Properties

Label 8464.2.a.y.1.2
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4232)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44949 q^{3} -3.00000 q^{5} -4.44949 q^{7} +3.00000 q^{9} -2.44949 q^{11} -3.89898 q^{13} -7.34847 q^{15} +4.89898 q^{17} -8.44949 q^{19} -10.8990 q^{21} +4.00000 q^{25} -1.89898 q^{29} +1.10102 q^{31} -6.00000 q^{33} +13.3485 q^{35} +8.00000 q^{37} -9.55051 q^{39} -1.89898 q^{41} +2.89898 q^{43} -9.00000 q^{45} -6.44949 q^{47} +12.7980 q^{49} +12.0000 q^{51} -10.7980 q^{53} +7.34847 q^{55} -20.6969 q^{57} +9.34847 q^{59} -3.89898 q^{61} -13.3485 q^{63} +11.6969 q^{65} +5.79796 q^{67} -0.449490 q^{71} +7.89898 q^{73} +9.79796 q^{75} +10.8990 q^{77} -12.0000 q^{79} -9.00000 q^{81} +2.89898 q^{83} -14.6969 q^{85} -4.65153 q^{87} -10.7980 q^{89} +17.3485 q^{91} +2.69694 q^{93} +25.3485 q^{95} +7.89898 q^{97} -7.34847 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} - 4 q^{7} + 6 q^{9} + 2 q^{13} - 12 q^{19} - 12 q^{21} + 8 q^{25} + 6 q^{29} + 12 q^{31} - 12 q^{33} + 12 q^{35} + 16 q^{37} - 24 q^{39} + 6 q^{41} - 4 q^{43} - 18 q^{45} - 8 q^{47} + 6 q^{49}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.44949 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −4.44949 −1.68175 −0.840875 0.541230i \(-0.817959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) −2.44949 −0.738549 −0.369274 0.929320i \(-0.620394\pi\)
−0.369274 + 0.929320i \(0.620394\pi\)
\(12\) 0 0
\(13\) −3.89898 −1.08138 −0.540691 0.841221i \(-0.681837\pi\)
−0.540691 + 0.841221i \(0.681837\pi\)
\(14\) 0 0
\(15\) −7.34847 −1.89737
\(16\) 0 0
\(17\) 4.89898 1.18818 0.594089 0.804400i \(-0.297513\pi\)
0.594089 + 0.804400i \(0.297513\pi\)
\(18\) 0 0
\(19\) −8.44949 −1.93845 −0.969223 0.246185i \(-0.920823\pi\)
−0.969223 + 0.246185i \(0.920823\pi\)
\(20\) 0 0
\(21\) −10.8990 −2.37835
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.89898 −0.352632 −0.176316 0.984334i \(-0.556418\pi\)
−0.176316 + 0.984334i \(0.556418\pi\)
\(30\) 0 0
\(31\) 1.10102 0.197749 0.0988746 0.995100i \(-0.468476\pi\)
0.0988746 + 0.995100i \(0.468476\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 13.3485 2.25630
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −9.55051 −1.52931
\(40\) 0 0
\(41\) −1.89898 −0.296571 −0.148285 0.988945i \(-0.547375\pi\)
−0.148285 + 0.988945i \(0.547375\pi\)
\(42\) 0 0
\(43\) 2.89898 0.442090 0.221045 0.975264i \(-0.429053\pi\)
0.221045 + 0.975264i \(0.429053\pi\)
\(44\) 0 0
\(45\) −9.00000 −1.34164
\(46\) 0 0
\(47\) −6.44949 −0.940755 −0.470377 0.882465i \(-0.655882\pi\)
−0.470377 + 0.882465i \(0.655882\pi\)
\(48\) 0 0
\(49\) 12.7980 1.82828
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) −10.7980 −1.48321 −0.741607 0.670835i \(-0.765936\pi\)
−0.741607 + 0.670835i \(0.765936\pi\)
\(54\) 0 0
\(55\) 7.34847 0.990867
\(56\) 0 0
\(57\) −20.6969 −2.74138
\(58\) 0 0
\(59\) 9.34847 1.21707 0.608534 0.793528i \(-0.291758\pi\)
0.608534 + 0.793528i \(0.291758\pi\)
\(60\) 0 0
\(61\) −3.89898 −0.499213 −0.249607 0.968347i \(-0.580301\pi\)
−0.249607 + 0.968347i \(0.580301\pi\)
\(62\) 0 0
\(63\) −13.3485 −1.68175
\(64\) 0 0
\(65\) 11.6969 1.45083
\(66\) 0 0
\(67\) 5.79796 0.708333 0.354167 0.935182i \(-0.384765\pi\)
0.354167 + 0.935182i \(0.384765\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.449490 −0.0533446 −0.0266723 0.999644i \(-0.508491\pi\)
−0.0266723 + 0.999644i \(0.508491\pi\)
\(72\) 0 0
\(73\) 7.89898 0.924506 0.462253 0.886748i \(-0.347041\pi\)
0.462253 + 0.886748i \(0.347041\pi\)
\(74\) 0 0
\(75\) 9.79796 1.13137
\(76\) 0 0
\(77\) 10.8990 1.24205
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 2.89898 0.318204 0.159102 0.987262i \(-0.449140\pi\)
0.159102 + 0.987262i \(0.449140\pi\)
\(84\) 0 0
\(85\) −14.6969 −1.59411
\(86\) 0 0
\(87\) −4.65153 −0.498696
\(88\) 0 0
\(89\) −10.7980 −1.14458 −0.572291 0.820051i \(-0.693945\pi\)
−0.572291 + 0.820051i \(0.693945\pi\)
\(90\) 0 0
