Properties

Label 540.2.q.a.251.22
Level $540$
Weight $2$
Character 540.251
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [540,2,Mod(71,540)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(540, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("540.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.22
Character \(\chi\) \(=\) 540.251
Dual form 540.2.q.a.71.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34552 - 0.435401i) q^{2} +(1.62085 - 1.17168i) q^{4} +(0.866025 - 0.500000i) q^{5} +(3.61144 + 2.08506i) q^{7} +(1.67074 - 2.28224i) q^{8} +(0.947554 - 1.04983i) q^{10} +(-3.22095 + 5.57886i) q^{11} +(-0.887336 - 1.53691i) q^{13} +(5.76710 + 1.23307i) q^{14} +(1.25432 - 3.79825i) q^{16} -0.950682i q^{17} -2.19286i q^{19} +(0.817857 - 1.82513i) q^{20} +(-1.90482 + 8.90887i) q^{22} +(-1.01006 - 1.74948i) q^{23} +(0.500000 - 0.866025i) q^{25} +(-1.86310 - 1.68160i) q^{26} +(8.29663 - 0.851880i) q^{28} +(-5.65260 - 3.26353i) q^{29} +(-2.46164 + 1.42123i) q^{31} +(0.0339479 - 5.65675i) q^{32} +(-0.413928 - 1.27916i) q^{34} +4.17013 q^{35} -5.83599 q^{37} +(-0.954776 - 2.95054i) q^{38} +(0.305778 - 2.81185i) q^{40} +(6.16222 - 3.55776i) q^{41} +(4.59844 + 2.65491i) q^{43} +(1.31596 + 12.8164i) q^{44} +(-2.12079 - 1.91418i) q^{46} +(0.201996 - 0.349867i) q^{47} +(5.19498 + 8.99797i) q^{49} +(0.295692 - 1.38296i) q^{50} +(-3.23901 - 1.45143i) q^{52} -4.87844i q^{53} +6.44191i q^{55} +(10.7924 - 4.75859i) q^{56} +(-9.02663 - 1.93000i) q^{58} +(-1.34391 - 2.32773i) q^{59} +(-2.04652 + 3.54468i) q^{61} +(-2.69338 + 2.98409i) q^{62} +(-2.41728 - 7.62606i) q^{64} +(-1.53691 - 0.887336i) q^{65} +(-9.43616 + 5.44797i) q^{67} +(-1.11390 - 1.54091i) q^{68} +(5.61099 - 1.81568i) q^{70} -2.23126 q^{71} -1.74662 q^{73} +(-7.85244 + 2.54100i) q^{74} +(-2.56934 - 3.55431i) q^{76} +(-23.2645 + 13.4318i) q^{77} +(-0.214428 - 0.123800i) q^{79} +(-0.812853 - 3.91654i) q^{80} +(6.74234 - 7.47008i) q^{82} +(-5.83641 + 10.1090i) q^{83} +(-0.475341 - 0.823315i) q^{85} +(7.34325 + 1.57007i) q^{86} +(7.35095 + 16.6718i) q^{88} -6.13881i q^{89} -7.40061i q^{91} +(-3.68701 - 1.65218i) q^{92} +(0.119457 - 0.558703i) q^{94} +(-1.09643 - 1.89908i) q^{95} +(-9.08503 + 15.7357i) q^{97} +(10.9077 + 9.84505i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 30 q^{14} + 24 q^{25} + 12 q^{29} - 6 q^{34} - 60 q^{38} - 6 q^{40} + 60 q^{41} - 12 q^{46} + 24 q^{49} - 18 q^{52} + 42 q^{56} - 18 q^{58} - 48 q^{64} - 48 q^{68} - 24 q^{73} - 84 q^{74} + 6 q^{76}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34552 0.435401i 0.951427 0.307875i
\(3\) 0 0
\(4\) 1.62085 1.17168i 0.810426 0.585842i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 0 0
\(7\) 3.61144 + 2.08506i 1.36499 + 0.788080i 0.990284 0.139062i \(-0.0444087\pi\)
0.374711 + 0.927142i \(0.377742\pi\)
\(8\) 1.67074 2.28224i 0.590694 0.806895i
\(9\) 0 0
\(10\) 0.947554 1.04983i 0.299643 0.331985i
\(11\) −3.22095 + 5.57886i −0.971154 + 1.68209i −0.279071 + 0.960271i \(0.590026\pi\)
−0.692083 + 0.721818i \(0.743307\pi\)
\(12\) 0 0
\(13\) −0.887336 1.53691i −0.246103 0.426262i 0.716338 0.697753i \(-0.245817\pi\)
−0.962441 + 0.271491i \(0.912483\pi\)
\(14\) 5.76710 + 1.23307i 1.54132 + 0.329552i
\(15\) 0 0
\(16\) 1.25432 3.79825i 0.313579 0.949562i
\(17\) 0.950682i 0.230574i −0.993332 0.115287i \(-0.963221\pi\)
0.993332 0.115287i \(-0.0367788\pi\)
\(18\) 0 0
\(19\) 2.19286i 0.503078i −0.967847 0.251539i \(-0.919063\pi\)
0.967847 0.251539i \(-0.0809366\pi\)
\(20\) 0.817857 1.82513i 0.182878 0.408112i
\(21\) 0 0
\(22\) −1.90482 + 8.90887i −0.406109 + 1.89938i
\(23\) −1.01006 1.74948i −0.210613 0.364793i 0.741293 0.671181i \(-0.234213\pi\)
−0.951907 + 0.306388i \(0.900879\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) −1.86310 1.68160i −0.365384 0.329788i
\(27\) 0 0
\(28\) 8.29663 0.851880i 1.56792 0.160990i
\(29\) −5.65260 3.26353i −1.04966 0.606022i −0.127107 0.991889i \(-0.540569\pi\)
−0.922555 + 0.385867i \(0.873902\pi\)
\(30\) 0 0
\(31\) −2.46164 + 1.42123i −0.442124 + 0.255260i −0.704498 0.709706i \(-0.748828\pi\)
0.262374 + 0.964966i \(0.415494\pi\)
\(32\) 0.0339479 5.65675i 0.00600120 0.999982i
\(33\) 0 0
\(34\) −0.413928 1.27916i −0.0709881 0.219374i
\(35\) 4.17013 0.704880
\(36\) 0 0
\(37\) −5.83599 −0.959431 −0.479715 0.877424i \(-0.659260\pi\)
−0.479715 + 0.877424i \(0.659260\pi\)
\(38\) −0.954776 2.95054i −0.154885 0.478642i
\(39\) 0 0
\(40\) 0.305778 2.81185i 0.0483477 0.444593i
\(41\) 6.16222 3.55776i 0.962378 0.555629i 0.0654736 0.997854i \(-0.479144\pi\)
0.896904 + 0.442225i \(0.145811\pi\)
\(42\) 0 0
\(43\) 4.59844 + 2.65491i 0.701256 + 0.404870i 0.807815 0.589436i \(-0.200650\pi\)
−0.106559 + 0.994306i \(0.533983\pi\)
\(44\) 1.31596 + 12.8164i 0.198389 + 1.93215i
\(45\) 0 0
\(46\) −2.12079 1.91418i −0.312694 0.282231i
\(47\) 0.201996 0.349867i 0.0294641 0.0510334i −0.850917 0.525300i \(-0.823953\pi\)
0.880381 + 0.474266i \(0.157287\pi\)
\(48\) 0 0
