Properties

Label 900.2.o.b.299.2
Level $900$
Weight $2$
Character 900.299
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(299,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.299");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.2
Character \(\chi\) \(=\) 900.299
Dual form 900.2.o.b.599.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38296 + 0.295692i) q^{2} +(-1.64850 - 0.531460i) q^{3} +(1.82513 - 0.817857i) q^{4} +(2.43695 + 0.247538i) q^{6} +(-2.08506 + 3.61144i) q^{7} +(-2.28224 + 1.67074i) q^{8} +(2.43510 + 1.75222i) q^{9} +(-3.22095 + 5.57886i) q^{11} +(-3.44339 + 0.378252i) q^{12} +(1.53691 - 0.887336i) q^{13} +(1.81568 - 5.61099i) q^{14} +(2.66222 - 2.98539i) q^{16} +0.950682 q^{17} +(-3.88575 - 1.70321i) q^{18} -2.19286i q^{19} +(5.35656 - 4.84532i) q^{21} +(2.80482 - 8.66772i) q^{22} +(1.74948 - 1.01006i) q^{23} +(4.65021 - 1.54129i) q^{24} +(-1.86310 + 1.68160i) q^{26} +(-3.08303 - 4.18270i) q^{27} +(-0.851880 + 8.29663i) q^{28} +(-5.65260 - 3.26353i) q^{29} +(2.46164 - 1.42123i) q^{31} +(-2.79898 + 4.91587i) q^{32} +(8.27468 - 7.48493i) q^{33} +(-1.31475 + 0.281109i) q^{34} +(5.87745 + 1.20647i) q^{36} +5.83599i q^{37} +(0.648412 + 3.03263i) q^{38} +(-3.00518 + 0.645966i) q^{39} +(-6.16222 + 3.55776i) q^{41} +(-5.97516 + 8.28476i) q^{42} +(2.65491 - 4.59844i) q^{43} +(-1.31596 + 12.8164i) q^{44} +(-2.12079 + 1.91418i) q^{46} +(-0.349867 - 0.201996i) q^{47} +(-5.97529 + 3.50656i) q^{48} +(-5.19498 - 8.99797i) q^{49} +(-1.56720 - 0.505249i) q^{51} +(2.07935 - 2.87648i) q^{52} -4.87844 q^{53} +(5.50048 + 4.87286i) q^{54} +(-1.27513 - 11.7258i) q^{56} +(-1.16542 + 3.61494i) q^{57} +(8.78229 + 2.84189i) q^{58} +(1.34391 + 2.32773i) q^{59} +(-2.04652 + 3.54468i) q^{61} +(-2.98409 + 2.69338i) q^{62} +(-11.4054 + 5.14072i) q^{63} +(2.41728 - 7.62606i) q^{64} +(-9.23028 + 12.7981i) q^{66} +(-5.44797 - 9.43616i) q^{67} +(1.73512 - 0.777522i) q^{68} +(-3.42083 + 0.735311i) q^{69} -2.23126 q^{71} +(-8.48500 + 0.0694119i) q^{72} -1.74662i q^{73} +(-1.72565 - 8.07091i) q^{74} +(-1.79345 - 4.00227i) q^{76} +(-13.4318 - 23.2645i) q^{77} +(3.96502 - 1.78195i) q^{78} +(-0.214428 - 0.123800i) q^{79} +(2.85943 + 8.53368i) q^{81} +(7.47008 - 6.74234i) q^{82} +(-10.1090 - 5.83641i) q^{83} +(5.81365 - 13.2243i) q^{84} +(-2.31191 + 7.14448i) q^{86} +(7.58387 + 8.38406i) q^{87} +(-1.96979 - 18.1137i) q^{88} -6.13881i q^{89} +7.40061i q^{91} +(2.36695 - 3.27433i) q^{92} +(-4.81334 + 1.03463i) q^{93} +(0.543580 + 0.175899i) q^{94} +(7.22670 - 6.61626i) q^{96} +(15.7357 + 9.08503i) q^{97} +(9.84505 + 10.9077i) q^{98} +(-17.6187 + 7.94125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{6} - 12 q^{8} - 4 q^{9} - 28 q^{12} + 30 q^{14} + 18 q^{18} - 4 q^{21} + 42 q^{22} + 28 q^{24} + 12 q^{29} + 48 q^{33} + 6 q^{34} + 42 q^{36} + 6 q^{38} - 60 q^{41} - 16 q^{42} - 12 q^{46} + 74 q^{48}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38296 + 0.295692i −0.977897 + 0.209086i
\(3\) −1.64850 0.531460i −0.951762 0.306838i
\(4\) 1.82513 0.817857i 0.912566 0.408928i
\(5\) 0 0
\(6\) 2.43695 + 0.247538i 0.994881 + 0.101057i
\(7\) −2.08506 + 3.61144i −0.788080 + 1.36499i 0.139062 + 0.990284i \(0.455591\pi\)
−0.927142 + 0.374711i \(0.877742\pi\)
\(8\) −2.28224 + 1.67074i −0.806895 + 0.590694i
\(9\) 2.43510 + 1.75222i 0.811700 + 0.584074i
\(10\) 0 0
\(11\) −3.22095 + 5.57886i −0.971154 + 1.68209i −0.279071 + 0.960271i \(0.590026\pi\)
−0.692083 + 0.721818i \(0.743307\pi\)
\(12\) −3.44339 + 0.378252i −0.994021 + 0.109192i
\(13\) 1.53691 0.887336i 0.426262 0.246103i −0.271491 0.962441i \(-0.587517\pi\)
0.697753 + 0.716338i \(0.254183\pi\)
\(14\) 1.81568 5.61099i 0.485261 1.49960i
\(15\) 0 0
\(16\) 2.66222 2.98539i 0.665555 0.746349i
\(17\) 0.950682 0.230574 0.115287 0.993332i \(-0.463221\pi\)
0.115287 + 0.993332i \(0.463221\pi\)
\(18\) −3.88575 1.70321i −0.915881 0.401450i
\(19\) 2.19286i 0.503078i −0.967847 0.251539i \(-0.919063\pi\)
0.967847 0.251539i \(-0.0809366\pi\)
\(20\) 0 0
\(21\) 5.35656 4.84532i 1.16890 1.05734i
\(22\) 2.80482 8.66772i 0.597989 1.84796i
\(23\) 1.74948 1.01006i 0.364793 0.210613i −0.306388 0.951907i \(-0.599121\pi\)
0.671181 + 0.741293i \(0.265787\pi\)
\(24\) 4.65021 1.54129i 0.949220 0.314614i
\(25\) 0 0
\(26\) −1.86310 + 1.68160i −0.365384 + 0.329788i
\(27\) −3.08303 4.18270i −0.593329 0.804960i
\(28\) −0.851880 + 8.29663i −0.160990 + 1.56792i
\(29\) −5.65260 3.26353i −1.04966 0.606022i −0.127107 0.991889i \(-0.540569\pi\)
−0.922555 + 0.385867i \(0.873902\pi\)
\(30\) 0 0
\(31\) 2.46164 1.42123i 0.442124 0.255260i −0.262374 0.964966i \(-0.584506\pi\)
0.704498 + 0.709706i \(0.251172\pi\)
\(32\) −2.79898 + 4.91587i −0.494794 + 0.869010i
\(33\) 8.27468 7.48493i 1.44044 1.30296i
\(34\) −1.31475 + 0.281109i −0.225478 + 0.0482097i
\(35\) 0 0
\(36\) 5.87745 + 1.20647i 0.979575 + 0.201079i
\(37\) 5.83599i 0.959431i 0.877424 + 0.479715i \(0.159260\pi\)
−0.877424 + 0.479715i \(0.840740\pi\)
\(38\) 0.648412 + 3.03263i 0.105186 + 0.491958i
\(39\) −3.00518 + 0.645966i −0.481214 + 0.103437i
\(40\) 0 0
\(41\) −6.16222 + 3.55776i −0.962378 + 0.555629i −0.896904 0.442225i \(-0.854189\pi\)
−0.0654736 + 0.997854i \(0.520856\pi\)
\(42\) −5.97516 + 8.28476i −0.921988 + 1.27837i
\(43\) 2.65491 4.59844i 0.404870 0.701256i −0.589436 0.807815i \(-0.700650\pi\)
0.994306 + 0.106559i \(0.0339833\pi\)
\(44\) −1.31596 + 12.8164i −0.198389 + 1.93215i
\(45\) 0 0
\(46\) −2.12079 + 1.91418i −0.312694 + 0.282231i
\(47\) −0.349867 0.201996i −0.0510334 0.0294641i 0.474266 0.880381i \(-0.342713\pi\)
−0.525300 + 0.850917i \(0.676047\pi\)
\(48\) −5.97529 + 3.50656i −0.862458 + 0.506128i
\(49\) −5.19498 8.99797i −0.742140 1.28542i
\(50\) 0 0
\(51\) −1.56720 0.505249i −0.219452 0.0707490i
\(52\) 2.07935 2.87648i 0.288354 0.398896i
\(53\) −4.87844 −0.670106 −0.335053 0.942199i \(-0.608754\pi\)
−0.335053 + 0.942199i \(0.608754\pi\)
\(54\) 5.50048 + 4.87286i 0.748520 + 0.663112i
\(55\) 0 0
\(56\) −1.27513 11.7258i −0.170397 1.56692i
\(57\) −1.16542 + 3.61494i −0.154364 + 0.478810i
\(58\) 8.78229 + 2.84189i 1.15317 + 0.373159i
\(59\) 1.34391 + 2.32773i 0.174963 + 0.303045i 0.940148 0.340765i \(-0.110686\pi\)
−0.765186 + 0.643810i \(0.777353\pi\)
\(60\) 0 0
\(61\) −2.04652 + 3.54468i −0.262030 + 0.453849i −0.966781 0.255605i \(-0.917725\pi\)
0.704751 + 0.709454i \(0.251059\pi\)
\(62\) −2.98409 + 2.69338i −0.378980 + 0.342060i
\(63\) −11.4054 + 5.14072i −1.43694 + 0.647669i
\(64\) 2.41728 7.62606i 0.302160 0.953257i
\(65\) 0 0
\(66\) −9.23028 + 12.7981i −1.13617 + 1.57534i
\(67\) −5.44797 9.43616i −0.665575 1.15281i −0.979129 0.203240i \(-0.934853\pi\)
0.313553 0.949571i \(-0.398480\pi\)
\(68\) 1.73512 0.777522i 0.210414 0.0942883i
\(69\) −3.42083 + 0.735311i −0.411820 + 0.0885211i
\(70\) 0 0
\(71\) −2.23126 −0.264802 −0.132401 0.991196i \(-0.542269\pi\)
−0.132401 + 0.991196i \(0.542269\pi\)
\(72\) −8.48500 + 0.0694119i −0.999967 + 0.00818027i
