Properties

Label 4225.2.a.t
Level $4225$
Weight $2$
Character orbit 4225.a
Self dual yes
Analytic conductor $33.737$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} + (\beta + 1) q^{4} + \beta q^{6} - q^{7} - 3 q^{8} - 2 q^{9} + ( - 2 \beta + 3) q^{11} + ( - \beta - 1) q^{12} + \beta q^{14} + (\beta - 2) q^{16} + ( - 2 \beta - 3) q^{17} + 2 \beta q^{18} + \cdots + (4 \beta - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} + 3 q^{4} + q^{6} - 2 q^{7} - 6 q^{8} - 4 q^{9} + 4 q^{11} - 3 q^{12} + q^{14} - 3 q^{16} - 8 q^{17} + 2 q^{18} + 4 q^{19} + 2 q^{21} + 11 q^{22} + 6 q^{23} + 6 q^{24} + 10 q^{27}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
−2.30278 −1.00000 3.30278 0 2.30278 −1.00000 −3.00000 −2.00000 0
1.2 1.30278 −1.00000 −0.302776 0 −1.30278 −1.00000 −3.00000 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4225.2.a.t 2
5.b even 2 1 845.2.a.f 2
13.b even 2 1 4225.2.a.x 2
13.e even 6 2 325.2.e.a 4
15.d odd 2 1 7605.2.a.bb 2
65.d even 2 1 845.2.a.c 2
65.g odd 4 2 845.2.c.d 4
65.l even 6 2 65.2.e.b 4
65.n even 6 2 845.2.e.d 4
65.r odd 12 4 325.2.o.b 8
65.s odd 12 4 845.2.m.d 8
195.e odd 2 1 7605.2.a.bg 2
195.y odd 6 2 585.2.j.d 4
260.w odd 6 2 1040.2.q.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.e.b 4 65.l even 6 2
325.2.e.a 4 13.e even 6 2
325.2.o.b 8 65.r odd 12 4
585.2.j.d 4 195.y odd 6 2
845.2.a.c 2 65.d even 2 1
845.2.a.f 2 5.b even 2 1
845.2.c.d 4 65.g odd 4 2
845.2.e.d 4 65.n even 6 2
845.2.m.d 8 65.s odd 12 4
1040.2.q.o 4 260.w odd 6 2
4225.2.a.t 2 1.a even 1 1 trivial
4225.2.a.x 2 13.b even 2 1
7605.2.a.bb 2 15.d odd 2 1
7605.2.a.bg 2 195.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4225))\):

\( T_{2}^{2} + T_{2} - 3 \) Copy content Toggle raw display
\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 9 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 3 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T - 9 \) Copy content Toggle raw display
$23$ \( (T - 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 2T - 51 \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 13 \) Copy content Toggle raw display
$41$ \( (T + 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 43 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 117 \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T + 7)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 12T - 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 16T + 12 \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T - 51 \) Copy content Toggle raw display
$97$ \( T^{2} + 24T + 131 \) Copy content Toggle raw display
show more
show less