\(49\) 5.19498 + 8.99797i 0.742140 + 1.28542i
\(50\) 0.295692 1.38296i 0.0418171 0.195579i
\(51\) 0 0
\(52\) −3.23901 1.45143i −0.449170 0.201277i
\(53\) 4.87844i 0.670106i −0.942199 0.335053i \(-0.891246\pi\)
0.942199 0.335053i \(-0.108754\pi\)
\(54\) 0 0
\(55\) 6.44191i 0.868627i
\(56\) 10.7924 4.75859i 1.44219 0.635893i
\(57\) 0 0
\(58\) −9.02663 1.93000i −1.18526 0.253421i
\(59\) −1.34391 2.32773i −0.174963 0.303045i 0.765186 0.643810i \(-0.222647\pi\)
−0.940148 + 0.340765i \(0.889314\pi\)
\(60\) 0 0
\(61\) −2.04652 + 3.54468i −0.262030 + 0.453849i −0.966781 0.255605i \(-0.917725\pi\)
0.704751 + 0.709454i \(0.251059\pi\)
\(62\) −2.69338 + 2.98409i −0.342060 + 0.378980i
\(63\) 0 0
\(64\) −2.41728 7.62606i −0.302160 0.953257i
\(65\) −1.53691 0.887336i −0.190630 0.110060i
\(66\) 0 0
\(67\) −9.43616 + 5.44797i −1.15281 + 0.665575i −0.949571 0.313553i \(-0.898480\pi\)
−0.203240 + 0.979129i \(0.565147\pi\)
\(68\) −1.11390 1.54091i −0.135080 0.186863i
\(69\) 0 0
\(70\) 5.61099 1.81568i 0.670642 0.217015i
\(71\) −2.23126 −0.264802 −0.132401 0.991196i \(-0.542269\pi\)
−0.132401 + 0.991196i \(0.542269\pi\)
\(72\) 0 0
\(73\) −1.74662 −0.204426 −0.102213 0.994763i \(-0.532592\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(74\) −7.85244 + 2.54100i −0.912828 + 0.295385i
\(75\) 0 0
\(76\) −2.56934 3.55431i −0.294724 0.407707i
\(77\) −23.2645 + 13.4318i −2.65124 + 1.53069i
\(78\) 0 0
\(79\) −0.214428 0.123800i −0.0241250 0.0139286i 0.487889 0.872906i \(-0.337767\pi\)
−0.512014 + 0.858977i \(0.671100\pi\)
\(80\) −0.812853 3.91654i −0.0908797 0.437882i
\(81\) 0 0
\(82\) 6.74234 7.47008i 0.744567 0.824932i
\(83\) −5.83641 + 10.1090i −0.640629 + 1.10960i 0.344664 + 0.938726i \(0.387993\pi\)
−0.985293 + 0.170876i \(0.945340\pi\)
\(84\) 0 0
\(85\) −0.475341 0.823315i −0.0515580 0.0893010i
\(86\) 7.34325 + 1.57007i 0.791843 + 0.169305i
\(87\) 0 0
\(88\) 7.35095 + 16.6718i 0.783614 + 1.77722i
\(89\) 6.13881i 0.650713i −0.945591 0.325356i \(-0.894516\pi\)
0.945591 0.325356i \(-0.105484\pi\)
\(90\) 0 0
\(91\) 7.40061i 0.775794i
\(92\) −3.68701 1.65218i −0.384397 0.172251i
\(93\) 0 0
\(94\) 0.119457 0.558703i 0.0123211 0.0576258i
\(95\) −1.09643 1.89908i −0.112492 0.194841i
\(96\) 0 0
\(97\) −9.08503 + 15.7357i −0.922446 + 1.59772i −0.126827 + 0.991925i \(0.540479\pi\)
−0.795619 + 0.605798i \(0.792854\pi\)
\(98\) 10.9077 + 9.84505i 1.10184 + 0.994500i
\(99\) 0 0
\(100\) −0.204282 1.98954i −0.0204282 0.198954i
\(101\) 8.86799 + 5.11994i 0.882398 + 0.509453i 0.871448 0.490487i \(-0.163181\pi\)
0.0109497 + 0.999940i \(0.496515\pi\)
\(102\) 0 0
\(103\) 8.36568 4.82993i 0.824295 0.475907i −0.0276004 0.999619i \(-0.508787\pi\)
0.851895 + 0.523712i \(0.175453\pi\)
\(104\) −4.99011 0.542655i −0.489321 0.0532117i
\(105\) 0 0
\(106\) −2.12408 6.56405i −0.206309 0.637557i
\(107\) 3.23356 0.312600 0.156300 0.987710i \(-0.450043\pi\)
0.156300 + 0.987710i \(0.450043\pi\)
\(108\) 0 0
\(109\) 2.88351 0.276190 0.138095 0.990419i \(-0.455902\pi\)
0.138095 + 0.990419i \(0.455902\pi\)
\(110\) 2.80482 + 8.66772i 0.267429 + 0.826435i
\(111\) 0 0
\(112\) 12.4495 11.1018i 1.17636 1.04902i
\(113\) −2.67448 + 1.54411i −0.251594 + 0.145258i −0.620494 0.784211i \(-0.713068\pi\)
0.368900 + 0.929469i \(0.379735\pi\)
\(114\) 0 0
\(115\) −1.74948 1.01006i −0.163140 0.0941890i
\(116\) −12.9858 + 1.33336i −1.20571 + 0.123799i
\(117\) 0 0
\(118\) −2.82176 2.54686i −0.259764 0.234458i
\(119\) 1.98223 3.43333i 0.181711 0.314732i
\(120\) 0 0
\(121\) −15.2491 26.4122i −1.38628 2.40111i
\(122\) −1.21028 + 5.66049i −0.109573 + 0.512477i
\(123\) 0 0
\(124\) −2.32472 + 5.18786i −0.208766 + 0.465884i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 2.16321i 0.191954i 0.995384 + 0.0959771i \(0.0305976\pi\)
−0.995384 + 0.0959771i \(0.969402\pi\)
\(128\) −6.57290 9.20853i −0.580967 0.813927i
\(129\) 0 0
\(130\) −2.45429 0.524756i −0.215256 0.0460241i
\(131\) −0.957206 1.65793i −0.0836315 0.144854i 0.821176 0.570675i \(-0.193319\pi\)
−0.904807 + 0.425821i \(0.859985\pi\)
\(132\) 0 0
\(133\) 4.57226 7.91939i 0.396465 0.686698i
\(134\) −10.3245 + 11.4389i −0.891901 + 0.988168i
\(135\) 0 0
\(136\) −2.16969 1.58834i −0.186049 0.136199i
\(137\) 10.0986 + 5.83040i 0.862778 + 0.498125i 0.864941 0.501873i \(-0.167355\pi\)
−0.00216386 + 0.999998i \(0.500689\pi\)
\(138\) 0 0
\(139\) −6.63468 + 3.83054i −0.562747 + 0.324902i −0.754247 0.656591i \(-0.771998\pi\)
0.191501 + 0.981493i \(0.438665\pi\)
\(140\) 6.75916 4.88607i 0.571253 0.412948i
\(141\) 0 0
\(142\) −3.00221 + 0.971495i −0.251940 + 0.0815261i
\(143\) 11.4323 0.956014
\(144\) 0 0
\(145\) −6.52706 −0.542043
\(146\) −2.35011 + 0.760479i −0.194496 + 0.0629377i
\(147\) 0 0
\(148\) −9.45927 + 6.83793i −0.777547 + 0.562074i
\(149\) 3.02622 1.74719i 0.247918 0.143135i −0.370893 0.928676i \(-0.620948\pi\)
0.618810 + 0.785540i \(0.287615\pi\)
\(150\) 0 0
\(151\) 6.15927 + 3.55606i 0.501234 + 0.289388i 0.729223 0.684276i \(-0.239882\pi\)