\(73\) 1.74662i 0.204426i −0.994763 0.102213i \(-0.967408\pi\)
0.994763 0.102213i \(-0.0325923\pi\)
\(74\) −1.72565 8.07091i −0.200603 0.938225i
\(75\) 0 0
\(76\) −1.79345 4.00227i −0.205723 0.459092i
\(77\) −13.4318 23.2645i −1.53069 2.65124i
\(78\) 3.96502 1.78195i 0.448951 0.201766i
\(79\) −0.214428 0.123800i −0.0241250 0.0139286i 0.487889 0.872906i \(-0.337767\pi\)
−0.512014 + 0.858977i \(0.671100\pi\)
\(80\) 0 0
\(81\) 2.85943 + 8.53368i 0.317715 + 0.948186i
\(82\) 7.47008 6.74234i 0.824932 0.744567i
\(83\) −10.1090 5.83641i −1.10960 0.640629i −0.170876 0.985293i \(-0.554660\pi\)
−0.938726 + 0.344664i \(0.887993\pi\)
\(84\) 5.81365 13.2243i 0.634321 1.44288i
\(85\) 0 0
\(86\) −2.31191 + 7.14448i −0.249299 + 0.770409i
\(87\) 7.58387 + 8.38406i 0.813076 + 0.898865i
\(88\) −1.96979 18.1137i −0.209981 1.93092i
\(89\) 6.13881i 0.650713i −0.945591 0.325356i \(-0.894516\pi\)
0.945591 0.325356i \(-0.105484\pi\)
\(90\) 0 0
\(91\) 7.40061i 0.775794i
\(92\) 2.36695 3.27433i 0.246772 0.341373i
\(93\) −4.81334 + 1.03463i −0.499120 + 0.107286i
\(94\) 0.543580 + 0.175899i 0.0560660 + 0.0181426i
\(95\) 0 0
\(96\) 7.22670 6.61626i 0.737572 0.675269i
\(97\) 15.7357 + 9.08503i 1.59772 + 0.922446i 0.991925 + 0.126827i \(0.0404792\pi\)
0.605798 + 0.795619i \(0.292854\pi\)
\(98\) 9.84505 + 10.9077i 0.994500 + 1.10184i
\(99\) −17.6187 + 7.94125i −1.77075 + 0.798126i
\(100\) 0 0
\(101\) −8.86799 5.11994i −0.882398 0.509453i −0.0109497 0.999940i \(-0.503485\pi\)
−0.871448 + 0.490487i \(0.836819\pi\)
\(102\) 2.31676 + 0.235330i 0.229394 + 0.0233011i
\(103\) −4.82993 8.36568i −0.475907 0.824295i 0.523712 0.851895i \(-0.324547\pi\)
−0.999619 + 0.0276004i \(0.991213\pi\)
\(104\) −2.02510 + 4.59289i −0.198578 + 0.450370i
\(105\) 0 0
\(106\) 6.74667 1.44252i 0.655295 0.140109i
\(107\) 3.23356i 0.312600i −0.987710 0.156300i \(-0.950043\pi\)
0.987710 0.156300i \(-0.0499567\pi\)
\(108\) −9.04778 5.11250i −0.870623 0.491951i
\(109\) −2.88351 −0.276190 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(110\) 0 0
\(111\) 3.10159 9.62062i 0.294390 0.913149i
\(112\) 5.23066 + 15.8392i 0.494251 + 1.49666i
\(113\) 1.54411 + 2.67448i 0.145258 + 0.251594i 0.929469 0.368900i \(-0.120265\pi\)
−0.784211 + 0.620494i \(0.786932\pi\)
\(114\) 0.542817 5.34390i 0.0508395 0.500502i
\(115\) 0 0
\(116\) −12.9858 1.33336i −1.20571 0.123799i
\(117\) 5.29734 + 0.532257i 0.489739 + 0.0492072i
\(118\) −2.54686 2.82176i −0.234458 0.259764i
\(119\) −1.98223 + 3.43333i −0.181711 + 0.314732i
\(120\) 0 0
\(121\) −15.2491 26.4122i −1.38628 2.40111i
\(122\) 1.78211 5.50727i 0.161345 0.498605i
\(123\) 12.0492 2.58999i 1.08644 0.233532i
\(124\) 3.33046 4.60720i 0.299084 0.413739i
\(125\) 0 0
\(126\) 14.2531 10.4819i 1.26976 0.933798i
\(127\) −2.16321 −0.191954 −0.0959771 0.995384i \(-0.530598\pi\)
−0.0959771 + 0.995384i \(0.530598\pi\)
\(128\) −1.08803 + 11.2613i −0.0961692 + 0.995365i
\(129\) −6.82051 + 6.16955i −0.600512 + 0.543199i
\(130\) 0 0
\(131\) −0.957206 1.65793i −0.0836315 0.144854i 0.821176 0.570675i \(-0.193319\pi\)
−0.904807 + 0.425821i \(0.859985\pi\)
\(132\) 8.98078 20.4285i 0.781677 1.77807i
\(133\) 7.91939 + 4.57226i 0.686698 + 0.396465i
\(134\) 10.3245 + 11.4389i 0.891901 + 0.988168i
\(135\) 0 0
\(136\) −2.16969 + 1.58834i −0.186049 + 0.136199i
\(137\) −5.83040 + 10.0986i −0.498125 + 0.862778i −0.999998 0.00216386i \(-0.999311\pi\)
0.501873 + 0.864941i \(0.332645\pi\)
\(138\) 4.51343 2.02841i 0.384209 0.172670i
\(139\) −6.63468 + 3.83054i −0.562747 + 0.324902i −0.754247 0.656591i \(-0.771998\pi\)
0.191501 + 0.981493i \(0.438665\pi\)
\(140\) 0 0
\(141\) 0.469403 + 0.518931i 0.0395309 + 0.0437019i
\(142\) 3.08574 0.659766i 0.258949 0.0553663i
\(143\) 11.4323i 0.956014i
\(144\) 11.7139 2.60494i 0.976154 0.217078i
\(145\) 0 0
\(146\) 0.516460 + 2.41549i 0.0427425 + 0.199908i
\(147\) 3.78186 + 17.5941i 0.311923 + 1.45113i
\(148\) 4.77300 + 10.6515i 0.392338 + 0.875544i
\(149\) 3.02622 1.74719i 0.247918 0.143135i −0.370893 0.928676i \(-0.620948\pi\)
0.618810 + 0.785540i \(0.287615\pi\)
\(150\) 0 0
\(151\) −6.15927 3.55606i −0.501234 0.289388i 0.227989 0.973664i \(-0.426785\pi\)
−0.729223 + 0.684276i \(0.760118\pi\)
\(152\) 3.66370 + 5.00465i 0.297165 + 0.405931i
\(153\) 2.31501 + 1.66581i 0.187157 + 0.134672i
\(154\) 25.4547 + 28.2022i 2.05120 + 2.27259i
\(155\) 0 0
\(156\) −4.95654 + 3.63678i −0.396841 + 0.291176i
\(157\) 2.73556 1.57938i 0.218321 0.126048i −0.386851 0.922142i \(-0.626437\pi\)
0.605173 + 0.796094i \(0.293104\pi\)
\(158\) 0.333151 + 0.107805i 0.0265040 + 0.00857653i
\(159\) 8.04211 + 2.59270i 0.637781 + 0.205614i
\(160\) 0 0
\(161\) 8.42420i 0.663920i
\(162\) −6.47781 10.9562i −0.508945 0.860799i
\(163\) −14.1062 −1.10488 −0.552442 0.833551i \(-0.686304\pi\)
−0.552442 + 0.833551i \(0.686304\pi\)
\(164\) −8.33714 + 11.5332i −0.651021 + 0.900592i
\(165\) 0 0
\(166\) 15.7060 + 5.08236i 1.21902 + 0.394468i
\(167\) 15.8767 9.16640i 1.22857 0.709317i 0.261842 0.965111i \(-0.415670\pi\)
0.966731 + 0.255794i \(0.0823368\pi\)
\(168\) −4.12972 + 20.0076i −0.318615 + 1.54362i
\(169\) −4.92527 + 8.53082i −0.378867 + 0.656217i
\(170\) 0 0
\(171\) 3.84239 5.33985i 0.293835 0.408348i
\(172\) 1.08470 10.5641i 0.0827076 0.805506i
\(173\) 3.94088 6.82580i 0.299620 0.518956i −0.676429 0.736508i \(-0.736474\pi\)
0.976049 + 0.217551i \(0.0698069\pi\)
\(174\) −12.9673 9.35229i −0.983045 0.708995i
\(175\) 0 0
\(176\) 8.08020 + 24.4680i 0.609068 + 1.84434i
\(177\) −0.978349 4.55150i −0.0735372 0.342111i
\(178\) 1.81520 + 8.48970i 0.136055 + 0.636330i
\(179\) 9.84108 0.735557 0.367778 0.929914i \(-0.380119\pi\)
0.367778 + 0.929914i \(0.380119\pi\)
\(180\) 0 0
\(181\) 18.3215 1.36183 0.680913 0.732364i \(-0.261583\pi\)
0.680913 + 0.732364i \(0.261583\pi\)
\(182\) −2.18830 10.2347i −0.162207 0.758647i
\(183\) 5.25754 4.75575i 0.388648 0.351555i
\(184\) −2.30520 + 5.22814i −0.169941 + 0.385424i
\(185\) 0 0
\(186\) 6.35070 2.85411i 0.465656 0.209274i
\(187\) −3.06210 + 5.30372i −0.223923 + 0.387846i
\(188\) −0.803758 0.0825282i −0.0586201 0.00601898i
\(189\) 21.5338 2.41297i 1.56636 0.175518i
\(190\) 0 0
\(191\) 9.54024 16.5242i 0.690307 1.19565i −0.281430 0.959582i \(-0.590809\pi\)
0.971737 0.236066i \(-0.0758580\pi\)
\(192\) −8.03783 + 11.2869i −0.580080 + 0.814559i
\(193\) −11.2610 + 6.50154i −0.810585 + 0.467991i −0.847159 0.531340i \(-0.821689\pi\)
0.0365742 + 0.999331i \(0.488355\pi\)
\(194\) −24.4482 7.91127i −1.75528 0.567996i
\(195\) 0 0
\(196\) −16.8406 12.1737i −1.20290 0.869553i
\(197\) −15.8462 −1.12899 −0.564496 0.825436i \(-0.690929\pi\)
−0.564496 + 0.825436i \(0.690929\pi\)
\(198\) 22.0178 16.1921i 1.56474 1.15072i
\(199\) 1.24563i 0.0883001i −0.999025 0.0441500i \(-0.985942\pi\)
0.999025 0.0441500i \(-0.0140580\pi\)
\(200\) 0 0
\(201\) 3.96604 + 18.4509i 0.279743 + 1.30142i
\(202\) 13.7780 + 4.45846i 0.969414 + 0.313696i
\(203\) 23.5721 13.6093i 1.65443 0.955188i
\(204\) −3.27357 + 0.359597i −0.229196 + 0.0251768i
