L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (−0.987 + 0.156i)5-s + (−0.156 − 0.987i)8-s + (0.951 + 0.309i)10-s + (−0.896 − 1.76i)13-s + (−0.309 + 0.951i)16-s + (1.87 − 0.297i)17-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + 1.97i·26-s + (1.44 − 1.04i)29-s + (0.707 − 0.707i)32-s + (−1.80 − 0.587i)34-s + (0.809 − 0.412i)37-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (−0.987 + 0.156i)5-s + (−0.156 − 0.987i)8-s + (0.951 + 0.309i)10-s + (−0.896 − 1.76i)13-s + (−0.309 + 0.951i)16-s + (1.87 − 0.297i)17-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + 1.97i·26-s + (1.44 − 1.04i)29-s + (0.707 − 0.707i)32-s + (−1.80 − 0.587i)34-s + (0.809 − 0.412i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5370348359\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5370348359\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.891 + 0.453i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.987 - 0.156i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.896 + 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (-1.87 + 0.297i)T + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (-1.44 + 1.04i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 0.412i)T + (0.587 - 0.809i)T^{2} \) |
| 41 | \( 1 + (0.297 + 0.0966i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (1.16 + 0.183i)T + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.278 + 0.142i)T + (0.587 + 0.809i)T^{2} \) |
| 79 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 89 | \( 1 + (0.280 + 0.863i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (1.76 + 0.278i)T + (0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14187416871903901768840820021, −9.530535003300153030407508728559, −8.137920939482265566060771261649, −7.943759655829877788392517519113, −7.18340668232805453593223807273, −5.93040802236101095765148118835, −4.68538096177814200061650787726, −3.37061683995461990215091699819, −2.77181975301344430612239502277, −0.800737410943779763670657227828,
1.39622071123164531093632587568, 2.97849505773504656027527218061, 4.36930043618597602290040361502, 5.27320367621786531408599916330, 6.53103093691612159409917816161, 7.21039953847556823222320527991, 7.967875545285242817702062677209, 8.703030138584828463305306620173, 9.577687336697017679990293943432, 10.25533520458262273922590206509