\(91\) 17.3485 1.81861
\(92\) 0 0
\(93\) 2.69694 0.279659
\(94\) 0 0
\(95\) 25.3485 2.60070
\(96\) 0 0
\(97\) 7.89898 0.802020 0.401010 0.916074i \(-0.368659\pi\)
0.401010 + 0.916074i \(0.368659\pi\)
\(98\) 0 0
\(99\) −7.34847 −0.738549
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) −2.89898 −0.285645 −0.142822 0.989748i \(-0.545618\pi\)
−0.142822 + 0.989748i \(0.545618\pi\)
\(104\) 0 0
\(105\) 32.6969 3.19089
\(106\) 0 0
\(107\) 11.5505 1.11663 0.558315 0.829629i \(-0.311448\pi\)
0.558315 + 0.829629i \(0.311448\pi\)
\(108\) 0 0
\(109\) 18.7980 1.80052 0.900259 0.435355i \(-0.143377\pi\)
0.900259 + 0.435355i \(0.143377\pi\)
\(110\) 0 0
\(111\) 19.5959 1.85996
\(112\) 0 0
\(113\) −5.00000 −0.470360 −0.235180 0.971952i \(-0.575568\pi\)
−0.235180 + 0.971952i \(0.575568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −11.6969 −1.08138
\(118\) 0 0
\(119\) −21.7980 −1.99822
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) −4.65153 −0.419414
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 2.89898 0.257243 0.128621 0.991694i \(-0.458945\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(128\) 0 0
\(129\) 7.10102 0.625210
\(130\) 0 0
\(131\) −6.24745 −0.545842 −0.272921 0.962036i \(-0.587990\pi\)
−0.272921 + 0.962036i \(0.587990\pi\)
\(132\) 0 0
\(133\) 37.5959 3.25998
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.10102 −0.179502 −0.0897511 0.995964i \(-0.528607\pi\)
−0.0897511 + 0.995964i \(0.528607\pi\)
\(138\) 0 0
\(139\) 16.6969 1.41622 0.708108 0.706104i \(-0.249549\pi\)
0.708108 + 0.706104i \(0.249549\pi\)
\(140\) 0 0
\(141\) −15.7980 −1.33043
\(142\) 0 0
\(143\) 9.55051 0.798654
\(144\) 0 0
\(145\) 5.69694 0.473105
\(146\) 0 0
\(147\) 31.3485 2.58558
\(148\) 0 0
\(149\) 5.89898 0.483263 0.241632 0.970368i \(-0.422317\pi\)
0.241632 + 0.970368i \(0.422317\pi\)
\(150\) 0 0
\(151\) 8.24745 0.671168 0.335584 0.942010i \(-0.391066\pi\)
0.335584 + 0.942010i \(0.391066\pi\)
\(152\) 0 0
\(153\) 14.6969 1.18818
\(154\) 0 0
\(155\) −3.30306 −0.265308
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 0 0
\(159\) −26.4495 −2.09758
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.4495 −0.975119 −0.487560 0.873090i \(-0.662113\pi\)
−0.487560 + 0.873090i \(0.662113\pi\)
\(164\) 0 0
\(165\) 18.0000 1.40130
\(166\) 0 0
\(167\) −14.8990 −1.15292 −0.576459 0.817126i \(-0.695566\pi\)
−0.576459 + 0.817126i \(0.695566\pi\)
\(168\) 0 0
\(169\) 2.20204 0.169388
\(170\) 0 0
\(171\) −25.3485 −1.93845
\(172\) 0 0
\(173\) 20.7980 1.58124 0.790620 0.612307i \(-0.209759\pi\)
0.790620 + 0.612307i \(0.209759\pi\)
\(174\) 0 0
\(175\) −17.7980 −1.34540
\(176\) 0 0
\(177\) 22.8990 1.72119
\(178\) 0 0
\(179\) 10.8990 0.814628 0.407314 0.913288i \(-0.366465\pi\)
0.407314 + 0.913288i \(0.366465\pi\)
\(180\) 0 0
\(181\) 16.8990 1.25609 0.628046 0.778177i \(-0.283855\pi\)
0.628046 + 0.778177i \(0.283855\pi\)
\(182\) 0 0
\(183\) −9.55051 −0.705994
\(184\) 0 0
\(185\) −24.0000 −1.76452
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.89898 −0.209763 −0.104881 0.994485i \(-0.533446\pi\)
−0.104881 + 0.994485i \(0.533446\pi\)
\(192\) 0 0
\(193\) −17.8990 −1.28840 −0.644198 0.764858i \(-0.722809\pi\)
−0.644198 + 0.764858i \(0.722809\pi\)
\(194\) 0 0
\(195\) 28.6515 2.05178
\(196\) 0 0
\(197\) 10.1010 0.719668 0.359834 0.933016i \(-0.382833\pi\)
0.359834 + 0.933016i \(0.382833\pi\)
\(198\) 0 0
\(199\) −8.65153 −0.613291 −0.306645 0.951824i \(-0.599207\pi\)
−0.306645 + 0.951824i \(0.599207\pi\)
\(200\) 0 0
\(201\) 14.2020 1.00173
\(202\) 0 0
\(203\) 8.44949 0.593038
\(204\) 0 0
\(205\) 5.69694 0.397891
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.6969 1.43164
\(210\) 0 0
\(211\) 16.2474 1.11852 0.559260 0.828992i \(-0.311085\pi\)
0.559260 + 0.828992i \(0.311085\pi\)
\(212\) 0 0
\(213\) −1.10102 −0.0754407
\(214\) 0 0
\(215\) −8.69694 −0.593126
\(216\) 0 0
\(217\) −4.89898 −0.332564
\(218\) 0 0
\(219\) 19.3485 1.30745
\(220\) 0 0