−0.227989 + 0.973664i \(0.573215\pi\)
\(152\) −5.00465 3.66370i −0.405931 0.297165i
\(153\) 0 0
\(154\) −25.4547 + 28.2022i −2.05120 + 2.27259i
\(155\) −1.42123 + 2.46164i −0.114156 + 0.197724i
\(156\) 0 0
\(157\) 1.57938 + 2.73556i 0.126048 + 0.218321i 0.922142 0.386851i \(-0.126437\pi\)
−0.796094 + 0.605173i \(0.793104\pi\)
\(158\) −0.342420 0.0732132i −0.0272414 0.00582453i
\(159\) 0 0
\(160\) −2.79898 4.91587i −0.221279 0.388633i
\(161\) 8.42420i 0.663920i
\(162\) 0 0
\(163\) 14.1062i 1.10488i −0.833551 0.552442i \(-0.813696\pi\)
0.833551 0.552442i \(-0.186304\pi\)
\(164\) 5.81948 12.9868i 0.454425 1.01410i
\(165\) 0 0
\(166\) −3.45155 + 16.1430i −0.267893 + 1.25294i
\(167\) 9.16640 + 15.8767i 0.709317 + 1.22857i 0.965111 + 0.261842i \(0.0843299\pi\)
−0.255794 + 0.966731i \(0.582337\pi\)
\(168\) 0 0
\(169\) 4.92527 8.53082i 0.378867 0.656217i
\(170\) −0.998053 0.900823i −0.0765472 0.0690899i
\(171\) 0 0
\(172\) 10.5641 1.08470i 0.805506 0.0827076i
\(173\) 6.82580 + 3.94088i 0.518956 + 0.299620i 0.736508 0.676429i \(-0.236474\pi\)
−0.217551 + 0.976049i \(0.569807\pi\)
\(174\) 0 0
\(175\) 3.61144 2.08506i 0.272999 0.157616i
\(176\) 17.1498 + 19.2316i 1.29271 + 1.44964i
\(177\) 0 0
\(178\) −2.67285 8.25990i −0.200338 0.619105i
\(179\) −9.84108 −0.735557 −0.367778 0.929914i \(-0.619881\pi\)
−0.367778 + 0.929914i \(0.619881\pi\)
\(180\) 0 0
\(181\) 18.3215 1.36183 0.680913 0.732364i \(-0.261583\pi\)
0.680913 + 0.732364i \(0.261583\pi\)
\(182\) −3.22223 9.95767i −0.238848 0.738111i
\(183\) 0 0
\(184\) −5.68030 0.617711i −0.418757 0.0455383i
\(185\) −5.05411 + 2.91799i −0.371586 + 0.214535i
\(186\) 0 0
\(187\) 5.30372 + 3.06210i 0.387846 + 0.223923i
\(188\) −0.0825282 0.803758i −0.00601898 0.0586201i
\(189\) 0 0
\(190\) −2.30213 2.07786i −0.167014 0.150744i
\(191\) 9.54024 16.5242i 0.690307 1.19565i −0.281430 0.959582i \(-0.590809\pi\)
0.971737 0.236066i \(-0.0758580\pi\)
\(192\) 0 0
\(193\) 6.50154 + 11.2610i 0.467991 + 0.810585i 0.999331 0.0365742i \(-0.0116445\pi\)
−0.531340 + 0.847159i \(0.678311\pi\)
\(194\) −5.37274 + 25.1284i −0.385740 + 1.80411i
\(195\) 0 0
\(196\) 18.9631 + 8.49750i 1.35450 + 0.606964i
\(197\) 15.8462i 1.12899i 0.825436 + 0.564496i \(0.190929\pi\)
−0.825436 + 0.564496i \(0.809071\pi\)
\(198\) 0 0
\(199\) 1.24563i 0.0883001i −0.999025 0.0441500i \(-0.985942\pi\)
0.999025 0.0441500i \(-0.0140580\pi\)
\(200\) −1.14111 2.58802i −0.0806889 0.183001i
\(201\) 0 0
\(202\) 14.1613 + 3.02784i 0.996385 + 0.213038i
\(203\) −13.6093 23.5721i −0.955188 1.65443i
\(204\) 0 0
\(205\) 3.55776 6.16222i 0.248485 0.430388i
\(206\) 9.15324 10.1412i 0.637736 0.706571i
\(207\) 0 0
\(208\) −6.95057 + 1.44255i −0.481935 + 0.100023i
\(209\) 12.2337 + 7.06312i 0.846221 + 0.488566i
\(210\) 0 0
\(211\) 14.1374 8.16221i 0.973256 0.561910i 0.0730289 0.997330i \(-0.476733\pi\)
0.900227 + 0.435420i \(0.143400\pi\)
\(212\) −5.71599 7.90723i −0.392576 0.543071i
\(213\) 0 0
\(214\) 4.35083 1.40790i 0.297416 0.0962420i
\(215\) 5.30982 0.362127
\(216\) 0 0
\(217\) −11.8534 −0.804662
\(218\) 3.87982 1.25548i 0.262774 0.0850320i
\(219\) 0 0
\(220\) 7.54787 + 10.4414i 0.508878 + 0.703957i
\(221\) −1.46111 + 0.843574i −0.0982851 + 0.0567449i
\(222\) 0 0
\(223\) −15.5241 8.96287i −1.03957 0.600198i −0.119861 0.992791i \(-0.538245\pi\)
−0.919713 + 0.392592i \(0.871578\pi\)
\(224\) 11.9173 20.3582i 0.796257 1.36024i
\(225\) 0 0
\(226\) −2.92626 + 3.24211i −0.194652 + 0.215662i
\(227\) −5.21522 + 9.03303i −0.346146 + 0.599543i −0.985561 0.169319i \(-0.945843\pi\)
0.639415 + 0.768862i \(0.279177\pi\)
\(228\) 0 0
\(229\) 9.39388 + 16.2707i 0.620765 + 1.07520i 0.989344 + 0.145600i \(0.0465112\pi\)
−0.368578 + 0.929597i \(0.620155\pi\)
\(230\) −2.79375 0.597335i −0.184214 0.0393871i
\(231\) 0 0
\(232\) −16.8922 + 7.44812i −1.10903 + 0.488993i
\(233\) 7.28693i 0.477382i 0.971096 + 0.238691i \(0.0767184\pi\)
−0.971096 + 0.238691i \(0.923282\pi\)
\(234\) 0 0
\(235\) 0.403992i 0.0263535i
\(236\) −4.90565 2.19826i −0.319330 0.143095i
\(237\) 0 0
\(238\) 1.17226 5.48268i 0.0759862 0.355389i
\(239\) −14.8408 25.7051i −0.959973 1.66272i −0.722553 0.691316i \(-0.757031\pi\)
−0.237421 0.971407i \(-0.576302\pi\)
\(240\) 0 0
\(241\) 6.37517 11.0421i 0.410661 0.711285i −0.584301 0.811537i \(-0.698631\pi\)
0.994962 + 0.100251i \(0.0319647\pi\)
\(242\) −32.0179 28.8987i −2.05819 1.85768i
\(243\) 0 0
\(244\) 0.836133 + 8.14327i 0.0535279 + 0.521319i
\(245\) 8.99797 + 5.19498i 0.574859 + 0.331895i
\(246\) 0 0
\(247\) −3.37024 + 1.94581i −0.214443 + 0.123809i
\(248\) −0.869161 + 7.99257i −0.0551918 + 0.507528i
\(249\) 0 0
\(250\) −0.435401 1.34552i −0.0275372 0.0850982i
\(251\) −2.89830 −0.182939 −0.0914694 0.995808i \(-0.529156\pi\)
−0.0914694 + 0.995808i \(0.529156\pi\)
\(252\) 0 0
\(253\) 13.0135 0.818151
\(254\) 0.941867 + 2.91065i 0.0590980 + 0.182630i
\(255\) 0 0
\(256\) −12.8534 9.52842i −0.803336 0.595526i