\(205\) 0 0
\(206\) 9.15324 + 10.1412i 0.637736 + 0.706571i
\(207\) 6.03003 + 0.605874i 0.419116 + 0.0421112i
\(208\) 1.44255 6.95057i 0.100023 0.481935i
\(209\) 12.2337 + 7.06312i 0.846221 + 0.488566i
\(210\) 0 0
\(211\) −14.1374 + 8.16221i −0.973256 + 0.561910i −0.900227 0.435420i \(-0.856600\pi\)
−0.0730289 + 0.997330i \(0.523267\pi\)
\(212\) −8.90381 + 3.98987i −0.611516 + 0.274025i
\(213\) 3.67824 + 1.18583i 0.252029 + 0.0812515i
\(214\) 0.956138 + 4.47188i 0.0653602 + 0.305691i
\(215\) 0 0
\(216\) 14.0244 + 4.39501i 0.954240 + 0.299043i
\(217\) 11.8534i 0.804662i
\(218\) 3.98776 0.852629i 0.270085 0.0577473i
\(219\) −0.928257 + 2.87930i −0.0627258 + 0.194565i
\(220\) 0 0
\(221\) 1.46111 0.843574i 0.0982851 0.0567449i
\(222\) −1.44463 + 14.2220i −0.0969571 + 0.954519i
\(223\) −8.96287 + 15.5241i −0.600198 + 1.03957i 0.392592 + 0.919713i \(0.371578\pi\)
−0.992791 + 0.119861i \(0.961755\pi\)
\(224\) −11.9173 20.3582i −0.796257 1.36024i
\(225\) 0 0
\(226\) −2.92626 3.24211i −0.194652 0.215662i
\(227\) 9.03303 + 5.21522i 0.599543 + 0.346146i 0.768862 0.639415i \(-0.220823\pi\)
−0.169319 + 0.985561i \(0.554157\pi\)
\(228\) 0.829455 + 7.55089i 0.0549320 + 0.500070i
\(229\) −9.39388 16.2707i −0.620765 1.07520i −0.989344 0.145600i \(-0.953489\pi\)
0.368578 0.929597i \(-0.379845\pi\)
\(230\) 0 0
\(231\) 9.77813 + 45.4900i 0.643353 + 2.99302i
\(232\) 18.3531 1.99583i 1.20494 0.131033i
\(233\) 7.28693 0.477382 0.238691 0.971096i \(-0.423282\pi\)
0.238691 + 0.971096i \(0.423282\pi\)
\(234\) −7.48337 + 0.830292i −0.489203 + 0.0542779i
\(235\) 0 0
\(236\) 4.35657 + 3.14928i 0.283589 + 0.205001i
\(237\) 0.287689 + 0.318044i 0.0186874 + 0.0206592i
\(238\) 1.72613 5.33427i 0.111889 0.345769i
\(239\) 14.8408 + 25.7051i 0.959973 + 1.66272i 0.722553 + 0.691316i \(0.242969\pi\)
0.237421 + 0.971407i \(0.423698\pi\)
\(240\) 0 0
\(241\) 6.37517 11.0421i 0.410661 0.711285i −0.584301 0.811537i \(-0.698631\pi\)
0.994962 + 0.100251i \(0.0319647\pi\)
\(242\) 28.8987 + 32.0179i 1.85768 + 2.05819i
\(243\) −0.178469 15.5874i −0.0114488 0.999934i
\(244\) −0.836133 + 8.14327i −0.0535279 + 0.521319i
\(245\) 0 0
\(246\) −15.8977 + 7.14470i −1.01360 + 0.455530i
\(247\) −1.94581 3.37024i −0.123809 0.214443i
\(248\) −3.24357 + 7.35634i −0.205967 + 0.467128i
\(249\) 13.5628 + 14.9938i 0.859507 + 0.950195i
\(250\) 0 0
\(251\) −2.89830 −0.182939 −0.0914694 0.995808i \(-0.529156\pi\)
−0.0914694 + 0.995808i \(0.529156\pi\)
\(252\) −16.6120 + 18.7105i −1.04646 + 1.17865i
\(253\) 13.0135i 0.818151i
\(254\) 2.99163 0.639644i 0.187712 0.0401349i
\(255\) 0 0
\(256\) −1.82517 15.8956i −0.114073 0.993472i
\(257\) 4.98307 + 8.63093i 0.310835 + 0.538382i 0.978543 0.206041i \(-0.0660579\pi\)
−0.667708 + 0.744423i \(0.732725\pi\)
\(258\) 7.60818 10.5490i 0.473664 0.656751i
\(259\) −21.0763 12.1684i −1.30962 0.756108i
\(260\) 0 0
\(261\) −8.04622 17.8516i −0.498049 1.10499i
\(262\) 1.81401 + 2.00981i 0.112070 + 0.124166i
\(263\) −1.05795 0.610808i −0.0652360 0.0376640i 0.467027 0.884243i \(-0.345325\pi\)
−0.532263 + 0.846579i \(0.678658\pi\)
\(264\) −6.37949 + 30.9073i −0.392630 + 1.90221i
\(265\) 0 0
\(266\) −12.3041 3.98154i −0.754416 0.244124i
\(267\) −3.26253 + 10.1198i −0.199664 + 0.619323i
\(268\) −17.6607 12.7666i −1.07880 0.779843i
\(269\) 19.0910i 1.16400i −0.813190 0.581998i \(-0.802271\pi\)
0.813190 0.581998i \(-0.197729\pi\)
\(270\) 0 0
\(271\) 12.0019i 0.729061i −0.931191 0.364531i \(-0.881229\pi\)
0.931191 0.364531i \(-0.118771\pi\)
\(272\) 2.53092 2.83816i 0.153460 0.172089i
\(273\) 3.93312 12.1999i 0.238044 0.738371i
\(274\) 5.07713 15.6899i 0.306721 0.947859i
\(275\) 0 0
\(276\) −5.64209 + 4.13979i −0.339614 + 0.249186i
\(277\) −20.8091 12.0141i −1.25030 0.721860i −0.279129 0.960254i \(-0.590046\pi\)
−0.971169 + 0.238394i \(0.923379\pi\)
\(278\) 8.04282 7.25928i 0.482376 0.435383i
\(279\) 8.48465 + 0.852506i 0.507963 + 0.0510382i
\(280\) 0 0
\(281\) 1.34110 + 0.774283i 0.0800031 + 0.0461898i 0.539468 0.842006i \(-0.318625\pi\)
−0.459465 + 0.888196i \(0.651959\pi\)
\(282\) −0.802608 0.578860i −0.0477946 0.0344706i
\(283\) 12.2787 + 21.2674i 0.729895 + 1.26422i 0.956927 + 0.290328i \(0.0937645\pi\)
−0.227032 + 0.973887i \(0.572902\pi\)
\(284\) −4.07235 + 1.82485i −0.241650 + 0.108285i
\(285\) 0 0
\(286\) −3.38043 15.8103i −0.199889 0.934884i
\(287\) 29.6726i 1.75152i
\(288\) −15.4295 + 7.06620i −0.909191 + 0.416380i
\(289\) −16.0962 −0.946836
\(290\) 0 0
\(291\) −21.1120 23.3396i −1.23761 1.36819i
\(292\) −1.42848 3.18781i −0.0835956 0.186552i
\(293\) −13.5844 23.5288i −0.793607 1.37457i −0.923720 0.383068i \(-0.874867\pi\)
0.130113 0.991499i \(-0.458466\pi\)
\(294\) −10.4326 23.2136i −0.608440 1.35384i
\(295\) 0 0
\(296\) −9.75040 13.3192i −0.566730 0.774160i
\(297\) 33.2649 3.72749i 1.93023 0.216291i
\(298\) −3.66850 + 3.31111i −0.212511 + 0.191808i
\(299\) 1.79253 3.10476i 0.103665 0.179553i
\(300\) 0 0
\(301\) 11.0713 + 19.1761i 0.638140 + 1.10529i
\(302\) 9.56949 + 3.09662i 0.550662 + 0.178191i
\(303\) 11.8978 + 13.1532i 0.683513 + 0.755631i
\(304\) −6.54657 5.83789i −0.375471 0.334826i
\(305\) 0 0
\(306\) −3.69412 1.61921i −0.211179 0.0925639i
\(307\) −3.96646 −0.226378 −0.113189 0.993573i \(-0.536107\pi\)
−0.113189 + 0.993573i \(0.536107\pi\)
\(308\) −43.5419 31.4756i −2.48103 1.79349i
\(309\) 3.51611 + 16.3577i 0.200025 + 0.930559i
\(310\) 0 0
\(311\) 9.69205 + 16.7871i 0.549586 + 0.951911i 0.998303 + 0.0582368i \(0.0185478\pi\)
−0.448717 + 0.893674i \(0.648119\pi\)
\(312\) 5.77932 6.49512i 0.327189 0.367714i
\(313\) −19.0268 10.9851i −1.07546 0.620915i −0.145789 0.989316i \(-0.546572\pi\)
−0.929667 + 0.368400i \(0.879906\pi\)
\(314\) −3.31615 + 2.99309i −0.187141 + 0.168910i
\(315\) 0 0
\(316\) −0.492610 0.0505801i −0.0277115 0.00284535i
\(317\) 13.3113 23.0559i 0.747640 1.29495i −0.201311 0.979527i \(-0.564520\pi\)
0.948951 0.315423i \(-0.102146\pi\)
\(318\) −11.8885 1.20760i −0.666675 0.0677188i
\(319\) 36.4135 21.0234i 2.03877 1.17708i
\(320\) 0 0
\(321\) −1.71851 + 5.33053i −0.0959178 + 0.297521i
\(322\) −2.49096 11.6503i −0.138816 0.649245i
\(323\) 2.08472i 0.115997i
\(324\) 12.1982 + 13.2365i 0.677676 + 0.735360i
\(325\) 0 0
\(326\) 19.5083 4.17109i 1.08046 0.231015i
\(327\) 4.75346 + 1.53247i 0.262867 + 0.0847457i
\(328\) 8.11962 18.4151i 0.448331 1.01681i
\(329\) 1.45899 0.842349i 0.0804368 0.0464402i
\(330\) 0 0
\(331\) 28.7664 + 16.6083i 1.58115 + 0.912876i 0.994692 + 0.102894i \(0.0328101\pi\)
0.586455 + 0.809982i \(0.300523\pi\)
\(332\) −23.2235 2.38454i −1.27456 0.130869i
\(333\) −10.2260 + 14.2112i −0.560379 + 0.778770i
\(334\) −19.2463 + 17.3713i −1.05311 + 0.950516i
\(335\) 0 0
\(336\) −0.204862 28.8908i −0.0111761 1.57612i
\(337\) −1.40051 + 0.808583i −0.0762905 + 0.0440463i −0.537660 0.843162i \(-0.680692\pi\)
0.461370 + 0.887208i \(0.347358\pi\)
\(338\) 4.28894 13.2541i 0.233288 0.720928i
\(339\) −1.12409 5.22952i −0.0610522 0.284028i