\(221\) −19.1010 −1.28487
\(222\) 0 0
\(223\) −10.4495 −0.699750 −0.349875 0.936796i \(-0.613776\pi\)
−0.349875 + 0.936796i \(0.613776\pi\)
\(224\) 0 0
\(225\) 12.0000 0.800000
\(226\) 0 0
\(227\) −13.7980 −0.915803 −0.457901 0.889003i \(-0.651399\pi\)
−0.457901 + 0.889003i \(0.651399\pi\)
\(228\) 0 0
\(229\) −13.7980 −0.911795 −0.455897 0.890032i \(-0.650682\pi\)
−0.455897 + 0.890032i \(0.650682\pi\)
\(230\) 0 0
\(231\) 26.6969 1.75653
\(232\) 0 0
\(233\) 16.5959 1.08723 0.543617 0.839333i \(-0.317054\pi\)
0.543617 + 0.839333i \(0.317054\pi\)
\(234\) 0 0
\(235\) 19.3485 1.26215
\(236\) 0 0
\(237\) −29.3939 −1.90934
\(238\) 0 0
\(239\) −17.7980 −1.15125 −0.575627 0.817712i \(-0.695242\pi\)
−0.575627 + 0.817712i \(0.695242\pi\)
\(240\) 0 0
\(241\) 19.0000 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(242\) 0 0
\(243\) −22.0454 −1.41421
\(244\) 0 0
\(245\) −38.3939 −2.45289
\(246\) 0 0
\(247\) 32.9444 2.09620
\(248\) 0 0
\(249\) 7.10102 0.450009
\(250\) 0 0
\(251\) 14.6515 0.924796 0.462398 0.886672i \(-0.346989\pi\)
0.462398 + 0.886672i \(0.346989\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −36.0000 −2.25441
\(256\) 0 0
\(257\) 12.1010 0.754841 0.377420 0.926042i \(-0.376811\pi\)
0.377420 + 0.926042i \(0.376811\pi\)
\(258\) 0 0
\(259\) −35.5959 −2.21182
\(260\) 0 0
\(261\) −5.69694 −0.352632
\(262\) 0 0
\(263\) −3.55051 −0.218934 −0.109467 0.993990i \(-0.534914\pi\)
−0.109467 + 0.993990i \(0.534914\pi\)
\(264\) 0 0
\(265\) 32.3939 1.98994
\(266\) 0 0
\(267\) −26.4495 −1.61868
\(268\) 0 0
\(269\) 17.7980 1.08516 0.542580 0.840004i \(-0.317447\pi\)
0.542580 + 0.840004i \(0.317447\pi\)
\(270\) 0 0
\(271\) −13.5505 −0.823135 −0.411567 0.911379i \(-0.635019\pi\)
−0.411567 + 0.911379i \(0.635019\pi\)
\(272\) 0 0
\(273\) 42.4949 2.57191
\(274\) 0 0
\(275\) −9.79796 −0.590839
\(276\) 0 0
\(277\) −5.79796 −0.348366 −0.174183 0.984713i \(-0.555728\pi\)
−0.174183 + 0.984713i \(0.555728\pi\)
\(278\) 0 0
\(279\) 3.30306 0.197749
\(280\) 0 0
\(281\) −21.7980 −1.30036 −0.650179 0.759781i \(-0.725306\pi\)
−0.650179 + 0.759781i \(0.725306\pi\)
\(282\) 0 0
\(283\) 12.6969 0.754755 0.377377 0.926060i \(-0.376826\pi\)
0.377377 + 0.926060i \(0.376826\pi\)
\(284\) 0 0
\(285\) 62.0908 3.67794
\(286\) 0 0
\(287\) 8.44949 0.498758
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 19.3485 1.13423
\(292\) 0 0
\(293\) 30.7980 1.79924 0.899618 0.436678i \(-0.143845\pi\)
0.899618 + 0.436678i \(0.143845\pi\)
\(294\) 0 0
\(295\) −28.0454 −1.63287
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −12.8990 −0.743485
\(302\) 0 0
\(303\) 22.0454 1.26648
\(304\) 0 0
\(305\) 11.6969 0.669765
\(306\) 0 0
\(307\) −33.1464 −1.89177 −0.945883 0.324507i \(-0.894802\pi\)
−0.945883 + 0.324507i \(0.894802\pi\)
\(308\) 0 0
\(309\) −7.10102 −0.403963
\(310\) 0 0
\(311\) −22.2474 −1.26154 −0.630769 0.775971i \(-0.717260\pi\)
−0.630769 + 0.775971i \(0.717260\pi\)
\(312\) 0 0
\(313\) 5.00000 0.282617 0.141308 0.989966i \(-0.454869\pi\)
0.141308 + 0.989966i \(0.454869\pi\)
\(314\) 0 0
\(315\) 40.0454 2.25630
\(316\) 0 0
\(317\) −27.8990 −1.56696 −0.783481 0.621415i \(-0.786558\pi\)
−0.783481 + 0.621415i \(0.786558\pi\)
\(318\) 0 0
\(319\) 4.65153 0.260436
\(320\) 0 0
\(321\) 28.2929 1.57915
\(322\) 0 0
\(323\) −41.3939 −2.30322
\(324\) 0 0
\(325\) −15.5959 −0.865106
\(326\) 0 0
\(327\) 46.0454 2.54632
\(328\) 0 0
\(329\) 28.6969 1.58211
\(330\) 0 0
\(331\) −4.69694 −0.258167 −0.129084 0.991634i \(-0.541204\pi\)
−0.129084 + 0.991634i \(0.541204\pi\)
\(332\) 0 0
\(333\) 24.0000 1.31519
\(334\) 0 0
\(335\) −17.3939 −0.950329
\(336\) 0 0
\(337\) 20.1010 1.09497 0.547486 0.836815i \(-0.315585\pi\)
0.547486 + 0.836815i \(0.315585\pi\)
\(338\) 0 0
\(339\) −12.2474 −0.665190
\(340\) 0 0
\(341\) −2.69694 −0.146047
\(342\) 0 0
\(343\) −25.7980 −1.39296
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.34847 −0.394486 −0.197243 0.980355i \(-0.563199\pi\)