\(257\) 8.63093 4.98307i 0.538382 0.310835i −0.206041 0.978543i \(-0.566058\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(258\) 0 0
\(259\) −21.0763 12.1684i −1.30962 0.756108i
\(260\) −3.53078 + 0.362533i −0.218970 + 0.0224833i
\(261\) 0 0
\(262\) −2.00981 1.81401i −0.124166 0.112070i
\(263\) −0.610808 + 1.05795i −0.0376640 + 0.0652360i −0.884243 0.467027i \(-0.845325\pi\)
0.846579 + 0.532263i \(0.178658\pi\)
\(264\) 0 0
\(265\) −2.43922 4.22486i −0.149840 0.259531i
\(266\) 2.70396 12.6465i 0.165790 0.775405i
\(267\) 0 0
\(268\) −8.91132 + 19.8865i −0.544345 + 1.21476i
\(269\) 19.0910i 1.16400i −0.813190 0.581998i \(-0.802271\pi\)
0.813190 0.581998i \(-0.197729\pi\)
\(270\) 0 0
\(271\) 12.0019i 0.729061i 0.931191 + 0.364531i \(0.118771\pi\)
−0.931191 + 0.364531i \(0.881229\pi\)
\(272\) −3.61092 1.19246i −0.218944 0.0723033i
\(273\) 0 0
\(274\) 16.1264 + 3.44800i 0.974230 + 0.208301i
\(275\) 3.22095 + 5.57886i 0.194231 + 0.336418i
\(276\) 0 0
\(277\) 12.0141 20.8091i 0.721860 1.25030i −0.238394 0.971169i \(-0.576621\pi\)
0.960254 0.279129i \(-0.0900458\pi\)
\(278\) −7.25928 + 8.04282i −0.435383 + 0.482376i
\(279\) 0 0
\(280\) 6.96718 9.51725i 0.416369 0.568764i
\(281\) −1.34110 0.774283i −0.0800031 0.0461898i 0.459465 0.888196i \(-0.348041\pi\)
−0.539468 + 0.842006i \(0.681375\pi\)
\(282\) 0 0
\(283\) −21.2674 + 12.2787i −1.26422 + 0.729895i −0.973887 0.227032i \(-0.927098\pi\)
−0.290328 + 0.956927i \(0.593765\pi\)
\(284\) −3.61655 + 2.61433i −0.214603 + 0.155132i
\(285\) 0 0
\(286\) 15.3824 4.97763i 0.909578 0.294333i
\(287\) 29.6726 1.75152
\(288\) 0 0
\(289\) 16.0962 0.946836
\(290\) −8.78229 + 2.84189i −0.515714 + 0.166882i
\(291\) 0 0
\(292\) −2.83101 + 2.04648i −0.165672 + 0.119761i
\(293\) 23.5288 13.5844i 1.37457 0.793607i 0.383068 0.923720i \(-0.374867\pi\)
0.991499 + 0.130113i \(0.0415341\pi\)
\(294\) 0 0
\(295\) −2.32773 1.34391i −0.135526 0.0782458i
\(296\) −9.75040 + 13.3192i −0.566730 + 0.774160i
\(297\) 0 0
\(298\) 3.31111 3.66850i 0.191808 0.212511i
\(299\) −1.79253 + 3.10476i −0.103665 + 0.179553i
\(300\) 0 0
\(301\) 11.0713 + 19.1761i 0.638140 + 1.10529i
\(302\) 9.83574 + 2.10299i 0.565983 + 0.121014i
\(303\) 0 0
\(304\) −8.32904 2.75055i −0.477703 0.157755i
\(305\) 4.09304i 0.234367i
\(306\) 0 0
\(307\) 3.96646i 0.226378i 0.993573 + 0.113189i \(0.0361065\pi\)
−0.993573 + 0.113189i \(0.963893\pi\)
\(308\) −21.9706 + 49.0296i −1.25189 + 2.79372i
\(309\) 0 0
\(310\) −0.840491 + 3.93099i −0.0477367 + 0.223265i
\(311\) 9.69205 + 16.7871i 0.549586 + 0.951911i 0.998303 + 0.0582368i \(0.0185478\pi\)
−0.448717 + 0.893674i \(0.648119\pi\)
\(312\) 0 0
\(313\) −10.9851 + 19.0268i −0.620915 + 1.07546i 0.368400 + 0.929667i \(0.379906\pi\)
−0.989316 + 0.145789i \(0.953428\pi\)
\(314\) 3.31615 + 2.99309i 0.187141 + 0.168910i
\(315\) 0 0
\(316\) −0.492610 + 0.0505801i −0.0277115 + 0.00284535i
\(317\) −23.0559 13.3113i −1.29495 0.747640i −0.315423 0.948951i \(-0.602146\pi\)
−0.979527 + 0.201311i \(0.935480\pi\)
\(318\) 0 0
\(319\) 36.4135 21.0234i 2.03877 1.17708i
\(320\) −5.90645 5.39572i −0.330181 0.301630i
\(321\) 0 0
\(322\) −3.66791 11.3349i −0.204404 0.631671i
\(323\) −2.08472 −0.115997
\(324\) 0 0
\(325\) −1.77467 −0.0984411
\(326\) −6.14187 18.9802i −0.340167 1.05122i
\(327\) 0 0
\(328\) 2.17577 20.0078i 0.120137 1.10474i
\(329\) 1.45899 0.842349i 0.0804368 0.0464402i
\(330\) 0 0
\(331\) −28.7664 16.6083i −1.58115 0.912876i −0.994692 0.102894i \(-0.967190\pi\)
−0.586455 0.809982i \(-0.699477\pi\)
\(332\) 2.38454 + 23.2235i 0.130869 + 1.27456i
\(333\) 0 0
\(334\) 19.2463 + 17.3713i 1.05311 + 0.950516i
\(335\) −5.44797 + 9.43616i −0.297654 + 0.515553i
\(336\) 0 0
\(337\) −0.808583 1.40051i −0.0440463 0.0762905i 0.843162 0.537660i \(-0.180692\pi\)
−0.887208 + 0.461370i \(0.847358\pi\)
\(338\) 2.91272 13.6229i 0.158431 0.740986i
\(339\) 0 0
\(340\) −1.73512 0.777522i −0.0941001 0.0421670i
\(341\) 18.3109i 0.991588i
\(342\) 0 0
\(343\) 14.1366i 0.763302i
\(344\) 13.7419 6.05911i 0.740916 0.326685i
\(345\) 0 0
\(346\) 10.9001 + 2.33057i 0.585994 + 0.125292i
\(347\) −2.59298 4.49117i −0.139198 0.241099i 0.787995 0.615682i \(-0.211119\pi\)
−0.927193 + 0.374583i \(0.877786\pi\)
\(348\) 0 0
\(349\) 9.16716 15.8780i 0.490707 0.849929i −0.509236 0.860627i \(-0.670072\pi\)
0.999943 + 0.0106977i \(0.00340525\pi\)
\(350\) 3.95142 4.37792i 0.211212 0.234010i
\(351\) 0 0
\(352\) 31.4489 + 18.4095i 1.67623 + 0.981231i
\(353\) −9.26426 5.34873i −0.493087 0.284684i 0.232767 0.972532i \(-0.425222\pi\)
−0.725854 + 0.687849i \(0.758555\pi\)
\(354\) 0 0
\(355\) −1.93233 + 1.11563i −0.102557 + 0.0592116i
\(356\) −7.19274 9.95010i −0.381215 0.527354i
\(357\) 0 0
\(358\) −13.2414 + 4.28482i −0.699828 + 0.226460i
\(359\) 15.1958 0.802005 0.401002 0.916077i \(-0.368662\pi\)
0.401002 + 0.916077i \(0.368662\pi\)
\(360\) 0 0
\(361\) 14.1913 0.746913
\(362\) 24.6520 7.97721i 1.29568 0.419273i
\(363\) 0 0
\(364\) −8.67116 11.9953i −0.454492 0.628724i
