L(s) = 1 | + (−1.38 + 0.295i)2-s + (−1.64 − 0.531i)3-s + (1.82 − 0.817i)4-s + (2.43 + 0.247i)6-s + (−2.08 + 3.61i)7-s + (−2.28 + 1.67i)8-s + (2.43 + 1.75i)9-s + (−3.22 + 5.57i)11-s + (−3.44 + 0.378i)12-s + (1.53 − 0.887i)13-s + (1.81 − 5.61i)14-s + (2.66 − 2.98i)16-s + 0.950·17-s + (−3.88 − 1.70i)18-s − 2.19i·19-s + ⋯ |
L(s) = 1 | + (−0.977 + 0.209i)2-s + (−0.951 − 0.306i)3-s + (0.912 − 0.408i)4-s + (0.994 + 0.101i)6-s + (−0.788 + 1.36i)7-s + (−0.806 + 0.590i)8-s + (0.811 + 0.584i)9-s + (−0.971 + 1.68i)11-s + (−0.994 + 0.109i)12-s + (0.426 − 0.246i)13-s + (0.485 − 1.49i)14-s + (0.665 − 0.746i)16-s + 0.230·17-s + (−0.915 − 0.401i)18-s − 0.503i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.819 + 0.573i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.819 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0227332 - 0.0721774i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0227332 - 0.0721774i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 - 0.295i)T \) |
| 3 | \( 1 + (1.64 + 0.531i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (2.08 - 3.61i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.22 - 5.57i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.53 + 0.887i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 0.950T + 17T^{2} \) |
| 19 | \( 1 + 2.19iT - 19T^{2} \) |
| 23 | \( 1 + (-1.74 + 1.01i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.65 + 3.26i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.46 + 1.42i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 5.83iT - 37T^{2} \) |
| 41 | \( 1 + (6.16 - 3.55i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.65 + 4.59i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.349 + 0.201i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 4.87T + 53T^{2} \) |
| 59 | \( 1 + (-1.34 - 2.32i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.04 - 3.54i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.44 + 9.43i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.23T + 71T^{2} \) |
| 73 | \( 1 + 1.74iT - 73T^{2} \) |
| 79 | \( 1 + (0.214 + 0.123i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (10.1 + 5.83i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.13iT - 89T^{2} \) |
| 97 | \( 1 + (-15.7 - 9.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36265773578019029178792621409, −9.853252984327107190919732442079, −9.064395312540465964366297951978, −7.994905009010870658175189302232, −7.21731104582358157175839459894, −6.39553639295459336010379023433, −5.64950169595843359210450618847, −4.83161989047987755089299683268, −2.80169313632431834242878374529, −1.83485039388050321110250940379,
0.06288348438562582030974291662, 1.14427857683208484313900950333, 3.20596671888702095242000964035, 3.87759972531138006674528060837, 5.48396599439314403067804666702, 6.26880400088140472775013522000, 7.09007382237209152218451003489, 7.88839247246327611809660087927, 8.935646905849912559751750184383, 9.830893479801243539900519193255