$ \( (T^{2} + 16 T + 12)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 48)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 2 T^{3} + \cdots + 2601 \) Copy content Toggle raw display
$97$ \( T^{4} - 24 T^{3} + \cdots + 17161 \) Copy content Toggle raw display
show more
show less