\(365\) −1.51261 + 0.873308i −0.0791739 + 0.0457110i
\(366\) 0 0
\(367\) 21.2680 + 12.2791i 1.11018 + 0.640964i 0.938877 0.344254i \(-0.111868\pi\)
0.171306 + 0.985218i \(0.445201\pi\)
\(368\) −7.91192 + 1.64207i −0.412437 + 0.0855987i
\(369\) 0 0
\(370\) −5.52992 + 6.12679i −0.287487 + 0.318517i
\(371\) 10.1719 17.6182i 0.528097 0.914691i
\(372\) 0 0
\(373\) −9.30451 16.1159i −0.481769 0.834449i 0.518012 0.855373i \(-0.326672\pi\)
−0.999781 + 0.0209247i \(0.993339\pi\)
\(374\) 8.46950 + 1.81088i 0.437948 + 0.0936382i
\(375\) 0 0
\(376\) −0.461001 1.04554i −0.0237743 0.0539196i
\(377\) 11.5834i 0.596575i
\(378\) 0 0
\(379\) 27.9052i 1.43339i −0.697386 0.716696i \(-0.745653\pi\)
0.697386 0.716696i \(-0.254347\pi\)
\(380\) −4.00227 1.79345i −0.205312 0.0920020i
\(381\) 0 0
\(382\) 5.64194 26.3875i 0.288667 1.35010i
\(383\) −3.70117 6.41061i −0.189121 0.327567i 0.755837 0.654760i \(-0.227230\pi\)
−0.944957 + 0.327194i \(0.893897\pi\)
\(384\) 0 0
\(385\) −13.4318 + 23.2645i −0.684547 + 1.18567i
\(386\) 13.6510 + 12.3211i 0.694818 + 0.627129i
\(387\) 0 0
\(388\) 3.71181 + 36.1501i 0.188439 + 1.83524i
\(389\) 15.5362 + 8.96985i 0.787718 + 0.454789i 0.839159 0.543887i \(-0.183048\pi\)
−0.0514403 + 0.998676i \(0.516381\pi\)
\(390\) 0 0
\(391\) −1.66320 + 0.960250i −0.0841118 + 0.0485619i
\(392\) 29.2150 + 3.17702i 1.47558 + 0.160464i
\(393\) 0 0
\(394\) 6.89944 + 21.3213i 0.347589 + 1.07415i
\(395\) −0.247600 −0.0124581
\(396\) 0 0
\(397\) −27.9101 −1.40077 −0.700383 0.713768i \(-0.746987\pi\)
−0.700383 + 0.713768i \(0.746987\pi\)
\(398\) −0.542347 1.67602i −0.0271854 0.0840111i
\(399\) 0 0
\(400\) −2.66222 2.98539i −0.133111 0.149270i
\(401\) −3.46154 + 1.99852i −0.172861 + 0.0998015i −0.583934 0.811801i \(-0.698487\pi\)
0.411073 + 0.911602i \(0.365154\pi\)
\(402\) 0 0
\(403\) 4.36860 + 2.52221i 0.217616 + 0.125640i
\(404\) 20.3726 2.09182i 1.01358 0.104072i
\(405\) 0 0
\(406\) −28.5749 25.7912i −1.41815 1.27999i
\(407\) 18.7974 32.5581i 0.931755 1.61385i
\(408\) 0 0
\(409\) −11.0645 19.1644i −0.547107 0.947616i −0.998471 0.0552767i \(-0.982396\pi\)
0.451364 0.892340i \(-0.350937\pi\)
\(410\) 2.10400 9.84045i 0.103909 0.485985i
\(411\) 0 0
\(412\) 7.90038 17.6305i 0.389224 0.868593i
\(413\) 11.2086i 0.551539i
\(414\) 0 0
\(415\) 11.6728i 0.572996i
\(416\) −8.72405 + 4.96726i −0.427732 + 0.243540i
\(417\) 0 0
\(418\) 19.5360 + 4.17701i 0.955535 + 0.204304i
\(419\) 15.8068 + 27.3783i 0.772215 + 1.33752i 0.936347 + 0.351077i \(0.114184\pi\)
−0.164132 + 0.986438i \(0.552482\pi\)
\(420\) 0 0
\(421\) −15.0283 + 26.0298i −0.732435 + 1.26861i 0.223405 + 0.974726i \(0.428283\pi\)
−0.955840 + 0.293889i \(0.905050\pi\)
\(422\) 15.4683 17.1379i 0.752984 0.834258i
\(423\) 0 0
\(424\) −11.1338 8.15059i −0.540705 0.395828i
\(425\) −0.823315 0.475341i −0.0399366 0.0230574i
\(426\) 0 0
\(427\) −14.7817 + 8.53425i −0.715339 + 0.413001i
\(428\) 5.24113 3.78871i 0.253339 0.183134i
\(429\) 0 0
\(430\) 7.14448 2.31191i 0.344537 0.111490i
\(431\) −25.0832 −1.20822 −0.604108 0.796902i \(-0.706471\pi\)
−0.604108 + 0.796902i \(0.706471\pi\)
\(432\) 0 0
\(433\) 29.4297 1.41430 0.707151 0.707062i \(-0.249980\pi\)
0.707151 + 0.707062i \(0.249980\pi\)
\(434\) −15.9490 + 5.16099i −0.765577 + 0.247736i
\(435\) 0 0
\(436\) 4.67374 3.37856i 0.223831 0.161804i
\(437\) −3.83638 + 2.21494i −0.183519 + 0.105955i
\(438\) 0 0
\(439\) 24.8161 + 14.3276i 1.18441 + 0.683819i 0.957031 0.289987i \(-0.0936510\pi\)
0.227379 + 0.973806i \(0.426984\pi\)
\(440\) 14.7020 + 10.7627i 0.700891 + 0.513093i
\(441\) 0 0
\(442\) −1.59866 + 1.77122i −0.0760407 + 0.0842482i
\(443\) −14.9290 + 25.8577i −0.709297 + 1.22854i 0.255822 + 0.966724i \(0.417654\pi\)
−0.965118 + 0.261814i \(0.915679\pi\)
\(444\) 0 0
\(445\) −3.06941 5.31637i −0.145504 0.252020i
\(446\) −24.7905 5.30049i −1.17386 0.250986i
\(447\) 0 0
\(448\) 7.17096 32.5812i 0.338796 1.53932i
\(449\) 14.7017i 0.693815i 0.937899 + 0.346908i \(0.112768\pi\)
−0.937899 + 0.346908i \(0.887232\pi\)
\(450\) 0 0
\(451\) 45.8375i 2.15841i
\(452\) −2.52573 + 5.63642i −0.118800 + 0.265115i
\(453\) 0 0
\(454\) −3.08420 + 14.4248i −0.144748 + 0.676991i
\(455\) −3.70030 6.40911i −0.173473 0.300464i
\(456\) 0 0
\(457\) 4.41668 7.64991i 0.206604 0.357848i −0.744039 0.668136i \(-0.767092\pi\)
0.950642 + 0.310288i \(0.100426\pi\)
\(458\) 19.7239 + 17.8024i 0.921639 + 0.831853i
\(459\) 0 0
\(460\) −4.01913 + 0.412675i −0.187393 + 0.0192411i
\(461\) −0.791004 0.456686i −0.0368407 0.0212700i 0.481467 0.876464i \(-0.340104\pi\)
−0.518307 + 0.855194i \(0.673438\pi\)
\(462\) 0 0
\(463\) 6.81678 3.93567i 0.316803 0.182906i −0.333164 0.942869i \(-0.608116\pi\)
0.649967 + 0.759963i \(0.274783\pi\)
\(464\) −19.4859 + 17.3765i −0.904608 + 0.806682i
\(465\) 0 0
\(466\) 3.17274 + 9.80471i 0.146974 + 0.454194i
\(467\) −28.6765 −1.32699 −0.663495 0.748181i \(-0.730928\pi\)
−0.663495 + 0.748181i \(0.730928\pi\)
\(468\) 0 0
\(469\) −45.4375 −2.09811