\(340\) 0 0
\(341\) 18.3109i 0.991588i
\(342\) −3.73490 + 8.52093i −0.201960 + 0.460759i
\(343\) 14.1366 0.763302
\(344\) 1.62363 + 14.9304i 0.0875401 + 0.804995i
\(345\) 0 0
\(346\) −3.43173 + 10.6051i −0.184491 + 0.570132i
\(347\) −4.49117 + 2.59298i −0.241099 + 0.139198i −0.615682 0.787995i \(-0.711119\pi\)
0.374583 + 0.927193i \(0.377786\pi\)
\(348\) 20.6985 + 9.09950i 1.10956 + 0.487784i
\(349\) −9.16716 + 15.8780i −0.490707 + 0.849929i −0.999943 0.0106977i \(-0.996595\pi\)
0.509236 + 0.860627i \(0.329928\pi\)
\(350\) 0 0
\(351\) −8.44979 3.69275i −0.451017 0.197104i
\(352\) −18.4095 31.4489i −0.981231 1.67623i
\(353\) −5.34873 + 9.26426i −0.284684 + 0.493087i −0.972532 0.232767i \(-0.925222\pi\)
0.687849 + 0.725854i \(0.258555\pi\)
\(354\) 2.69885 + 6.00523i 0.143442 + 0.319174i
\(355\) 0 0
\(356\) −5.02067 11.2041i −0.266095 0.593819i
\(357\) 5.09238 4.60636i 0.269517 0.243794i
\(358\) −13.6098 + 2.90992i −0.719299 + 0.153794i
\(359\) −15.1958 −0.802005 −0.401002 0.916077i \(-0.631338\pi\)
−0.401002 + 0.916077i \(0.631338\pi\)
\(360\) 0 0
\(361\) 14.1913 0.746913
\(362\) −25.3378 + 5.41752i −1.33173 + 0.284738i
\(363\) 11.1011 + 51.6448i 0.582656 + 2.71065i
\(364\) 6.05264 + 13.5071i 0.317244 + 0.707964i
\(365\) 0 0
\(366\) −5.86471 + 8.13161i −0.306553 + 0.425046i
\(367\) −12.2791 + 21.2680i −0.640964 + 1.11018i 0.344254 + 0.938877i \(0.388132\pi\)
−0.985218 + 0.171306i \(0.945201\pi\)
\(368\) 1.64207 7.91192i 0.0855987 0.412437i
\(369\) −21.2396 2.13408i −1.10569 0.111096i
\(370\) 0 0
\(371\) 10.1719 17.6182i 0.528097 0.914691i
\(372\) −7.93880 + 5.82496i −0.411608 + 0.302010i
\(373\) 16.1159 9.30451i 0.834449 0.481769i −0.0209247 0.999781i \(-0.506661\pi\)
0.855373 + 0.518012i \(0.173328\pi\)
\(374\) 2.66649 8.24024i 0.137881 0.426093i
\(375\) 0 0
\(376\) 1.13596 0.123532i 0.0585829 0.00637067i
\(377\) −11.5834 −0.596575
\(378\) −29.0669 + 9.70441i −1.49504 + 0.499141i
\(379\) 27.9052i 1.43339i −0.697386 0.716696i \(-0.745653\pi\)
0.697386 0.716696i \(-0.254347\pi\)
\(380\) 0 0
\(381\) 3.56606 + 1.14966i 0.182695 + 0.0588989i
\(382\) −8.30767 + 25.6732i −0.425057 + 1.31355i
\(383\) 6.41061 3.70117i 0.327567 0.189121i −0.327194 0.944957i \(-0.606103\pi\)
0.654760 + 0.755837i \(0.272770\pi\)
\(384\) 7.77853 17.9860i 0.396946 0.917842i
\(385\) 0 0
\(386\) 13.6510 12.3211i 0.694818 0.627129i
\(387\) 14.5225 6.54568i 0.738219 0.332735i
\(388\) 36.1501 + 3.71181i 1.83524 + 0.188439i
\(389\) 15.5362 + 8.96985i 0.787718 + 0.454789i 0.839159 0.543887i \(-0.183048\pi\)
−0.0514403 + 0.998676i \(0.516381\pi\)
\(390\) 0 0
\(391\) 1.66320 0.960250i 0.0841118 0.0485619i
\(392\) 26.8894 + 11.8561i 1.35812 + 0.598825i
\(393\) 0.696831 + 3.24181i 0.0351505 + 0.163528i
\(394\) 21.9145 4.68558i 1.10404 0.236056i
\(395\) 0 0
\(396\) −25.6617 + 28.9034i −1.28955 + 1.45245i
\(397\) 27.9101i 1.40077i 0.713768 + 0.700383i \(0.246987\pi\)
−0.713768 + 0.700383i \(0.753013\pi\)
\(398\) 0.368321 + 1.72265i 0.0184623 + 0.0863484i
\(399\) −10.6251 11.7462i −0.531922 0.588046i
\(400\) 0 0
\(401\) 3.46154 1.99852i 0.172861 0.0998015i −0.411073 0.911602i \(-0.634846\pi\)
0.583934 + 0.811801i \(0.301513\pi\)
\(402\) −10.9406 24.3440i −0.545669 1.21417i
\(403\) 2.52221 4.36860i 0.125640 0.217616i
\(404\) −20.3726 2.09182i −1.01358 0.104072i
\(405\) 0 0
\(406\) −28.5749 + 25.7912i −1.41815 + 1.27999i
\(407\) −32.5581 18.7974i −1.61385 0.931755i
\(408\) 4.42087 1.46527i 0.218866 0.0725418i
\(409\) 11.0645 + 19.1644i 0.547107 + 0.947616i 0.998471 + 0.0552767i \(0.0176041\pi\)
−0.451364 + 0.892340i \(0.649063\pi\)
\(410\) 0 0
\(411\) 14.9784 13.5488i 0.738829 0.668315i
\(412\) −15.6572 11.3183i −0.771374 0.557612i
\(413\) −11.2086 −0.551539
\(414\) −8.51841 + 0.945131i −0.418657 + 0.0464507i
\(415\) 0 0
\(416\) 0.0602464 + 10.0389i 0.00295382 + 0.492196i
\(417\) 12.9730 2.78857i 0.635293 0.136557i
\(418\) −19.0071 6.15058i −0.929669 0.300835i
\(419\) −15.8068 27.3783i −0.772215 1.33752i −0.936347 0.351077i \(-0.885816\pi\)
0.164132 0.986438i \(-0.447518\pi\)
\(420\) 0 0
\(421\) −15.0283 + 26.0298i −0.732435 + 1.26861i 0.223405 + 0.974726i \(0.428283\pi\)
−0.955840 + 0.293889i \(0.905050\pi\)
\(422\) 17.1379 15.4683i 0.834258 0.752984i
\(423\) −0.498020 1.10493i −0.0242146 0.0537233i
\(424\) 11.1338 8.15059i 0.540705 0.395828i
\(425\) 0 0
\(426\) −5.43748 0.552322i −0.263447 0.0267601i
\(427\) −8.53425 14.7817i −0.413001 0.715339i
\(428\) −2.64459 5.90169i −0.127831 0.285269i
\(429\) 6.07579 18.8461i 0.293342 0.909898i
\(430\) 0 0
\(431\) −25.0832 −1.20822 −0.604108 0.796902i \(-0.706471\pi\)
−0.604108 + 0.796902i \(0.706471\pi\)
\(432\) −20.6947 1.93120i −0.995674 0.0929151i
\(433\) 29.4297i 1.41430i 0.707062 + 0.707151i \(0.250020\pi\)
−0.707062 + 0.707151i \(0.749980\pi\)
\(434\) −3.50495 16.3927i −0.168243 0.786877i
\(435\) 0 0
\(436\) −5.26278 + 2.35830i −0.252042 + 0.112942i
\(437\) −2.21494 3.83638i −0.105955 0.183519i
\(438\) 0.432354 4.25642i 0.0206587 0.203379i
\(439\) 24.8161 + 14.3276i 1.18441 + 0.683819i 0.957031 0.289987i \(-0.0936510\pi\)
0.227379 + 0.973806i \(0.426984\pi\)
\(440\) 0 0
\(441\) 3.11614 31.0137i 0.148388 1.47684i
\(442\) −1.77122 + 1.59866i −0.0842482 + 0.0760407i
\(443\) −25.8577 14.9290i −1.22854 0.709297i −0.261814 0.965118i \(-0.584321\pi\)
−0.966724 + 0.255822i \(0.917654\pi\)
\(444\) −2.20747 20.0956i −0.104762 0.953694i
\(445\) 0 0
\(446\) 7.80489 24.1195i 0.369572 1.14209i
\(447\) −5.91728 + 1.27193i −0.279878 + 0.0601600i
\(448\) 22.5008 + 24.6307i 1.06306 + 1.16369i
\(449\) 14.7017i 0.693815i 0.937899 + 0.346908i \(0.112768\pi\)
−0.937899 + 0.346908i \(0.887232\pi\)
\(450\) 0 0
\(451\) 45.8375i 2.15841i
\(452\) 5.00556 + 3.61842i 0.235442 + 0.170196i
\(453\) 8.26365 + 9.13556i 0.388260 + 0.429226i
\(454\) −14.0344 4.54143i −0.658666 0.213140i
\(455\) 0 0
\(456\) −3.37983 10.1973i −0.158275 0.477531i
\(457\) −7.64991 4.41668i −0.357848 0.206604i 0.310288 0.950642i \(-0.399574\pi\)
−0.668136 + 0.744039i \(0.732908\pi\)
\(458\) 17.8024 + 19.7239i 0.831853 + 0.921639i
\(459\) −2.93098 3.97641i −0.136806 0.185603i
\(460\) 0 0
\(461\) 0.791004 + 0.456686i 0.0368407 + 0.0212700i 0.518307 0.855194i \(-0.326562\pi\)
−0.481467 + 0.876464i \(0.659896\pi\)
\(462\) −26.9737 60.0194i −1.25493 2.79235i
\(463\) −3.93567 6.81678i −0.182906 0.316803i 0.759963 0.649967i \(-0.225217\pi\)
−0.942869 + 0.333164i \(0.891884\pi\)
\(464\) −24.7914 + 8.18701i −1.15091 + 0.380072i
\(465\) 0 0
\(466\) −10.0775 + 2.15468i −0.466831 + 0.0998138i
\(467\) 28.6765i 1.32699i 0.748181 + 0.663495i \(0.230928\pi\)
−0.748181 + 0.663495i \(0.769072\pi\)
\(468\) 10.1037 3.36103i 0.467042 0.155364i
\(469\) 45.4375 2.09811
\(470\) 0 0
\(471\) −5.34894 + 1.14976i −0.246466 + 0.0529782i
\(472\) −6.95616 3.06712i −0.320183 0.141176i
\(473\) 17.1027 + 29.6227i 0.786383 + 1.36206i
\(474\) −0.491905 0.354773i −0.0225939 0.0162953i
\(475\) 0 0