−0.197243 + 0.980355i \(0.563199\pi\)
\(348\) 0 0
\(349\) −18.6969 −1.00082 −0.500412 0.865787i \(-0.666818\pi\)
−0.500412 + 0.865787i \(0.666818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.6969 −0.729014 −0.364507 0.931201i \(-0.618763\pi\)
−0.364507 + 0.931201i \(0.618763\pi\)
\(354\) 0 0
\(355\) 1.34847 0.0715693
\(356\) 0 0
\(357\) −53.3939 −2.82590
\(358\) 0 0
\(359\) −3.55051 −0.187389 −0.0936944 0.995601i \(-0.529868\pi\)
−0.0936944 + 0.995601i \(0.529868\pi\)
\(360\) 0 0
\(361\) 52.3939 2.75757
\(362\) 0 0
\(363\) −12.2474 −0.642824
\(364\) 0 0
\(365\) −23.6969 −1.24035
\(366\) 0 0
\(367\) 0.651531 0.0340096 0.0170048 0.999855i \(-0.494587\pi\)
0.0170048 + 0.999855i \(0.494587\pi\)
\(368\) 0 0
\(369\) −5.69694 −0.296571
\(370\) 0 0
\(371\) 48.0454 2.49439
\(372\) 0 0
\(373\) 20.4949 1.06119 0.530593 0.847627i \(-0.321969\pi\)
0.530593 + 0.847627i \(0.321969\pi\)
\(374\) 0 0
\(375\) 7.34847 0.379473
\(376\) 0 0
\(377\) 7.40408 0.381330
\(378\) 0 0
\(379\) 23.5505 1.20971 0.604854 0.796336i \(-0.293231\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(380\) 0 0
\(381\) 7.10102 0.363796
\(382\) 0 0
\(383\) 22.8990 1.17008 0.585042 0.811003i \(-0.301078\pi\)
0.585042 + 0.811003i \(0.301078\pi\)
\(384\) 0 0
\(385\) −32.6969 −1.66639
\(386\) 0 0
\(387\) 8.69694 0.442090
\(388\) 0 0
\(389\) 38.2929 1.94152 0.970762 0.240042i \(-0.0771613\pi\)
0.970762 + 0.240042i \(0.0771613\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −15.3031 −0.771937
\(394\) 0 0
\(395\) 36.0000 1.81136
\(396\) 0 0
\(397\) 10.7980 0.541934 0.270967 0.962589i \(-0.412657\pi\)
0.270967 + 0.962589i \(0.412657\pi\)
\(398\) 0 0
\(399\) 92.0908 4.61031
\(400\) 0 0
\(401\) −33.4949 −1.67266 −0.836328 0.548230i \(-0.815302\pi\)
−0.836328 + 0.548230i \(0.815302\pi\)
\(402\) 0 0
\(403\) −4.29286 −0.213842
\(404\) 0 0
\(405\) 27.0000 1.34164
\(406\) 0 0
\(407\) −19.5959 −0.971334
\(408\) 0 0
\(409\) 20.8990 1.03339 0.516694 0.856170i \(-0.327162\pi\)
0.516694 + 0.856170i \(0.327162\pi\)
\(410\) 0 0
\(411\) −5.14643 −0.253855
\(412\) 0 0
\(413\) −41.5959 −2.04680
\(414\) 0 0
\(415\) −8.69694 −0.426916
\(416\) 0 0
\(417\) 40.8990 2.00283
\(418\) 0 0
\(419\) −25.3939 −1.24057 −0.620286 0.784376i \(-0.712983\pi\)
−0.620286 + 0.784376i \(0.712983\pi\)
\(420\) 0 0
\(421\) 5.59592 0.272728 0.136364 0.990659i \(-0.456458\pi\)
0.136364 + 0.990659i \(0.456458\pi\)
\(422\) 0 0
\(423\) −19.3485 −0.940755
\(424\) 0 0
\(425\) 19.5959 0.950542
\(426\) 0 0
\(427\) 17.3485 0.839551
\(428\) 0 0
\(429\) 23.3939 1.12947
\(430\) 0 0
\(431\) 4.65153 0.224056 0.112028 0.993705i \(-0.464265\pi\)
0.112028 + 0.993705i \(0.464265\pi\)
\(432\) 0 0
\(433\) 11.8990 0.571828 0.285914 0.958255i \(-0.407703\pi\)
0.285914 + 0.958255i \(0.407703\pi\)
\(434\) 0 0
\(435\) 13.9546 0.669071
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −6.89898 −0.329270 −0.164635 0.986355i \(-0.552645\pi\)
−0.164635 + 0.986355i \(0.552645\pi\)
\(440\) 0 0
\(441\) 38.3939 1.82828
\(442\) 0 0
\(443\) 13.1010 0.622448 0.311224 0.950337i \(-0.399261\pi\)
0.311224 + 0.950337i \(0.399261\pi\)
\(444\) 0 0
\(445\) 32.3939 1.53562
\(446\) 0 0
\(447\) 14.4495 0.683437
\(448\) 0 0
\(449\) −7.89898 −0.372776 −0.186388 0.982476i \(-0.559678\pi\)
−0.186388 + 0.982476i \(0.559678\pi\)
\(450\) 0 0
\(451\) 4.65153 0.219032
\(452\) 0 0
\(453\) 20.2020 0.949175
\(454\) 0 0
\(455\) −52.0454 −2.43993
\(456\) 0 0
\(457\) 17.8990 0.837279 0.418639 0.908153i \(-0.362507\pi\)
0.418639 + 0.908153i \(0.362507\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.3939 −0.763539 −0.381769 0.924258i \(-0.624685\pi\)
−0.381769 + 0.924258i \(0.624685\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) −8.09082 −0.375203
\(466\) 0 0
\(467\) 2.20204 0.101898 0.0509492 0.998701i \(-0.483775\pi\)
0.0509492 + 0.998701i \(0.483775\pi\)
\(468\) 0 0
\(469\) −25.7980 −1.19124
\(470\) 0 0
\(471\) −7.34847 −0.338600
\(472\) 0 0