\(470\) −0.175899 0.543580i −0.00811360 0.0250735i
\(471\) 0 0
\(472\) −7.55777 0.821879i −0.347875 0.0378300i
\(473\) −29.6227 + 17.1027i −1.36206 + 0.786383i
\(474\) 0 0
\(475\) −1.89908 1.09643i −0.0871356 0.0503078i
\(476\) −0.809867 7.88746i −0.0371202 0.361521i
\(477\) 0 0
\(478\) −31.1607 28.1250i −1.42526 1.28641i
\(479\) −13.1909 + 22.8473i −0.602706 + 1.04392i 0.389703 + 0.920941i \(0.372578\pi\)
−0.992409 + 0.122977i \(0.960756\pi\)
\(480\) 0 0
\(481\) 5.17848 + 8.96939i 0.236118 + 0.408969i
\(482\) 3.77017 17.6332i 0.171726 0.803168i
\(483\) 0 0
\(484\) −55.6632 24.9431i −2.53015 1.13378i
\(485\) 18.1701i 0.825060i
\(486\) 0 0
\(487\) 7.87222i 0.356724i 0.983965 + 0.178362i \(0.0570799\pi\)
−0.983965 + 0.178362i \(0.942920\pi\)
\(488\) 4.67062 + 10.5929i 0.211429 + 0.479517i
\(489\) 0 0
\(490\) 14.3689 + 3.07222i 0.649119 + 0.138789i
\(491\) 9.74699 + 16.8823i 0.439876 + 0.761887i 0.997679 0.0680859i \(-0.0216892\pi\)
−0.557804 + 0.829973i \(0.688356\pi\)
\(492\) 0 0
\(493\) −3.10258 + 5.37382i −0.139733 + 0.242025i
\(494\) −3.68752 + 4.08553i −0.165909 + 0.183817i
\(495\) 0 0
\(496\) 2.31050 + 11.1326i 0.103745 + 0.499868i
\(497\) −8.05806 4.65233i −0.361454 0.208685i
\(498\) 0 0
\(499\) 0.733058 0.423231i 0.0328162 0.0189464i −0.483502 0.875343i \(-0.660635\pi\)
0.516318 + 0.856397i \(0.327302\pi\)
\(500\) −1.17168 1.62085i −0.0523993 0.0724867i
\(501\) 0 0
\(502\) −3.89972 + 1.26192i −0.174053 + 0.0563224i
\(503\) 18.5253 0.826002 0.413001 0.910731i \(-0.364481\pi\)
0.413001 + 0.910731i \(0.364481\pi\)
\(504\) 0 0
\(505\) 10.2399 0.455668
\(506\) 17.5099 5.66609i 0.778411 0.251888i
\(507\) 0 0
\(508\) 2.53460 + 3.50625i 0.112455 + 0.155565i
\(509\) 23.6460 13.6520i 1.04809 0.605115i 0.125976 0.992033i \(-0.459794\pi\)
0.922114 + 0.386918i \(0.126460\pi\)
\(510\) 0 0
\(511\) −6.30779 3.64181i −0.279040 0.161104i
\(512\) −21.4432 7.22431i −0.947663 0.319272i
\(513\) 0 0
\(514\) 9.44345 10.4627i 0.416533 0.461491i
\(515\) 4.82993 8.36568i 0.212832 0.368636i
\(516\) 0 0
\(517\) 1.30124 + 2.25381i 0.0572285 + 0.0991226i
\(518\) −33.6567 7.19619i −1.47879 0.316183i
\(519\) 0 0
\(520\) −4.59289 + 2.02510i −0.201412 + 0.0888066i
\(521\) 25.9868i 1.13850i 0.822163 + 0.569252i \(0.192767\pi\)
−0.822163 + 0.569252i \(0.807233\pi\)
\(522\) 0 0
\(523\) 30.1683i 1.31917i −0.751631 0.659584i \(-0.770732\pi\)
0.751631 0.659584i \(-0.229268\pi\)
\(524\) −3.49406 1.56571i −0.152639 0.0683986i
\(525\) 0 0
\(526\) −0.361222 + 1.68944i −0.0157500 + 0.0736631i
\(527\) 1.35114 + 2.34024i 0.0588564 + 0.101942i
\(528\) 0 0
\(529\) 9.45954 16.3844i 0.411284 0.712365i
\(530\) −5.12153 4.62259i −0.222465 0.200793i
\(531\) 0 0
\(532\) −1.86806 18.1934i −0.0809906 0.788784i
\(533\) −10.9359 6.31386i −0.473687 0.273484i
\(534\) 0 0
\(535\) 2.80035 1.61678i 0.121070 0.0698996i
\(536\) −3.33174 + 30.6377i −0.143909 + 1.32335i
\(537\) 0 0
\(538\) −8.31223 25.6873i −0.358366 1.10746i
\(539\) −66.9311 −2.88293
\(540\) 0 0
\(541\) −34.2068 −1.47067 −0.735333 0.677706i \(-0.762974\pi\)
−0.735333 + 0.677706i \(0.762974\pi\)
\(542\) 5.22563 + 16.1488i 0.224460 + 0.693648i
\(543\) 0 0
\(544\) −5.37777 0.0322736i −0.230570 0.00138372i
\(545\) 2.49719 1.44175i 0.106968 0.0617579i
\(546\) 0 0
\(547\) −13.8696 8.00761i −0.593020 0.342380i 0.173270 0.984874i \(-0.444567\pi\)
−0.766291 + 0.642494i \(0.777900\pi\)
\(548\) 23.1996 2.38209i 0.991039 0.101758i
\(549\) 0 0
\(550\) 6.76290 + 6.10406i 0.288371 + 0.260278i
\(551\) −7.15648 + 12.3954i −0.304876 + 0.528061i
\(552\) 0 0
\(553\) −0.516261 0.894191i −0.0219537 0.0380249i
\(554\) 7.10496 33.2301i 0.301861 1.41181i
\(555\) 0 0
\(556\) −6.26566 + 13.9825i −0.265723 + 0.592989i
\(557\) 16.0344i 0.679401i 0.940534 + 0.339701i \(0.110326\pi\)
−0.940534 + 0.339701i \(0.889674\pi\)
\(558\) 0 0
\(559\) 9.42320i 0.398559i
\(560\) 5.23066 15.8392i 0.221036 0.669327i
\(561\) 0 0
\(562\) −2.14160 0.457898i −0.0903378 0.0193153i
\(563\) −2.23682 3.87428i −0.0942707 0.163282i 0.815033 0.579414i \(-0.196719\pi\)
−0.909304 + 0.416133i \(0.863385\pi\)
\(564\) 0 0
\(565\) −1.54411 + 2.67448i −0.0649613 + 0.112516i
\(566\) −23.2695 + 25.7812i −0.978092 + 1.08366i
\(567\) 0 0
\(568\) −3.72785 + 5.09229i −0.156417 + 0.213668i
\(569\) −35.5461 20.5225i −1.49017 0.860349i −0.490232 0.871592i \(-0.663088\pi\)
−0.999937 + 0.0112430i \(0.996421\pi\)
\(570\) 0 0
\(571\) 39.1877 22.6250i 1.63995 0.946828i 0.659107 0.752049i \(-0.270935\pi\)
0.980847 0.194778i \(-0.0623988\pi\)
\(572\) 18.5300 13.3950i 0.774779 0.560073i
\(573\) 0 0
\(574\) 39.9251 12.9195i 1.66644 0.539250i
\(575\) −2.02013 −0.0842452
\(576\) 0 0
\(577\) −27.1400 −1.12985 −0.564927 0.825141i \(-0.691096\pi\)
−0.564927 + 0.825141i \(0.691096\pi\)
\(578\) 21.6578 7.00831i 0.900845 0.291507i
\(579\) 0 0
\(580\) −10.5794 + 7.64765i −0.439285 + 0.317551i
\(581\) −42.1556 + 24.3386i −1.74891 + 1.00973i
\(582\) 0 0
\(583\) 27.2161 + 15.7132i 1.12718 + 0.650776i