\(476\) −0.809867 + 7.88746i −0.0371202 + 0.361521i
\(477\) −11.8795 8.54812i −0.543925 0.391391i
\(478\) −28.1250 31.1607i −1.28641 1.42526i
\(479\) 13.1909 22.8473i 0.602706 1.04392i −0.389703 0.920941i \(-0.627422\pi\)
0.992409 0.122977i \(-0.0392443\pi\)
\(480\) 0 0
\(481\) 5.17848 + 8.96939i 0.236118 + 0.408969i
\(482\) −5.55151 + 17.1558i −0.252865 + 0.781427i
\(483\) 4.47712 13.8873i 0.203716 0.631893i
\(484\) −49.4330 35.7342i −2.24695 1.62428i
\(485\) 0 0
\(486\) 4.85589 + 21.5040i 0.220268 + 0.975439i
\(487\) −7.87222 −0.356724 −0.178362 0.983965i \(-0.557080\pi\)
−0.178362 + 0.983965i \(0.557080\pi\)
\(488\) −1.25156 11.5090i −0.0566555 0.520989i
\(489\) 23.2541 + 7.49689i 1.05159 + 0.339021i
\(490\) 0 0
\(491\) 9.74699 + 16.8823i 0.439876 + 0.761887i 0.997679 0.0680859i \(-0.0216892\pi\)
−0.557804 + 0.829973i \(0.688356\pi\)
\(492\) 19.8732 14.5816i 0.895953 0.657390i
\(493\) −5.37382 3.10258i −0.242025 0.139733i
\(494\) 3.68752 + 4.08553i 0.165909 + 0.183817i
\(495\) 0 0
\(496\) 2.31050 11.1326i 0.103745 0.499868i
\(497\) 4.65233 8.05806i 0.208685 0.361454i
\(498\) −23.1903 16.7254i −1.03918 0.749482i
\(499\) 0.733058 0.423231i 0.0328162 0.0189464i −0.483502 0.875343i \(-0.660635\pi\)
0.516318 + 0.856397i \(0.327302\pi\)
\(500\) 0 0
\(501\) −31.0442 + 6.67299i −1.38695 + 0.298127i
\(502\) 4.00822 0.857002i 0.178895 0.0382499i
\(503\) 18.5253i 0.826002i 0.910731 + 0.413001i \(0.135519\pi\)
−0.910731 + 0.413001i \(0.864481\pi\)
\(504\) 17.4411 30.7878i 0.776888 1.37140i
\(505\) 0 0
\(506\) −3.84798 17.9971i −0.171064 0.800068i
\(507\) 12.6531 11.4455i 0.561944 0.508311i
\(508\) −3.94815 + 1.76920i −0.175171 + 0.0784955i
\(509\) 23.6460 13.6520i 1.04809 0.605115i 0.125976 0.992033i \(-0.459794\pi\)
0.922114 + 0.386918i \(0.126460\pi\)
\(510\) 0 0
\(511\) 6.30779 + 3.64181i 0.279040 + 0.161104i
\(512\) 7.22431 + 21.4432i 0.319272 + 0.947663i
\(513\) −9.17209 + 6.76066i −0.404957 + 0.298490i
\(514\) −9.44345 10.4627i −0.416533 0.461491i
\(515\) 0 0
\(516\) −7.40253 + 16.8385i −0.325878 + 0.741272i
\(517\) 2.25381 1.30124i 0.0991226 0.0572285i
\(518\) 32.7457 + 10.5963i 1.43876 + 0.465574i
\(519\) −10.1242 + 9.15792i −0.444402 + 0.401988i
\(520\) 0 0
\(521\) 25.9868i 1.13850i −0.822163 0.569252i \(-0.807233\pi\)
0.822163 0.569252i \(-0.192767\pi\)
\(522\) 16.4061 + 22.3088i 0.718078 + 0.976431i
\(523\) −30.1683 −1.31917 −0.659584 0.751631i \(-0.729268\pi\)
−0.659584 + 0.751631i \(0.729268\pi\)
\(524\) −3.10298 2.24308i −0.135554 0.0979896i
\(525\) 0 0
\(526\) 1.64371 + 0.531893i 0.0716692 + 0.0231917i
\(527\) 2.34024 1.35114i 0.101942 0.0588564i
\(528\) −0.316465 44.6297i −0.0137724 1.94226i
\(529\) −9.45954 + 16.3844i −0.411284 + 0.712365i
\(530\) 0 0
\(531\) −0.806130 + 8.02309i −0.0349831 + 0.348173i
\(532\) 18.1934 + 1.86806i 0.788784 + 0.0809906i
\(533\) −6.31386 + 10.9359i −0.273484 + 0.473687i
\(534\) 1.51959 14.9600i 0.0657590 0.647381i
\(535\) 0 0
\(536\) 28.1989 + 12.4335i 1.21801 + 0.537046i
\(537\) −16.2230 5.23014i −0.700074 0.225697i
\(538\) 5.64504 + 26.4020i 0.243375 + 1.13827i
\(539\) 66.9311 2.88293
\(540\) 0 0
\(541\) −34.2068 −1.47067 −0.735333 0.677706i \(-0.762974\pi\)
−0.735333 + 0.677706i \(0.762974\pi\)
\(542\) 3.54885 + 16.5980i 0.152436 + 0.712947i
\(543\) −30.2030 9.73714i −1.29613 0.417861i
\(544\) −2.66094 + 4.67342i −0.114087 + 0.200371i
\(545\) 0 0
\(546\) −1.83193 + 18.0349i −0.0783994 + 0.771823i
\(547\) 8.00761 13.8696i 0.342380 0.593020i −0.642494 0.766291i \(-0.722100\pi\)
0.984874 + 0.173270i \(0.0554335\pi\)
\(548\) −2.38209 + 23.1996i −0.101758 + 0.991039i
\(549\) −11.1945 + 5.04569i −0.477771 + 0.215345i
\(550\) 0 0
\(551\) −7.15648 + 12.3954i −0.304876 + 0.528061i
\(552\) 6.57866 7.39347i 0.280007 0.314687i
\(553\) 0.894191 0.516261i 0.0380249 0.0219537i
\(554\) 32.3306 + 10.4619i 1.37359 + 0.444486i
\(555\) 0 0
\(556\) −8.97635 + 12.4175i −0.380682 + 0.526618i
\(557\) −16.0344 −0.679401 −0.339701 0.940534i \(-0.610326\pi\)
−0.339701 + 0.940534i \(0.610326\pi\)
\(558\) −11.9860 + 1.32986i −0.507407 + 0.0562976i
\(559\) 9.42320i 0.398559i
\(560\) 0 0
\(561\) 7.86658 7.11579i 0.332127 0.300429i
\(562\) −2.08363 0.674248i −0.0878925 0.0284414i
\(563\) 3.87428 2.23682i 0.163282 0.0942707i −0.416133 0.909304i \(-0.636615\pi\)
0.579414 + 0.815033i \(0.303281\pi\)
\(564\) 1.28113 + 0.563213i 0.0539455 + 0.0237155i
\(565\) 0 0
\(566\) −23.2695 25.7812i −0.978092 1.08366i
\(567\) −36.7809 7.46660i −1.54465 0.313568i
\(568\) 5.09229 3.72785i 0.213668 0.156417i
\(569\) −35.5461 20.5225i −1.49017 0.860349i −0.490232 0.871592i \(-0.663088\pi\)
−0.999937 + 0.0112430i \(0.996421\pi\)
\(570\) 0 0
\(571\) −39.1877 + 22.6250i −1.63995 + 0.946828i −0.659107 + 0.752049i \(0.729065\pi\)
−0.980847 + 0.194778i \(0.937601\pi\)
\(572\) 9.34996 + 20.8654i 0.390941 + 0.872427i
\(573\) −24.5090 + 22.1698i −1.02388 + 0.926158i
\(574\) 8.77395 + 41.0359i 0.366218 + 1.71281i
\(575\) 0 0
\(576\) 19.2489 14.3346i 0.802036 0.597275i
\(577\) 27.1400i 1.12985i 0.825141 + 0.564927i \(0.191096\pi\)
−0.825141 + 0.564927i \(0.808904\pi\)
\(578\) 22.2603 4.75951i 0.925908 0.197970i
\(579\) 22.0191 4.73302i 0.915081 0.196698i
\(580\) 0 0
\(581\) 42.1556 24.3386i 1.74891 1.00973i
\(582\) 36.0983 + 26.0350i 1.49632 + 1.07918i
\(583\) 15.7132 27.2161i 0.650776 1.12718i
\(584\) 2.91814 + 3.98621i 0.120753 + 0.164950i
\(585\) 0 0
\(586\) 25.7438 + 28.5225i 1.06347 + 1.17825i
\(587\) 15.1886 + 8.76914i 0.626901 + 0.361941i 0.779551 0.626339i \(-0.215447\pi\)
−0.152650 + 0.988280i \(0.548781\pi\)
\(588\) 21.2918 + 29.0185i 0.878060 + 1.19670i
\(589\) −3.11656 5.39805i −0.128416 0.222423i
\(590\) 0 0
\(591\) 26.1224 + 8.42160i 1.07453 + 0.346418i
\(592\) 17.4227 + 15.5367i 0.716070 + 0.638554i
\(593\) −15.6793 −0.643872 −0.321936 0.946761i \(-0.604334\pi\)
−0.321936 + 0.946761i \(0.604334\pi\)
\(594\) −44.9018 + 14.9911i −1.84234 + 0.615093i
\(595\) 0 0
\(596\) 4.09430 5.66387i 0.167709 0.232001i
\(597\) −0.662000 + 2.05341i −0.0270939 + 0.0840406i
\(598\) −1.56094 + 4.82378i −0.0638317 + 0.197259i
\(599\) −3.60975 6.25226i −0.147490 0.255461i 0.782809 0.622262i \(-0.213786\pi\)
−0.930299 + 0.366801i \(0.880453\pi\)
\(600\) 0 0
\(601\) −22.9958 + 39.8299i −0.938019 + 1.62470i −0.168860 + 0.985640i \(0.554008\pi\)
−0.769160 + 0.639057i \(0.779325\pi\)
\(602\) −20.9814 23.2460i −0.855136 0.947436i
\(603\) 3.26789 32.5241i 0.133079 1.32448i
\(604\) −14.1498 1.45287i −0.575748 0.0591166i
\(605\) 0 0
\(606\) −20.3435 14.6722i −0.826397 0.596017i
\(607\) 1.07432 + 1.86077i 0.0436052 + 0.0755263i 0.887004 0.461761i \(-0.152782\pi\)
−0.843399 + 0.537288i \(0.819449\pi\)
\(608\) 10.7798 + 6.13778i 0.437180 + 0.248920i
\(609\) −46.0913 + 9.90738i −1.86772 + 0.401467i
\(610\) 0 0
\(611\) −0.716953 −0.0290048
\(612\) 5.58758 + 1.14697i 0.225865 + 0.0463636i
\(613\) 44.8432i 1.81120i −0.424131 0.905601i \(-0.639421\pi\)
0.424131 0.905601i \(-0.360579\pi\)