\(473\) −7.10102 −0.326505
\(474\) 0 0
\(475\) −33.7980 −1.55076
\(476\) 0 0
\(477\) −32.3939 −1.48321
\(478\) 0 0
\(479\) 30.8990 1.41181 0.705905 0.708306i \(-0.250540\pi\)
0.705905 + 0.708306i \(0.250540\pi\)
\(480\) 0 0
\(481\) −31.1918 −1.42223
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −23.6969 −1.07602
\(486\) 0 0
\(487\) −2.24745 −0.101842 −0.0509208 0.998703i \(-0.516216\pi\)
−0.0509208 + 0.998703i \(0.516216\pi\)
\(488\) 0 0
\(489\) −30.4949 −1.37903
\(490\) 0 0
\(491\) 14.8990 0.672382 0.336191 0.941794i \(-0.390861\pi\)
0.336191 + 0.941794i \(0.390861\pi\)
\(492\) 0 0
\(493\) −9.30306 −0.418989
\(494\) 0 0
\(495\) 22.0454 0.990867
\(496\) 0 0
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) −3.59592 −0.160975 −0.0804877 0.996756i \(-0.525648\pi\)
−0.0804877 + 0.996756i \(0.525648\pi\)
\(500\) 0 0
\(501\) −36.4949 −1.63047
\(502\) 0 0
\(503\) 21.1464 0.942873 0.471436 0.881900i \(-0.343736\pi\)
0.471436 + 0.881900i \(0.343736\pi\)
\(504\) 0 0
\(505\) −27.0000 −1.20148
\(506\) 0 0
\(507\) 5.39388 0.239550
\(508\) 0 0
\(509\) −16.5959 −0.735601 −0.367801 0.929905i \(-0.619889\pi\)
−0.367801 + 0.929905i \(0.619889\pi\)
\(510\) 0 0
\(511\) −35.1464 −1.55479
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.69694 0.383233
\(516\) 0 0
\(517\) 15.7980 0.694793
\(518\) 0 0
\(519\) 50.9444 2.23621
\(520\) 0 0
\(521\) −36.8990 −1.61657 −0.808287 0.588789i \(-0.799605\pi\)
−0.808287 + 0.588789i \(0.799605\pi\)
\(522\) 0 0
\(523\) −7.59592 −0.332146 −0.166073 0.986113i \(-0.553109\pi\)
−0.166073 + 0.986113i \(0.553109\pi\)
\(524\) 0 0
\(525\) −43.5959 −1.90268
\(526\) 0 0
\(527\) 5.39388 0.234961
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 28.0454 1.21707
\(532\) 0 0
\(533\) 7.40408 0.320706
\(534\) 0 0
\(535\) −34.6515 −1.49812
\(536\) 0 0
\(537\) 26.6969 1.15206
\(538\) 0 0
\(539\) −31.3485 −1.35027
\(540\) 0 0
\(541\) −18.3939 −0.790815 −0.395407 0.918506i \(-0.629397\pi\)
−0.395407 + 0.918506i \(0.629397\pi\)
\(542\) 0 0
\(543\) 41.3939 1.77638
\(544\) 0 0
\(545\) −56.3939 −2.41565
\(546\) 0 0
\(547\) 36.6969 1.56905 0.784524 0.620099i \(-0.212907\pi\)
0.784524 + 0.620099i \(0.212907\pi\)
\(548\) 0 0
\(549\) −11.6969 −0.499213
\(550\) 0 0
\(551\) 16.0454 0.683557
\(552\) 0 0
\(553\) 53.3939 2.27054
\(554\) 0 0
\(555\) −58.7878 −2.49540
\(556\) 0 0
\(557\) 3.69694 0.156644 0.0783222 0.996928i \(-0.475044\pi\)
0.0783222 + 0.996928i \(0.475044\pi\)
\(558\) 0 0
\(559\) −11.3031 −0.478069
\(560\) 0 0
\(561\) −29.3939 −1.24101
\(562\) 0 0
\(563\) 46.0908 1.94250 0.971248 0.238069i \(-0.0765146\pi\)
0.971248 + 0.238069i \(0.0765146\pi\)
\(564\) 0 0
\(565\) 15.0000 0.631055
\(566\) 0 0
\(567\) 40.0454 1.68175
\(568\) 0 0
\(569\) −27.4949 −1.15265 −0.576323 0.817222i \(-0.695513\pi\)
−0.576323 + 0.817222i \(0.695513\pi\)
\(570\) 0 0
\(571\) −42.4495 −1.77646 −0.888228 0.459403i \(-0.848063\pi\)
−0.888228 + 0.459403i \(0.848063\pi\)
\(572\) 0 0
\(573\) −7.10102 −0.296649
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.5959 0.566005 0.283003 0.959119i \(-0.408669\pi\)
0.283003 + 0.959119i \(0.408669\pi\)
\(578\) 0 0
\(579\) −43.8434 −1.82207
\(580\) 0 0
\(581\) −12.8990 −0.535140
\(582\) 0 0
\(583\) 26.4495 1.09543
\(584\) 0 0
\(585\) 35.0908 1.45083
\(586\) 0 0
\(587\) −31.5959 −1.30410 −0.652052 0.758175i \(-0.726091\pi\)
−0.652052 + 0.758175i \(0.726091\pi\)
\(588\) 0 0
\(589\) −9.30306 −0.383326
\(590\) 0 0
\(591\) 24.7423 1.01776
\(592\) 0 0
\(593\) −27.1010 −1.11291 −0.556453 0.830879i \(-0.687838\pi\)
−0.556453 + 0.830879i \(0.687838\pi\)
\(594\) 0 0
\(595\) 65.3939 2.68089
\(596\) 0 0
\(597\) −21.1918 −0.867324
\(598\) 0 0
\(599\) −1.34847 −0.0550970 −0.0275485 0.999620i \(-0.508770\pi\)
−0.0275485 + 0.999620i \(0.508770\pi\)
\(600\) 0 0
\(601\) −14.7980 −0.603621 −0.301811 0.953368i \(-0.597591\pi\)
−0.301811 + 0.953368i \(0.597591\pi\)
\(602\) 0 0
\(603\) 17.3939 0.708333
\(604\) 0 0
\(605\) 15.0000 0.609837