\(584\) −2.91814 + 3.98621i −0.120753 + 0.164950i
\(585\) 0 0
\(586\) 25.7438 28.5225i 1.06347 1.17825i
\(587\) −8.76914 + 15.1886i −0.361941 + 0.626901i −0.988280 0.152650i \(-0.951219\pi\)
0.626339 + 0.779551i \(0.284553\pi\)
\(588\) 0 0
\(589\) 3.11656 + 5.39805i 0.128416 + 0.222423i
\(590\) −3.71715 0.794769i −0.153033 0.0327201i
\(591\) 0 0
\(592\) −7.32018 + 22.1665i −0.300858 + 0.911039i
\(593\) 15.6793i 0.643872i −0.946761 0.321936i \(-0.895666\pi\)
0.946761 0.321936i \(-0.104334\pi\)
\(594\) 0 0
\(595\) 3.96446i 0.162527i
\(596\) 2.85790 6.37771i 0.117064 0.261241i
\(597\) 0 0
\(598\) −1.06007 + 4.95799i −0.0433497 + 0.202747i
\(599\) 3.60975 + 6.25226i 0.147490 + 0.255461i 0.930299 0.366801i \(-0.119547\pi\)
−0.782809 + 0.622262i \(0.786214\pi\)
\(600\) 0 0
\(601\) −22.9958 + 39.8299i −0.938019 + 1.62470i −0.168860 + 0.985640i \(0.554008\pi\)
−0.769160 + 0.639057i \(0.779325\pi\)
\(602\) 23.2460 + 20.9814i 0.947436 + 0.855136i
\(603\) 0 0
\(604\) 14.1498 1.45287i 0.575748 0.0591166i
\(605\) −26.4122 15.2491i −1.07381 0.619963i
\(606\) 0 0
\(607\) 1.86077 1.07432i 0.0755263 0.0436052i −0.461761 0.887004i \(-0.652782\pi\)
0.537288 + 0.843399i \(0.319449\pi\)
\(608\) −12.4045 0.0744431i −0.503069 0.00301907i
\(609\) 0 0
\(610\) 1.78211 + 5.50727i 0.0721557 + 0.222983i
\(611\) −0.716953 −0.0290048
\(612\) 0 0
\(613\) −44.8432 −1.81120 −0.905601 0.424131i \(-0.860579\pi\)
−0.905601 + 0.424131i \(0.860579\pi\)
\(614\) 1.72700 + 5.33696i 0.0696962 + 0.215382i
\(615\) 0 0
\(616\) −8.21428 + 75.5363i −0.330963 + 3.04345i
\(617\) 29.8311 17.2230i 1.20095 0.693371i 0.240186 0.970727i \(-0.422792\pi\)
0.960767 + 0.277356i \(0.0894582\pi\)
\(618\) 0 0
\(619\) 11.0619 + 6.38657i 0.444614 + 0.256698i 0.705553 0.708657i \(-0.250699\pi\)
−0.260939 + 0.965355i \(0.584032\pi\)
\(620\) 0.580662 + 5.65518i 0.0233199 + 0.227118i
\(621\) 0 0
\(622\) 20.3500 + 18.3675i 0.815961 + 0.736469i
\(623\) 12.7998 22.1699i 0.512814 0.888219i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −6.49641 + 30.3838i −0.259649 + 1.21438i
\(627\) 0 0
\(628\) 5.76514 + 2.58341i 0.230054 + 0.103089i
\(629\) 5.54817i 0.221220i
\(630\) 0 0
\(631\) 12.9765i 0.516586i 0.966067 + 0.258293i \(0.0831600\pi\)
−0.966067 + 0.258293i \(0.916840\pi\)
\(632\) −0.640794 + 0.282540i −0.0254894 + 0.0112388i
\(633\) 0 0
\(634\) −36.8180 7.87211i −1.46223 0.312641i
\(635\) 1.08161 + 1.87340i 0.0429223 + 0.0743436i
\(636\) 0 0
\(637\) 9.21938 15.9684i 0.365285 0.632693i
\(638\) 39.8415 44.1419i 1.57734 1.74759i
\(639\) 0 0
\(640\) −10.2966 4.68837i −0.407007 0.185324i
\(641\) −26.4627 15.2782i −1.04521 0.603453i −0.123907 0.992294i \(-0.539542\pi\)
−0.921305 + 0.388840i \(0.872876\pi\)
\(642\) 0 0
\(643\) −5.34706 + 3.08712i −0.210867 + 0.121744i −0.601714 0.798711i \(-0.705515\pi\)
0.390847 + 0.920456i \(0.372182\pi\)
\(644\) −9.87049 13.6544i −0.388952 0.538058i
\(645\) 0 0
\(646\) −2.80503 + 0.907688i −0.110362 + 0.0357125i
\(647\) −9.68580 −0.380788 −0.190394 0.981708i \(-0.560977\pi\)
−0.190394 + 0.981708i \(0.560977\pi\)
\(648\) 0 0
\(649\) 17.3148 0.679663
\(650\) −2.38786 + 0.772694i −0.0936595 + 0.0303076i
\(651\) 0 0
\(652\) −16.5280 22.8641i −0.647287 0.895427i
\(653\) 14.1565 8.17325i 0.553986 0.319844i −0.196742 0.980455i \(-0.563036\pi\)
0.750728 + 0.660611i \(0.229703\pi\)
\(654\) 0 0
\(655\) −1.65793 0.957206i −0.0647807 0.0374011i
\(656\) −5.78387 27.8682i −0.225822 1.08807i
\(657\) 0 0
\(658\) 1.59634 1.76864i 0.0622319 0.0689490i
\(659\) 11.5429 19.9929i 0.449648 0.778812i −0.548715 0.836009i \(-0.684883\pi\)
0.998363 + 0.0571968i \(0.0182163\pi\)
\(660\) 0 0
\(661\) −9.23504 15.9956i −0.359202 0.622155i 0.628626 0.777708i \(-0.283618\pi\)
−0.987828 + 0.155552i \(0.950284\pi\)
\(662\) −45.9371 9.82188i −1.78540 0.381738i
\(663\) 0 0
\(664\) 13.3200 + 30.2095i 0.516917 + 1.17236i
\(665\) 9.14452i 0.354609i
\(666\) 0 0
\(667\) 13.1855i 0.510545i
\(668\) 33.4598 + 14.9936i 1.29460 + 0.580120i
\(669\) 0 0
\(670\) −3.22184 + 15.0686i −0.124470 + 0.582151i
\(671\) −13.1835 22.8345i −0.508943 0.881515i
\(672\) 0 0
\(673\) 15.1577 26.2539i 0.584286 1.01201i −0.410678 0.911780i \(-0.634708\pi\)
0.994964 0.100233i \(-0.0319587\pi\)
\(674\) −1.69775 1.53235i −0.0653948 0.0590240i
\(675\) 0 0
\(676\) −2.01228 19.5980i −0.0773956 0.753771i
\(677\) 36.7101 + 21.1946i 1.41088 + 0.814573i 0.995471 0.0950610i \(-0.0303046\pi\)
0.415410 + 0.909634i \(0.363638\pi\)
\(678\) 0 0
\(679\) −65.6200 + 37.8857i −2.51827 + 1.45392i
\(680\) −2.67317 0.290697i −0.102512 0.0111477i
\(681\) 0 0
\(682\) −7.97257 24.6376i −0.305285 0.943423i
\(683\) 20.7847 0.795303 0.397652 0.917536i \(-0.369825\pi\)
0.397652 + 0.917536i \(0.369825\pi\)
\(684\) 0 0
\(685\) 11.6608 0.445536
\(686\) 6.15508 + 19.0210i 0.235002 + 0.726226i
\(687\) 0 0
\(688\) 15.8519 14.1359i 0.604349 0.538927i
\(689\) −7.49773 + 4.32882i −0.285641 + 0.164915i
\(690\) 0 0
\(691\) −36.9591 21.3383i −1.40599 0.811748i −0.410991 0.911639i \(-0.634817\pi\)