\(614\) 5.48544 1.17285i 0.221374 0.0473324i
\(615\) 0 0
\(616\) 69.5235 + 30.6544i 2.80118 + 1.23510i
\(617\) 17.2230 + 29.8311i 0.693371 + 1.20095i 0.970727 + 0.240186i \(0.0772085\pi\)
−0.277356 + 0.960767i \(0.589458\pi\)
\(618\) −9.69947 21.5823i −0.390170 0.868169i
\(619\) 11.0619 + 6.38657i 0.444614 + 0.256698i 0.705553 0.708657i \(-0.250699\pi\)
−0.260939 + 0.965355i \(0.584032\pi\)
\(620\) 0 0
\(621\) −9.61850 4.20350i −0.385977 0.168681i
\(622\) −18.3675 20.3500i −0.736469 0.815961i
\(623\) 22.1699 + 12.7998i 0.888219 + 0.512814i
\(624\) −6.07199 + 10.6914i −0.243074 + 0.427997i
\(625\) 0 0
\(626\) 29.5614 + 9.56586i 1.18151 + 0.382329i
\(627\) −16.4134 18.1452i −0.655490 0.724651i
\(628\) 3.70106 5.11987i 0.147688 0.204305i
\(629\) 5.54817i 0.221220i
\(630\) 0 0
\(631\) 12.9765i 0.516586i −0.966067 0.258293i \(-0.916840\pi\)
0.966067 0.258293i \(-0.0831600\pi\)
\(632\) 0.696214 0.0757106i 0.0276939 0.00301160i
\(633\) 27.6433 5.94196i 1.09872 0.236172i
\(634\) −11.5916 + 35.8214i −0.460360 + 1.42265i
\(635\) 0 0
\(636\) 16.7984 1.84528i 0.666099 0.0731701i
\(637\) −15.9684 9.21938i −0.632693 0.365285i
\(638\) −44.1419 + 39.8415i −1.74759 + 1.57734i
\(639\) −5.43335 3.90967i −0.214940 0.154664i
\(640\) 0 0
\(641\) 26.4627 + 15.2782i 1.04521 + 0.603453i 0.921305 0.388840i \(-0.127124\pi\)
0.123907 + 0.992294i \(0.460458\pi\)
\(642\) 0.800430 7.88004i 0.0315904 0.311000i
\(643\) 3.08712 + 5.34706i 0.121744 + 0.210867i 0.920456 0.390847i \(-0.127818\pi\)
−0.798711 + 0.601714i \(0.794485\pi\)
\(644\) 6.88979 + 15.3753i 0.271496 + 0.605871i
\(645\) 0 0
\(646\) 0.616433 + 2.88307i 0.0242532 + 0.113433i
\(647\) 9.68580i 0.380788i 0.981708 + 0.190394i \(0.0609766\pi\)
−0.981708 + 0.190394i \(0.939023\pi\)
\(648\) −20.7835 14.6986i −0.816451 0.577415i
\(649\) −17.3148 −0.679663
\(650\) 0 0
\(651\) 6.29961 19.5403i 0.246901 0.765846i
\(652\) −25.7457 + 11.5369i −1.00828 + 0.451819i
\(653\) −8.17325 14.1565i −0.319844 0.553986i 0.660611 0.750728i \(-0.270297\pi\)
−0.980455 + 0.196742i \(0.936964\pi\)
\(654\) −7.02696 0.713777i −0.274776 0.0279109i
\(655\) 0 0
\(656\) −5.78387 + 27.8682i −0.225822 + 1.08807i
\(657\) 3.06046 4.25319i 0.119400 0.165933i
\(658\) −1.76864 + 1.59634i −0.0689490 + 0.0622319i
\(659\) −11.5429 + 19.9929i −0.449648 + 0.778812i −0.998363 0.0571968i \(-0.981784\pi\)
0.548715 + 0.836009i \(0.315117\pi\)
\(660\) 0 0
\(661\) −9.23504 15.9956i −0.359202 0.622155i 0.628626 0.777708i \(-0.283618\pi\)
−0.987828 + 0.155552i \(0.950284\pi\)
\(662\) −44.6937 14.4626i −1.73707 0.562104i
\(663\) −2.85697 + 0.614108i −0.110955 + 0.0238500i
\(664\) 32.8222 3.56929i 1.27375 0.138515i
\(665\) 0 0
\(666\) 9.93990 22.6772i 0.385163 0.878724i
\(667\) −13.1855 −0.510545
\(668\) 21.4802 29.7147i 0.831095 1.14970i
\(669\) 23.0257 20.8281i 0.890227 0.805263i
\(670\) 0 0
\(671\) −13.1835 22.8345i −0.508943 0.881515i
\(672\) 8.82607 + 39.8941i 0.340473 + 1.53895i
\(673\) 26.2539 + 15.1577i 1.01201 + 0.584286i 0.911780 0.410678i \(-0.134708\pi\)
0.100233 + 0.994964i \(0.468041\pi\)
\(674\) 1.69775 1.53235i 0.0653948 0.0590240i
\(675\) 0 0
\(676\) −2.01228 + 19.5980i −0.0773956 + 0.753771i
\(677\) −21.1946 + 36.7101i −0.814573 + 1.41088i 0.0950610 + 0.995471i \(0.469695\pi\)
−0.909634 + 0.415410i \(0.863638\pi\)
\(678\) 3.10089 + 6.89981i 0.119089 + 0.264985i
\(679\) −65.6200 + 37.8857i −2.51827 + 1.45392i
\(680\) 0 0
\(681\) −12.1193 13.3980i −0.464411 0.513412i
\(682\) −5.41437 25.3231i −0.207327 0.969671i
\(683\) 20.7847i 0.795303i 0.917536 + 0.397652i \(0.130175\pi\)
−0.917536 + 0.397652i \(0.869825\pi\)
\(684\) 2.64564 12.8885i 0.101158 0.492802i
\(685\) 0 0
\(686\) −19.5502 + 4.18006i −0.746431 + 0.159595i
\(687\) 6.83860 + 31.8147i 0.260909 + 1.21381i
\(688\) −6.66021 20.1680i −0.253918 0.768899i
\(689\) −7.49773 + 4.32882i −0.285641 + 0.164915i
\(690\) 0 0
\(691\) 36.9591 + 21.3383i 1.40599 + 0.811748i 0.994998 0.0998910i \(-0.0318494\pi\)
0.410991 + 0.911639i \(0.365183\pi\)
\(692\) 1.61010 15.6811i 0.0612068 0.596105i
\(693\) 8.05688 80.1870i 0.306056 3.04605i
\(694\) 5.44437 4.91398i 0.206665 0.186532i
\(695\) 0 0
\(696\) −31.3158 6.46382i −1.18702 0.245010i
\(697\) −5.85831 + 3.38230i −0.221899 + 0.128114i
\(698\) 7.98279 24.6692i 0.302153 0.933743i
\(699\) −12.0125 3.87271i −0.454354 0.146479i
\(700\) 0 0
\(701\) 26.5424i 1.00249i −0.865305 0.501247i \(-0.832875\pi\)
0.865305 0.501247i \(-0.167125\pi\)
\(702\) 12.7776 + 2.60838i 0.482260 + 0.0984468i
\(703\) 12.7975 0.482668
\(704\) 34.7587 + 38.0488i 1.31002 + 1.43402i
\(705\) 0 0
\(706\) 4.65768 14.3936i 0.175294 0.541712i
\(707\) 36.9806 21.3508i 1.39080 0.802979i
\(708\) −5.50809 7.50694i −0.207007 0.282128i
\(709\) 23.1270 40.0571i 0.868553 1.50438i 0.00507739 0.999987i \(-0.498384\pi\)
0.863476 0.504391i \(-0.168283\pi\)
\(710\) 0 0
\(711\) −0.305228 0.677191i −0.0114470 0.0253966i
\(712\) 10.2563 + 14.0103i 0.384372 + 0.525057i
\(713\) 2.87107 4.97283i 0.107522 0.186234i
\(714\) −5.68048 + 7.87617i −0.212587 + 0.294758i
\(715\) 0 0
\(716\) 17.9613 8.04859i 0.671244 0.300790i
\(717\) −10.8039 50.2621i −0.403479 1.87707i
\(718\) 21.0151 4.49328i 0.784278 0.167688i
\(719\) −44.9992 −1.67819 −0.839094 0.543986i \(-0.816914\pi\)
−0.839094 + 0.543986i \(0.816914\pi\)
\(720\) 0 0
\(721\) 40.2828 1.50021
\(722\) −19.6260 + 4.19626i −0.730404 + 0.156169i
\(723\) −16.3779 + 14.8148i −0.609101 + 0.550968i
\(724\) 33.4392 14.9844i 1.24276 0.556890i
\(725\) 0 0
\(726\) −30.6232 68.1399i −1.13654 2.52891i
\(727\) −17.8289 + 30.8806i −0.661237 + 1.14530i 0.319054 + 0.947737i \(0.396635\pi\)
−0.980291 + 0.197560i \(0.936698\pi\)
\(728\) −12.3645 16.8900i −0.458257 0.625985i
\(729\) −7.98989 + 25.7907i −0.295922 + 0.955212i
\(730\) 0 0
\(731\) 2.52398 4.37166i 0.0933526 0.161692i
\(732\) 5.70618 12.9798i 0.210907 0.479747i
\(733\) −40.8238 + 23.5696i −1.50786 + 0.870563i −0.507902 + 0.861415i \(0.669579\pi\)
−0.999958 + 0.00914815i \(0.997088\pi\)
\(734\) 10.6927 33.0436i 0.394674 1.21966i
\(735\) 0 0
\(736\) 0.0685791 + 11.4274i 0.00252786 + 0.421219i
\(737\) 70.1906 2.58551
\(738\) 30.0045 3.32904i 1.10448 0.122544i
\(739\) 40.9282i 1.50557i 0.658268 + 0.752784i \(0.271289\pi\)
−0.658268 + 0.752784i \(0.728711\pi\)
\(740\) 0 0
\(741\) 1.41652 + 6.58995i 0.0520370 + 0.242088i
\(742\) −8.85769 + 27.3729i −0.325176 + 1.00489i
\(743\) −29.3195 + 16.9276i −1.07563 + 0.621014i −0.929714 0.368283i \(-0.879946\pi\)
−0.145915 + 0.989297i \(0.546613\pi\)
\(744\) 9.25662 10.4031i 0.339364 0.381396i
\(745\) 0 0
\(746\) −19.5363 + 17.6331i −0.715274 + 0.645592i
\(747\) −14.3896 31.9254i −0.526490 1.16809i
\(748\) −1.25106 + 12.1843i −0.0457434 + 0.445504i
\(749\) 11.6778 + 6.74219i 0.426698 + 0.246354i
\(750\) 0 0
\(751\) 5.93626 3.42730i 0.216617 0.125064i −0.387766 0.921758i \(-0.626753\pi\)
0.604383 + 0.796694i \(0.293420\pi\)
\(752\) −1.53446 + 0.506734i −0.0559561 + 0.0184787i