\(606\) 0 0
\(607\) 11.5505 0.468821 0.234410 0.972138i \(-0.424684\pi\)
0.234410 + 0.972138i \(0.424684\pi\)
\(608\) 0 0
\(609\) 20.6969 0.838682
\(610\) 0 0
\(611\) 25.1464 1.01732
\(612\) 0 0
\(613\) 8.10102 0.327197 0.163599 0.986527i \(-0.447690\pi\)
0.163599 + 0.986527i \(0.447690\pi\)
\(614\) 0 0
\(615\) 13.9546 0.562703
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −6.20204 −0.249281 −0.124641 0.992202i \(-0.539778\pi\)
−0.124641 + 0.992202i \(0.539778\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 48.0454 1.92490
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 50.6969 2.02464
\(628\) 0 0
\(629\) 39.1918 1.56268
\(630\) 0 0
\(631\) −24.6969 −0.983170 −0.491585 0.870830i \(-0.663582\pi\)
−0.491585 + 0.870830i \(0.663582\pi\)
\(632\) 0 0
\(633\) 39.7980 1.58183
\(634\) 0 0
\(635\) −8.69694 −0.345127
\(636\) 0 0
\(637\) −49.8990 −1.97707
\(638\) 0 0
\(639\) −1.34847 −0.0533446
\(640\) 0 0
\(641\) −6.10102 −0.240976 −0.120488 0.992715i \(-0.538446\pi\)
−0.120488 + 0.992715i \(0.538446\pi\)
\(642\) 0 0
\(643\) −19.1464 −0.755061 −0.377531 0.925997i \(-0.623227\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(644\) 0 0
\(645\) −21.3031 −0.838807
\(646\) 0 0
\(647\) 19.3485 0.760667 0.380333 0.924849i \(-0.375809\pi\)
0.380333 + 0.924849i \(0.375809\pi\)
\(648\) 0 0
\(649\) −22.8990 −0.898864
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 0 0
\(653\) 0.303062 0.0118597 0.00592986 0.999982i \(-0.498112\pi\)
0.00592986 + 0.999982i \(0.498112\pi\)
\(654\) 0 0
\(655\) 18.7423 0.732324
\(656\) 0 0
\(657\) 23.6969 0.924506
\(658\) 0 0
\(659\) −6.20204 −0.241597 −0.120799 0.992677i \(-0.538546\pi\)
−0.120799 + 0.992677i \(0.538546\pi\)
\(660\) 0 0
\(661\) −0.303062 −0.0117877 −0.00589386 0.999983i \(-0.501876\pi\)
−0.00589386 + 0.999983i \(0.501876\pi\)
\(662\) 0 0
\(663\) −46.7878 −1.81709
\(664\) 0 0
\(665\) −112.788 −4.37372
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −25.5959 −0.989595
\(670\) 0 0
\(671\) 9.55051 0.368693
\(672\) 0 0
\(673\) 1.79796 0.0693062 0.0346531 0.999399i \(-0.488967\pi\)
0.0346531 + 0.999399i \(0.488967\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.10102 0.0807488 0.0403744 0.999185i \(-0.487145\pi\)
0.0403744 + 0.999185i \(0.487145\pi\)
\(678\) 0 0
\(679\) −35.1464 −1.34880
\(680\) 0 0
\(681\) −33.7980 −1.29514
\(682\) 0 0
\(683\) 33.3939 1.27778 0.638891 0.769298i \(-0.279394\pi\)
0.638891 + 0.769298i \(0.279394\pi\)
\(684\) 0 0
\(685\) 6.30306 0.240828
\(686\) 0 0
\(687\) −33.7980 −1.28947
\(688\) 0 0
\(689\) 42.1010 1.60392
\(690\) 0 0
\(691\) −44.2929 −1.68498 −0.842490 0.538712i \(-0.818911\pi\)
−0.842490 + 0.538712i \(0.818911\pi\)
\(692\) 0 0
\(693\) 32.6969 1.24205
\(694\) 0 0
\(695\) −50.0908 −1.90005
\(696\) 0 0
\(697\) −9.30306 −0.352379
\(698\) 0 0
\(699\) 40.6515 1.53758
\(700\) 0 0
\(701\) 2.20204 0.0831699 0.0415850 0.999135i \(-0.486759\pi\)
0.0415850 + 0.999135i \(0.486759\pi\)
\(702\) 0 0
\(703\) −67.5959 −2.54943
\(704\) 0 0
\(705\) 47.3939 1.78496
\(706\) 0 0
\(707\) −40.0454 −1.50606
\(708\) 0 0
\(709\) −5.00000 −0.187779 −0.0938895 0.995583i \(-0.529930\pi\)
−0.0938895 + 0.995583i \(0.529930\pi\)
\(710\) 0 0
\(711\) −36.0000 −1.35011
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −28.6515 −1.07151
\(716\) 0 0
\(717\) −43.5959 −1.62812
\(718\) 0 0
\(719\) 14.4949 0.540568 0.270284 0.962781i \(-0.412882\pi\)
0.270284 + 0.962781i \(0.412882\pi\)
\(720\) 0 0
\(721\) 12.8990 0.480383
\(722\) 0 0
\(723\) 46.5403 1.73085
\(724\) 0 0
\(725\) −7.59592 −0.282105
\(726\) 0 0
\(727\) 15.5505 0.576737 0.288368 0.957520i \(-0.406887\pi\)
0.288368 + 0.957520i \(0.406887\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 14.2020 0.525281
\(732\) 0 0
\(733\) −4.79796 −0.177217 −0.0886083 0.996067i \(-0.528242\pi\)
−0.0886083 + 0.996067i \(0.528242\pi\)
\(734\) 0 0
\(735\) −94.0454 −3.46892
\(736\) 0 0
\(737\) −14.2020 −0.523139
