L(s) = 1 | − 6·5-s − 4·7-s + 2·13-s − 12·19-s + 17·25-s + 6·29-s + 12·31-s + 24·35-s + 16·37-s + 6·41-s − 4·43-s − 8·47-s + 4·49-s − 2·53-s + 4·59-s + 2·61-s − 12·65-s − 8·67-s + 4·71-s + 6·73-s − 24·79-s − 9·81-s − 4·83-s − 2·89-s − 8·91-s + 72·95-s + 6·97-s + ⋯ |
L(s) = 1 | − 2.68·5-s − 1.51·7-s + 0.554·13-s − 2.75·19-s + 17/5·25-s + 1.11·29-s + 2.15·31-s + 4.05·35-s + 2.63·37-s + 0.937·41-s − 0.609·43-s − 1.16·47-s + 4/7·49-s − 0.274·53-s + 0.520·59-s + 0.256·61-s − 1.48·65-s − 0.977·67-s + 0.474·71-s + 0.702·73-s − 2.70·79-s − 81-s − 0.439·83-s − 0.211·89-s − 0.838·91-s + 7.38·95-s + 0.609·97-s + ⋯ |
Λ(s)=(=(71639296s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(71639296s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
71639296
= 28⋅234
|
Sign: |
1
|
Analytic conductor: |
4567.78 |
Root analytic conductor: |
8.22103 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 71639296, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7792931091 |
L(21) |
≈ |
0.7792931091 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 23 | | 1 |
good | 3 | C22 | 1+p2T4 |
| 5 | C2 | (1+3T+pT2)2 |
| 7 | D4 | 1+4T+12T2+4pT3+p2T4 |
| 11 | C22 | 1+16T2+p2T4 |
| 13 | D4 | 1−2T+3T2−2pT3+p2T4 |
| 17 | C22 | 1+10T2+p2T4 |
| 19 | D4 | 1+12T+68T2+12pT3+p2T4 |
| 29 | D4 | 1−6T+43T2−6pT3+p2T4 |
| 31 | D4 | 1−12T+74T2−12pT3+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | D4 | 1−6T+67T2−6pT3+p2T4 |
| 43 | D4 | 1+4T+66T2+4pT3+p2T4 |
| 47 | D4 | 1+8T+104T2+8pT3+p2T4 |
| 53 | D4 | 1+2T+11T2+2pT3+p2T4 |
| 59 | D4 | 1−4T+68T2−4pT3+p2T4 |
| 61 | D4 | 1−2T+99T2−2pT3+p2T4 |
| 67 | D4 | 1+8T+54T2+8pT3+p2T4 |
| 71 | D4 | 1−4T+140T2−4pT3+p2T4 |
| 73 | D4 | 1−6T+131T2−6pT3+p2T4 |
| 79 | C2 | (1+12T+pT2)2 |
| 83 | D4 | 1+4T+146T2+4pT3+p2T4 |
| 89 | D4 | 1+2T+83T2+2pT3+p2T4 |
| 97 | D4 | 1−6T+179T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85111964910540416398113020283, −7.78098523552231746436921124402, −7.35419630103221897974820391213, −6.83541994547435757093443458090, −6.63609082231443004424623561148, −6.29680431745563089588601182998, −6.05573371932215340017507843255, −5.83657206822917314483643711219, −4.69976944413607947119600354203, −4.68850246772116126878247259151, −4.46131312179153461526264297037, −3.99435764542081079557076025353, −3.80485494160127383364013876299, −3.35848250925148638683073740842, −2.86650522883089233885702366067, −2.75243464786618541414837244980, −2.15862349297678166053309177281, −1.29578320510573281359593748324, −0.57114632521050694568744861385, −0.39090756518103539303874738907,
0.39090756518103539303874738907, 0.57114632521050694568744861385, 1.29578320510573281359593748324, 2.15862349297678166053309177281, 2.75243464786618541414837244980, 2.86650522883089233885702366067, 3.35848250925148638683073740842, 3.80485494160127383364013876299, 3.99435764542081079557076025353, 4.46131312179153461526264297037, 4.68850246772116126878247259151, 4.69976944413607947119600354203, 5.83657206822917314483643711219, 6.05573371932215340017507843255, 6.29680431745563089588601182998, 6.63609082231443004424623561148, 6.83541994547435757093443458090, 7.35419630103221897974820391213, 7.78098523552231746436921124402, 7.85111964910540416398113020283