\(753\) 4.77784 + 1.54033i 0.174114 + 0.0561327i
\(754\) 16.0193 3.42511i 0.583389 0.124735i
\(755\) 0 0
\(756\) 37.3287 22.0156i 1.35763 0.800699i
\(757\) 40.8568i 1.48497i −0.669865 0.742483i \(-0.733648\pi\)
0.669865 0.742483i \(-0.266352\pi\)
\(758\) 8.25133 + 38.5916i 0.299702 + 1.40171i
\(759\) 6.91615 21.4527i 0.251040 0.778685i
\(760\) 0 0
\(761\) −24.1632 + 13.9506i −0.875916 + 0.505710i −0.869310 0.494268i \(-0.835436\pi\)
−0.00660605 + 0.999978i \(0.502103\pi\)
\(762\) −5.27165 0.535477i −0.190972 0.0193983i
\(763\) 6.01230 10.4136i 0.217660 0.376998i
\(764\) 3.89779 37.9614i 0.141017 1.37339i
\(765\) 0 0
\(766\) −7.77118 + 7.01411i −0.280784 + 0.253430i
\(767\) 4.13095 + 2.38501i 0.149160 + 0.0861176i
\(768\) −5.43906 + 27.1738i −0.196265 + 0.980551i
\(769\) 3.06170 + 5.30302i 0.110408 + 0.191232i 0.915935 0.401327i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(770\) 0 0
\(771\) −3.62759 16.8764i −0.130645 0.607788i
\(772\) −15.2355 + 21.0761i −0.548337 + 0.758544i
\(773\) 14.8193 0.533012 0.266506 0.963833i \(-0.414131\pi\)
0.266506 + 0.963833i \(0.414131\pi\)
\(774\) −18.1484 + 13.3466i −0.652332 + 0.479732i
\(775\) 0 0
\(776\) −51.0915 + 5.55600i −1.83408 + 0.199449i
\(777\) 28.2772 + 31.2608i 1.01444 + 1.12148i
\(778\) −24.1382 7.81097i −0.865398 0.280037i
\(779\) 7.80169 + 13.5129i 0.279525 + 0.484151i
\(780\) 0 0
\(781\) 7.18680 12.4479i 0.257164 0.445421i
\(782\) −2.01620 + 1.81978i −0.0720991 + 0.0650751i
\(783\) 3.77676 + 33.7047i 0.134971 + 1.20451i
\(784\) −40.6927 8.44551i −1.45331 0.301625i
\(785\) 0 0
\(786\) −1.92226 4.27724i −0.0685648 0.152564i
\(787\) −7.86353 13.6200i −0.280305 0.485502i 0.691155 0.722707i \(-0.257102\pi\)
−0.971460 + 0.237205i \(0.923769\pi\)
\(788\) −28.9214 + 12.9599i −1.03028 + 0.461677i
\(789\) 1.41941 + 1.56918i 0.0505324 + 0.0558641i
\(790\) 0 0
\(791\) −12.8783 −0.457900
\(792\) 26.9425 47.5601i 0.957362 1.68998i
\(793\) 7.26380i 0.257945i
\(794\) −8.25277 38.5984i −0.292880 1.36980i
\(795\) 0 0
\(796\) −1.01874 2.27343i −0.0361084 0.0805797i
\(797\) 21.6839 + 37.5576i 0.768083 + 1.33036i 0.938601 + 0.345005i \(0.112123\pi\)
−0.170517 + 0.985355i \(0.554544\pi\)
\(798\) 18.1673 + 13.1027i 0.643117 + 0.463831i
\(799\) −0.332613 0.192034i −0.0117670 0.00679367i
\(800\) 0 0
\(801\) 10.7566 14.9486i 0.380064 0.528184i
\(802\) −4.19622 + 3.78742i −0.148174 + 0.133738i
\(803\) 9.74412 + 5.62577i 0.343863 + 0.198529i
\(804\) 22.3287 + 30.4317i 0.787473 + 1.07324i
\(805\) 0 0
\(806\) −2.19635 + 6.78738i −0.0773632 + 0.239075i
\(807\) −10.1461 + 31.4715i −0.357159 + 1.10785i
\(808\) 28.7930 3.13113i 1.01293 0.110153i
\(809\) 0.395982i 0.0139220i 0.999976 + 0.00696100i \(0.00221577\pi\)
−0.999976 + 0.00696100i \(0.997784\pi\)
\(810\) 0 0
\(811\) 45.9241i 1.61261i 0.591498 + 0.806307i \(0.298537\pi\)
−0.591498 + 0.806307i \(0.701463\pi\)
\(812\) 31.8916 44.1174i 1.11918 1.54822i
\(813\) −6.37851 + 19.7851i −0.223704 + 0.693893i
\(814\) 50.5847 + 16.3689i 1.77299 + 0.573729i
\(815\) 0 0
\(816\) −5.68060 + 3.33362i −0.198861 + 0.116700i
\(817\) −10.0838 5.82186i −0.352786 0.203681i
\(818\) −20.9685 23.2318i −0.733147 0.812279i
\(819\) −12.9675 + 18.0212i −0.453121 + 0.629712i
\(820\) 0 0
\(821\) 29.4827 + 17.0219i 1.02895 + 0.594067i 0.916685 0.399610i \(-0.130855\pi\)
0.112270 + 0.993678i \(0.464188\pi\)
\(822\) −16.7082 + 23.1664i −0.582764 + 0.808022i
\(823\) −5.25672 9.10490i −0.183238 0.317377i 0.759744 0.650223i \(-0.225324\pi\)
−0.942981 + 0.332846i \(0.891991\pi\)
\(824\) 24.9999 + 11.0230i 0.870914 + 0.384004i
\(825\) 0 0
\(826\) 15.5010 3.31429i 0.539348 0.115319i
\(827\) 40.8826i 1.42163i 0.703381 + 0.710813i \(0.251673\pi\)
−0.703381 + 0.710813i \(0.748327\pi\)
\(828\) 11.5011 3.82590i 0.399692 0.132959i
\(829\) −24.0184 −0.834194 −0.417097 0.908862i \(-0.636952\pi\)
−0.417097 + 0.908862i \(0.636952\pi\)
\(830\) 0 0
\(831\) 27.9188 + 30.8645i 0.968491 + 1.07068i
\(832\) −3.05173 13.8655i −0.105800 0.480700i
\(833\) −4.93877 8.55420i −0.171118 0.296386i
\(834\) −17.1166 + 7.69249i −0.592699 + 0.266369i
\(835\) 0 0
\(836\) 28.1047 + 2.88573i 0.972021 + 0.0998050i
\(837\) −13.5339 5.91461i −0.467799 0.204439i
\(838\) 29.9557 + 33.1890i 1.03480 + 1.14649i
\(839\) −17.0952 + 29.6098i −0.590192 + 1.02224i 0.404014 + 0.914753i \(0.367615\pi\)
−0.994206 + 0.107490i \(0.965719\pi\)
\(840\) 0 0
\(841\) 6.80125 + 11.7801i 0.234526 + 0.406211i
\(842\) 13.0867 40.4418i 0.450997 1.39372i
\(843\) −1.79930 1.98914i −0.0619711 0.0685098i
\(844\) −19.1271 + 26.4595i −0.658380 + 0.910772i
\(845\) 0 0
\(846\) 1.01546 + 1.38080i 0.0349122 + 0.0474730i
\(847\) 127.181 4.37000
\(848\) −12.9875 + 14.5641i −0.445992 + 0.500133i
\(849\) −8.93873 41.5850i −0.306776 1.42719i
\(850\) 0 0
\(851\) 5.89473 + 10.2100i 0.202069 + 0.349993i
\(852\) 7.68311 0.843979i 0.263219 0.0289143i
\(853\) 21.4327 + 12.3742i 0.733840 + 0.423683i 0.819825 0.572614i \(-0.194070\pi\)
−0.0859851 + 0.996296i \(0.527404\pi\)
\(854\) 16.1733 + 17.9190i 0.553440 + 0.613176i
\(855\) 0 0
\(856\) 5.40243 + 7.37979i 0.184651 + 0.252236i
\(857\) −5.33556 + 9.24145i −0.182259 + 0.315682i −0.942649 0.333784i \(-0.891674\pi\)
0.760390 + 0.649466i \(0.225008\pi\)
\(858\) −2.82992 + 27.8599i −0.0966118 + 0.951120i
\(859\) −20.6204 + 11.9052i −0.703560 + 0.406200i −0.808672 0.588260i \(-0.799813\pi\)
0.105112 + 0.994460i \(0.466480\pi\)
\(860\) 0 0
\(861\) −15.7698 + 48.9153i −0.537434 + 1.66703i
\(862\) 34.6890 7.41690i 1.18151 0.252621i
\(863\) 53.1072i 1.80779i −0.427753 0.903896i \(-0.640695\pi\)
0.427753 0.903896i \(-0.359305\pi\)
\(864\) 29.1909 3.44848i 0.993094 0.117320i
\(865\) 0 0
\(866\) −8.70212 40.7000i −0.295710 1.38304i
\(867\) 26.5346 + 8.55449i 0.901162 + 0.290526i
\(868\) 9.69439 + 21.6340i 0.329049 + 0.734307i
\(869\) 1.38132 0.797508i 0.0468582 0.0270536i
\(870\) 0 0
\(871\) −16.7461 9.66836i −0.567419 0.327600i
\(872\) 6.58087 4.81758i 0.222856 0.163144i
\(873\) 22.3991 + 49.6955i 0.758095 + 1.68194i
\(874\) 4.19754 + 4.65061i 0.141984 + 0.157309i
\(875\) 0 0
\(876\) 0.660661 + 6.01428i 0.0223217 + 0.203204i
\(877\) 35.8774 20.7138i 1.21149 0.699456i 0.248409 0.968655i \(-0.420092\pi\)
0.963085 + 0.269199i \(0.0867590\pi\)
\(878\) −38.5562 12.4765i −1.30121 0.421062i
\(879\) 9.88920 + 46.0068i 0.333554 + 1.55177i
\(880\) 0 0
\(881\) 18.8579i 0.635340i −0.948201 0.317670i \(-0.897100\pi\)
0.948201 0.317670i \(-0.102900\pi\)
\(882\) 4.86101 + 43.8120i 0.163679 + 1.47523i
\(883\) 36.0305 1.21252 0.606261 0.795266i \(-0.292669\pi\)
0.606261 + 0.795266i \(0.292669\pi\)
\(884\) 1.97680 2.73462i 0.0664871 0.0919751i
\(885\) 0 0
\(886\) 40.1745 + 13.0002i 1.34969 + 0.436750i
\(887\) 16.7456 9.66809i 0.562263 0.324623i −0.191790 0.981436i \(-0.561429\pi\)
0.754053 + 0.656813i \(0.228096\pi\)
\(888\) 8.99493 + 27.1386i 0.301850 + 0.910711i
\(889\) 4.51044 7.81231i 0.151275 0.262016i
\(890\) 0 0
\(891\) −56.8183 11.5342i −1.90348 0.386411i