\(738\) 0 0
\(739\) −3.95459 −0.145472 −0.0727360 0.997351i \(-0.523173\pi\)
−0.0727360 + 0.997351i \(0.523173\pi\)
\(740\) 0 0
\(741\) 80.6969 2.96448
\(742\) 0 0
\(743\) −9.55051 −0.350374 −0.175187 0.984535i \(-0.556053\pi\)
−0.175187 + 0.984535i \(0.556053\pi\)
\(744\) 0 0
\(745\) −17.6969 −0.648366
\(746\) 0 0
\(747\) 8.69694 0.318204
\(748\) 0 0
\(749\) −51.3939 −1.87789
\(750\) 0 0
\(751\) −44.7423 −1.63267 −0.816336 0.577578i \(-0.803998\pi\)
−0.816336 + 0.577578i \(0.803998\pi\)
\(752\) 0 0
\(753\) 35.8888 1.30786
\(754\) 0 0
\(755\) −24.7423 −0.900466
\(756\) 0 0
\(757\) 7.89898 0.287093 0.143547 0.989644i \(-0.454149\pi\)
0.143547 + 0.989644i \(0.454149\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 46.3939 1.68178 0.840888 0.541209i \(-0.182033\pi\)
0.840888 + 0.541209i \(0.182033\pi\)
\(762\) 0 0
\(763\) −83.6413 −3.02802
\(764\) 0 0
\(765\) −44.0908 −1.59411
\(766\) 0 0
\(767\) −36.4495 −1.31611
\(768\) 0 0
\(769\) −32.4949 −1.17180 −0.585898 0.810385i \(-0.699258\pi\)
−0.585898 + 0.810385i \(0.699258\pi\)
\(770\) 0 0
\(771\) 29.6413 1.06751
\(772\) 0 0
\(773\) 10.0000 0.359675 0.179838 0.983696i \(-0.442443\pi\)
0.179838 + 0.983696i \(0.442443\pi\)
\(774\) 0 0
\(775\) 4.40408 0.158199
\(776\) 0 0
\(777\) −87.1918 −3.12799
\(778\) 0 0
\(779\) 16.0454 0.574886
\(780\) 0 0
\(781\) 1.10102 0.0393976
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.00000 0.321224
\(786\) 0 0
\(787\) −27.3485 −0.974868 −0.487434 0.873160i \(-0.662067\pi\)
−0.487434 + 0.873160i \(0.662067\pi\)
\(788\) 0 0
\(789\) −8.69694 −0.309619
\(790\) 0 0
\(791\) 22.2474 0.791028
\(792\) 0 0
\(793\) 15.2020 0.539840
\(794\) 0 0
\(795\) 79.3485 2.81420
\(796\) 0 0
\(797\) 31.5959 1.11918 0.559592 0.828768i \(-0.310958\pi\)
0.559592 + 0.828768i \(0.310958\pi\)
\(798\) 0 0
\(799\) −31.5959 −1.11778
\(800\) 0 0
\(801\) −32.3939 −1.14458
\(802\) 0 0
\(803\) −19.3485 −0.682793
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 43.5959 1.53465
\(808\) 0 0
\(809\) 33.5959 1.18117 0.590585 0.806976i \(-0.298897\pi\)
0.590585 + 0.806976i \(0.298897\pi\)
\(810\) 0 0
\(811\) 34.9444 1.22706 0.613532 0.789670i \(-0.289748\pi\)
0.613532 + 0.789670i \(0.289748\pi\)
\(812\) 0 0
\(813\) −33.1918 −1.16409
\(814\) 0 0
\(815\) 37.3485 1.30826
\(816\) 0 0
\(817\) −24.4949 −0.856968
\(818\) 0 0
\(819\) 52.0454 1.81861
\(820\) 0 0
\(821\) 45.4949 1.58778 0.793891 0.608060i \(-0.208052\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(822\) 0 0
\(823\) 1.95459 0.0681328 0.0340664 0.999420i \(-0.489154\pi\)
0.0340664 + 0.999420i \(0.489154\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) −24.2474 −0.843166 −0.421583 0.906790i \(-0.638525\pi\)
−0.421583 + 0.906790i \(0.638525\pi\)
\(828\) 0 0
\(829\) 33.0000 1.14614 0.573069 0.819507i \(-0.305753\pi\)
0.573069 + 0.819507i \(0.305753\pi\)
\(830\) 0 0
\(831\) −14.2020 −0.492663
\(832\) 0 0
\(833\) 62.6969 2.17232
\(834\) 0 0
\(835\) 44.6969 1.54680
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −32.9444 −1.13737 −0.568683 0.822557i \(-0.692547\pi\)
−0.568683 + 0.822557i \(0.692547\pi\)
\(840\) 0 0
\(841\) −25.3939 −0.875651
\(842\) 0 0
\(843\) −53.3939 −1.83898
\(844\) 0 0
\(845\) −6.60612 −0.227258
\(846\) 0 0
\(847\) 22.2474 0.764431
\(848\) 0 0
\(849\) 31.1010 1.06738
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 23.1010 0.790964 0.395482 0.918474i \(-0.370578\pi\)
0.395482 + 0.918474i \(0.370578\pi\)
\(854\) 0 0
\(855\) 76.0454 2.60070
\(856\) 0 0
\(857\) 52.3939 1.78974 0.894870 0.446326i \(-0.147268\pi\)
0.894870 + 0.446326i \(0.147268\pi\)
\(858\) 0 0
\(859\) 3.34847 0.114248 0.0571241 0.998367i \(-0.481807\pi\)
0.0571241 + 0.998367i \(0.481807\pi\)
\(860\) 0 0
\(861\) 20.6969 0.705350
\(862\) 0 0
\(863\) −28.2474 −0.961554 −0.480777 0.876843i \(-0.659645\pi\)
−0.480777 + 0.876843i \(0.659645\pi\)
\(864\) 0 0
\(865\) −62.3939 −2.12146
\(866\) 0 0
\(867\) 17.1464 0.582323
\(868\) 0 0