\(892\) −3.66190 + 35.6640i −0.122609 + 1.19412i
\(893\) −0.442950 + 0.767212i −0.0148228 + 0.0256738i
\(894\) 7.80724 3.50871i 0.261113 0.117349i
\(895\) 0 0
\(896\) −38.4007 27.4098i −1.28288 0.915698i
\(897\) −4.60505 + 4.16553i −0.153758 + 0.139083i
\(898\) −4.34716 20.3318i −0.145067 0.678480i
\(899\) −18.5529 −0.618774
\(900\) 0 0
\(901\) −4.63785 −0.154509
\(902\) 13.5538 + 63.3913i 0.451291 + 2.11070i
\(903\) −8.05975 37.4957i −0.268212 1.24778i
\(904\) −7.99240 3.52402i −0.265823 0.117207i
\(905\) 0 0
\(906\) −14.1296 10.1906i −0.469424 0.338559i
\(907\) 8.55508 14.8178i 0.284067 0.492018i −0.688316 0.725411i \(-0.741650\pi\)
0.972382 + 0.233393i \(0.0749829\pi\)
\(908\) 20.7518 + 2.13075i 0.688672 + 0.0707114i
\(909\) −12.6232 28.0063i −0.418685 0.928909i
\(910\) 0 0
\(911\) 5.66416 9.81062i 0.187662 0.325040i −0.756808 0.653637i \(-0.773242\pi\)
0.944470 + 0.328597i \(0.106576\pi\)
\(912\) 7.68941 + 13.1030i 0.254622 + 0.433883i
\(913\) 65.1210 37.5976i 2.15519 1.24430i
\(914\) 11.8855 + 3.84606i 0.393136 + 0.127216i
\(915\) 0 0
\(916\) −30.4522 22.0133i −1.00617 0.727340i
\(917\) 7.98334 0.263633
\(918\) 5.22920 + 4.63254i 0.172589 + 0.152896i
\(919\) 33.3567i 1.10034i −0.835054 0.550169i \(-0.814563\pi\)
0.835054 0.550169i \(-0.185437\pi\)
\(920\) 0 0
\(921\) 6.53871 + 2.10801i 0.215458 + 0.0694615i
\(922\) −1.22896 0.397684i −0.0404737 0.0130970i
\(923\) −3.42925 + 1.97988i −0.112875 + 0.0651685i
\(924\) 55.0507 + 75.0282i 1.81104 + 2.46825i
\(925\) 0 0
\(926\) 7.45853 + 8.26357i 0.245102 + 0.271558i
\(927\) 2.89717 28.8344i 0.0951555 0.947045i
\(928\) 31.8646 18.6529i 1.04601 0.612311i
\(929\) 9.08679 + 5.24626i 0.298128 + 0.172124i 0.641602 0.767038i \(-0.278270\pi\)
−0.343474 + 0.939162i \(0.611604\pi\)
\(930\) 0 0
\(931\) −19.7313 + 11.3919i −0.646668 + 0.373354i
\(932\) 13.2996 5.95966i 0.435643 0.195215i
\(933\) −7.05566 32.8245i −0.230992 1.07463i
\(934\) −8.47940 39.6583i −0.277454 1.29766i
\(935\) 0 0
\(936\) −12.9791 + 7.63572i −0.424235 + 0.249581i
\(937\) 29.4458i 0.961952i −0.876734 0.480976i \(-0.840282\pi\)
0.876734 0.480976i \(-0.159718\pi\)
\(938\) −62.8380 + 13.4355i −2.05173 + 0.438684i
\(939\) 25.5275 + 28.2209i 0.833058 + 0.920955i
\(940\) 0 0
\(941\) −31.2128 + 18.0207i −1.01751 + 0.587459i −0.913382 0.407105i \(-0.866538\pi\)
−0.104128 + 0.994564i \(0.533205\pi\)
\(942\) 7.05738 3.17171i 0.229942 0.103340i
\(943\) −7.18714 + 12.4485i −0.234045 + 0.405379i
\(944\) 10.5270 + 2.18481i 0.342624 + 0.0711095i
\(945\) 0 0
\(946\) −32.4115 35.9098i −1.05379 1.16753i
\(947\) −10.5418 6.08631i −0.342562 0.197778i 0.318842 0.947808i \(-0.396706\pi\)
−0.661405 + 0.750029i \(0.730039\pi\)
\(948\) 0.785186 + 0.345184i 0.0255016 + 0.0112110i
\(949\) −1.54984 2.68439i −0.0503098 0.0871391i
\(950\) 0 0
\(951\) −34.1971 + 30.9332i −1.10892 + 1.00308i
\(952\) −1.21225 11.1475i −0.0392891 0.361292i
\(953\) 25.0300 0.810801 0.405400 0.914139i \(-0.367132\pi\)
0.405400 + 0.914139i \(0.367132\pi\)
\(954\) 18.9564 + 8.30900i 0.613737 + 0.269014i
\(955\) 0 0
\(956\) 48.1096 + 34.7775i 1.55597 + 1.12478i
\(957\) −71.2007 + 15.3047i −2.30159 + 0.494730i
\(958\) −11.4866 + 35.4972i −0.371117 + 1.14686i
\(959\) −24.3135 42.1122i −0.785124 1.35988i
\(960\) 0 0
\(961\) −11.4602 + 19.8497i −0.369684 + 0.640312i
\(962\) −9.81379 10.8730i −0.316409 0.350561i
\(963\) 5.66592 7.87406i 0.182582 0.253738i
\(964\) 2.60466 25.3673i 0.0838905 0.817026i
\(965\) 0 0
\(966\) −2.08531 + 20.5293i −0.0670937 + 0.660521i
\(967\) 1.37768 + 2.38621i 0.0443032 + 0.0767353i 0.887327 0.461141i \(-0.152560\pi\)
−0.843023 + 0.537877i \(0.819227\pi\)
\(968\) 78.9299 + 34.8019i 2.53690 + 1.11857i
\(969\) −1.10794 + 3.43665i −0.0355923 + 0.110401i
\(970\) 0 0
\(971\) 33.6700 1.08052 0.540261 0.841497i \(-0.318325\pi\)
0.540261 + 0.841497i \(0.318325\pi\)
\(972\) −13.0740 28.3032i −0.419349 0.907825i
\(973\) 31.9476i 1.02419i
\(974\) 10.8869 2.32775i 0.348840 0.0745859i
\(975\) 0 0
\(976\) 5.13397 + 15.5464i 0.164334 + 0.497627i
\(977\) −28.0375 48.5624i −0.897000 1.55365i −0.831309 0.555810i \(-0.812408\pi\)
−0.0656907 0.997840i \(-0.520925\pi\)
\(978\) −34.3762 3.49182i −1.09923 0.111656i
\(979\) 34.2475 + 19.7728i 1.09456 + 0.631942i
\(980\) 0 0
\(981\) −7.02163 5.05255i −0.224183 0.161315i
\(982\) −18.4716 20.4654i −0.589453 0.653076i
\(983\) 13.0365 + 7.52662i 0.415799 + 0.240062i 0.693278 0.720670i \(-0.256166\pi\)
−0.277479 + 0.960732i \(0.589499\pi\)
\(984\) −23.1721 + 26.0421i −0.738699 + 0.830191i
\(985\) 0 0
\(986\) 8.34917 + 2.70173i 0.265892 + 0.0860407i
\(987\) −2.85282 + 0.613217i −0.0908063 + 0.0195189i
\(988\) −6.30773 4.55974i −0.200676 0.145065i
\(989\) 10.7265i 0.341084i
\(990\) 0 0
\(991\) 32.4096i 1.02953i −0.857333 0.514763i \(-0.827880\pi\)
0.857333 0.514763i \(-0.172120\pi\)
\(992\) 0.0964955 + 16.0791i 0.00306373 + 0.510511i
\(993\) −38.5948 42.6670i −1.22477 1.35400i
\(994\) −4.05126 + 12.5196i −0.128498 + 0.397098i
\(995\) 0 0
\(996\) 37.0167 + 16.2733i 1.17292 + 0.515639i
\(997\) −38.2349 22.0749i −1.21091 0.699120i −0.247954 0.968772i \(-0.579758\pi\)
−0.962958 + 0.269652i \(0.913091\pi\)
\(998\) −0.888641 + 0.802069i −0.0281294 + 0.0253891i
\(999\) 24.4102 17.9925i 0.772303 0.569258i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.o.b.299.2 48
4.3 odd 2 inner 900.2.o.b.299.15 48
5.2 odd 4 180.2.q.a.11.10 yes 48
5.3 odd 4 900.2.r.f.551.15 48
5.4 even 2 900.2.o.c.299.23 48
9.5 odd 6 900.2.o.c.599.10 48
15.2 even 4 540.2.q.a.251.15 48
20.3 even 4 900.2.r.f.551.22 48
20.7 even 4 180.2.q.a.11.3 48
20.19 odd 2 900.2.o.c.299.10 48
36.23 even 6 900.2.o.c.599.23 48
45.2 even 12 1620.2.e.b.971.37 48
45.7 odd 12 1620.2.e.b.971.12 48
45.14 odd 6 inner 900.2.o.b.599.15 48
45.22 odd 12 540.2.q.a.71.22 48
45.23 even 12 900.2.r.f.851.22 48
45.32 even 12 180.2.q.a.131.3 yes 48
60.47 odd 4 540.2.q.a.251.22 48
180.7 even 12 1620.2.e.b.971.38 48
180.23 odd 12 900.2.r.f.851.15 48
180.47 odd 12 1620.2.e.b.971.11 48
180.59 even 6 inner 900.2.o.b.599.2 48
180.67 even 12 540.2.q.a.71.15 48
180.167 odd 12 180.2.q.a.131.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.3 48 20.7 even 4
180.2.q.a.11.10 yes 48 5.2 odd 4
180.2.q.a.131.3 yes 48 45.32 even 12
180.2.q.a.131.10 yes 48 180.167 odd 12
540.2.q.a.71.15 48 180.67 even 12
540.2.q.a.71.22 48 45.22 odd 12
540.2.q.a.251.15 48 15.2 even 4
540.2.q.a.251.22 48 60.47 odd 4
900.2.o.b.299.2 48 1.1 even 1 trivial
900.2.o.b.299.15 48 4.3 odd 2 inner
900.2.o.b.599.2 48 180.59 even 6 inner
900.2.o.b.599.15 48 45.14 odd 6 inner
900.2.o.c.299.10 48 20.19 odd 2
900.2.o.c.299.23 48 5.4 even 2
900.2.o.c.599.10 48 9.5 odd 6
900.2.o.c.599.23 48 36.23 even 6
900.2.r.f.551.15 48 5.3 odd 4
900.2.r.f.551.22 48 20.3 even 4
900.2.r.f.851.15 48 180.23 odd 12
900.2.r.f.851.22 48 45.23 even 12
1620.2.e.b.971.11 48 180.47 odd 12
1620.2.e.b.971.12 48 45.7 odd 12
1620.2.e.b.971.37 48 45.2 even 12
1620.2.e.b.971.38 48 180.7 even 12