\(869\) 29.3939 0.997119
\(870\) 0 0
\(871\) −22.6061 −0.765979
\(872\) 0 0
\(873\) 23.6969 0.802020
\(874\) 0 0
\(875\) −13.3485 −0.451261
\(876\) 0 0
\(877\) 7.10102 0.239784 0.119892 0.992787i \(-0.461745\pi\)
0.119892 + 0.992787i \(0.461745\pi\)
\(878\) 0 0
\(879\) 75.4393 2.54450
\(880\) 0 0
\(881\) 41.0908 1.38438 0.692192 0.721713i \(-0.256645\pi\)
0.692192 + 0.721713i \(0.256645\pi\)
\(882\) 0 0
\(883\) −28.0454 −0.943803 −0.471902 0.881651i \(-0.656432\pi\)
−0.471902 + 0.881651i \(0.656432\pi\)
\(884\) 0 0
\(885\) −68.6969 −2.30922
\(886\) 0 0
\(887\) 33.7980 1.13482 0.567412 0.823434i \(-0.307945\pi\)
0.567412 + 0.823434i \(0.307945\pi\)
\(888\) 0 0
\(889\) −12.8990 −0.432618
\(890\) 0 0
\(891\) 22.0454 0.738549
\(892\) 0 0
\(893\) 54.4949 1.82360
\(894\) 0 0
\(895\) −32.6969 −1.09294
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.09082 −0.0697326
\(900\) 0 0
\(901\) −52.8990 −1.76232
\(902\) 0 0
\(903\) −31.5959 −1.05145
\(904\) 0 0
\(905\) −50.6969 −1.68522
\(906\) 0 0
\(907\) −42.9444 −1.42594 −0.712972 0.701192i \(-0.752652\pi\)
−0.712972 + 0.701192i \(0.752652\pi\)
\(908\) 0 0
\(909\) 27.0000 0.895533
\(910\) 0 0
\(911\) −6.89898 −0.228573 −0.114287 0.993448i \(-0.536458\pi\)
−0.114287 + 0.993448i \(0.536458\pi\)
\(912\) 0 0
\(913\) −7.10102 −0.235009
\(914\) 0 0
\(915\) 28.6515 0.947190
\(916\) 0 0
\(917\) 27.7980 0.917969
\(918\) 0 0
\(919\) 2.65153 0.0874659 0.0437330 0.999043i \(-0.486075\pi\)
0.0437330 + 0.999043i \(0.486075\pi\)
\(920\) 0 0
\(921\) −81.1918 −2.67536
\(922\) 0 0
\(923\) 1.75255 0.0576859
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) −8.69694 −0.285645
\(928\) 0 0
\(929\) 16.4949 0.541180 0.270590 0.962695i \(-0.412781\pi\)
0.270590 + 0.962695i \(0.412781\pi\)
\(930\) 0 0
\(931\) −108.136 −3.54402
\(932\) 0 0
\(933\) −54.4949 −1.78408
\(934\) 0 0
\(935\) 36.0000 1.17733
\(936\) 0 0
\(937\) 27.1010 0.885352 0.442676 0.896682i \(-0.354029\pi\)
0.442676 + 0.896682i \(0.354029\pi\)
\(938\) 0 0
\(939\) 12.2474 0.399680
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.1918 0.753633 0.376817 0.926288i \(-0.377019\pi\)
0.376817 + 0.926288i \(0.377019\pi\)
\(948\) 0 0
\(949\) −30.7980 −0.999744
\(950\) 0 0
\(951\) −68.3383 −2.21602
\(952\) 0 0
\(953\) −23.6969 −0.767619 −0.383810 0.923412i \(-0.625388\pi\)
−0.383810 + 0.923412i \(0.625388\pi\)
\(954\) 0 0
\(955\) 8.69694 0.281426
\(956\) 0 0
\(957\) 11.3939 0.368312
\(958\) 0 0
\(959\) 9.34847 0.301878
\(960\) 0 0
\(961\) −29.7878 −0.960895
\(962\) 0 0
\(963\) 34.6515 1.11663
\(964\) 0 0
\(965\) 53.6969 1.72857
\(966\) 0 0
\(967\) −41.3485 −1.32968 −0.664839 0.746987i \(-0.731500\pi\)
−0.664839 + 0.746987i \(0.731500\pi\)
\(968\) 0 0
\(969\) −101.394 −3.25724
\(970\) 0 0
\(971\) 16.7423 0.537287 0.268644 0.963240i \(-0.413425\pi\)
0.268644 + 0.963240i \(0.413425\pi\)
\(972\) 0 0
\(973\) −74.2929 −2.38172
\(974\) 0 0
\(975\) −38.2020 −1.22344
\(976\) 0 0
\(977\) 11.6969 0.374218 0.187109 0.982339i \(-0.440088\pi\)
0.187109 + 0.982339i \(0.440088\pi\)
\(978\) 0 0
\(979\) 26.4495 0.845329
\(980\) 0 0
\(981\) 56.3939 1.80052
\(982\) 0 0
\(983\) 17.1010 0.545438 0.272719 0.962094i \(-0.412077\pi\)
0.272719 + 0.962094i \(0.412077\pi\)
\(984\) 0 0
\(985\) −30.3031 −0.965536
\(986\) 0 0
\(987\) 70.2929 2.23745
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −48.9898 −1.55621 −0.778106 0.628133i \(-0.783819\pi\)
−0.778106 + 0.628133i \(0.783819\pi\)
\(992\) 0 0
\(993\) −11.5051 −0.365103
\(994\) 0 0
\(995\) 25.9546 0.822816
\(996\) 0 0
\(997\) 24.3939 0.772562 0.386281 0.922381i \(-0.373760\pi\)
0.386281 + 0.922381i \(0.373760\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.y.1.2 2
4.3 odd 2 4232.2.a.p.1.1 2
23.22 odd 2 8464.2.a.bc.1.2 2
92.91 even 2 4232.2.a.q.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.p.1.1 2 4.3 odd 2
4232.2.a.q.1.1 yes 2 92.91 even 2
8464.2.a.y.1.2 2 1.1 even 1 trivial
8464.2.a.bc.1.2 2 23.22 odd 2