−0.994998 + 0.0998910i \(0.968151\pi\)
\(692\) 15.6811 1.61010i 0.596105 0.0612068i
\(693\) 0 0
\(694\) −5.44437 4.91398i −0.206665 0.186532i
\(695\) −3.83054 + 6.63468i −0.145301 + 0.251668i
\(696\) 0 0
\(697\) −3.38230 5.85831i −0.128114 0.221899i
\(698\) 5.42131 25.3556i 0.205199 0.959722i
\(699\) 0 0
\(700\) 3.41057 7.61104i 0.128907 0.287670i
\(701\) 26.5424i 1.00249i 0.865305 + 0.501247i \(0.167125\pi\)
−0.865305 + 0.501247i \(0.832875\pi\)
\(702\) 0 0
\(703\) 12.7975i 0.482668i
\(704\) 50.3306 + 11.0775i 1.89691 + 0.417500i
\(705\) 0 0
\(706\) −14.7941 3.16315i −0.556783 0.119047i
\(707\) 21.3508 + 36.9806i 0.802979 + 1.39080i
\(708\) 0 0
\(709\) −23.1270 + 40.0571i −0.868553 + 1.50438i −0.00507739 + 0.999987i \(0.501616\pi\)
−0.863476 + 0.504391i \(0.831717\pi\)
\(710\) −2.11424 + 2.34244i −0.0793461 + 0.0879104i
\(711\) 0 0
\(712\) −14.0103 10.2563i −0.525057 0.384372i
\(713\) 4.97283 + 2.87107i 0.186234 + 0.107522i
\(714\) 0 0
\(715\) 9.90064 5.71613i 0.370263 0.213771i
\(716\) −15.9509 + 11.5306i −0.596114 + 0.430920i
\(717\) 0 0
\(718\) 20.4463 6.61628i 0.763049 0.246917i
\(719\) 44.9992 1.67819 0.839094 0.543986i \(-0.183086\pi\)
0.839094 + 0.543986i \(0.183086\pi\)
\(720\) 0 0
\(721\) 40.2828 1.50021
\(722\) 19.0947 6.17893i 0.710633 0.229956i
\(723\) 0 0
\(724\) 29.6964 21.4670i 1.10366 0.797815i
\(725\) −5.65260 + 3.26353i −0.209932 + 0.121204i
\(726\) 0 0
\(727\) 30.8806 + 17.8289i 1.14530 + 0.661237i 0.947737 0.319054i \(-0.103365\pi\)
0.197560 + 0.980291i \(0.436698\pi\)
\(728\) −16.8900 12.3645i −0.625985 0.458257i
\(729\) 0 0
\(730\) −1.65501 + 1.83365i −0.0612548 + 0.0678664i
\(731\) 2.52398 4.37166i 0.0933526 0.161692i
\(732\) 0 0
\(733\) 23.5696 + 40.8238i 0.870563 + 1.50786i 0.861415 + 0.507902i \(0.169579\pi\)
0.00914815 + 0.999958i \(0.497088\pi\)
\(734\) 33.9629 + 7.26166i 1.25359 + 0.268033i
\(735\) 0 0
\(736\) −9.93069 + 5.65430i −0.366050 + 0.208420i
\(737\) 70.1906i 2.58551i
\(738\) 0 0
\(739\) 40.9282i 1.50557i 0.658268 + 0.752784i \(0.271289\pi\)
−0.658268 + 0.752784i \(0.728711\pi\)
\(740\) −4.77300 + 10.6515i −0.175459 + 0.391555i
\(741\) 0 0
\(742\) 6.01547 28.1345i 0.220835 1.03285i
\(743\) 16.9276 + 29.3195i 0.621014 + 1.07563i 0.989297 + 0.145915i \(0.0466125\pi\)
−0.368283 + 0.929714i \(0.620054\pi\)
\(744\) 0 0
\(745\) 1.74719 3.02622i 0.0640121 0.110872i
\(746\) −19.5363 17.6331i −0.715274 0.645592i
\(747\) 0 0
\(748\) 12.1843 1.25106i 0.445504 0.0457434i
\(749\) 11.6778 + 6.74219i 0.426698 + 0.246354i
\(750\) 0 0
\(751\) −5.93626 + 3.42730i −0.216617 + 0.125064i −0.604383 0.796694i \(-0.706580\pi\)
0.387766 + 0.921758i \(0.373247\pi\)
\(752\) −1.07552 1.20608i −0.0392200 0.0439811i
\(753\) 0 0
\(754\) 5.04342 + 15.5857i 0.183671 + 0.567597i
\(755\) 7.11211 0.258836
\(756\) 0 0
\(757\) 40.8568 1.48497 0.742483 0.669865i \(-0.233648\pi\)
0.742483 + 0.669865i \(0.233648\pi\)
\(758\) −12.1499 37.5470i −0.441306 1.36377i
\(759\) 0 0
\(760\) −6.16601 0.670529i −0.223665 0.0243227i
\(761\) 24.1632 13.9506i 0.875916 0.505710i 0.00660605 0.999978i \(-0.497897\pi\)
0.869310 + 0.494268i \(0.164564\pi\)
\(762\) 0 0
\(763\) 10.4136 + 6.01230i 0.376998 + 0.217660i
\(764\) −3.89779 37.9614i −0.141017 1.37339i
\(765\) 0 0
\(766\) −7.77118 7.01411i −0.280784 0.253430i
\(767\) −2.38501 + 4.13095i −0.0861176 + 0.149160i
\(768\) 0 0
\(769\) −3.06170 5.30302i −0.110408 0.191232i 0.805527 0.592559i \(-0.201882\pi\)
−0.915935 + 0.401327i \(0.868549\pi\)
\(770\) −7.94333 + 37.1511i −0.286258 + 1.33883i
\(771\) 0 0
\(772\) 23.7324 + 10.6347i 0.854146 + 0.382750i
\(773\) 14.8193i 0.533012i 0.963833 + 0.266506i \(0.0858692\pi\)
−0.963833 + 0.266506i \(0.914131\pi\)
\(774\) 0 0
\(775\) 2.84246i 0.102104i
\(776\) 20.7341 + 47.0245i 0.744311 + 1.68808i
\(777\) 0 0
\(778\) 24.8098 + 5.30462i 0.889475 + 0.190180i
\(779\) −7.80169 13.5129i −0.279525 0.484151i
\(780\) 0 0
\(781\) 7.18680 12.4479i 0.257164 0.445421i
\(782\) −1.81978 + 2.01620i −0.0650751 + 0.0720991i
\(783\) 0 0
\(784\) 40.6927 8.44551i 1.45331 0.301625i
\(785\) 2.73556 + 1.57938i 0.0976363 + 0.0563703i
\(786\) 0 0
\(787\) −13.6200 + 7.86353i −0.485502 + 0.280305i −0.722707 0.691155i \(-0.757102\pi\)
0.237205 + 0.971460i \(0.423769\pi\)
\(788\) 18.5667 + 25.6843i 0.661411 + 0.914964i
\(789\) 0 0
\(790\) −0.333151 + 0.107805i −0.0118530 + 0.00383554i
\(791\) −12.8783 −0.457900
\(792\) 0 0
\(793\) 7.26380 0.257945
\(794\) −37.5535 + 12.1521i −1.33273 + 0.431261i
\(795\) 0 0
\(796\) −1.45948 2.01897i −0.0517299 0.0715607i
\(797\) 37.5576 21.6839i 1.33036 0.768083i 0.345005 0.938601i \(-0.387877\pi\)
0.985355 + 0.170517i \(0.0545439\pi\)
\(798\) 0 0
\(799\) −0.332613 0.192034i −0.0117670 0.00679367i
\(800\) −4.88192 2.85778i −0.172602 0.101038i
\(801\) 0 0
\(802\) −3.78742 + 4.19622i −0.133738 + 0.148174i
\(803\) 5.62577 9.74412i 0.198529 0.343863i
\(804\) 0 0
\(805\) −4.21210 7.29557i −0.148457 0.257135i
\(806\) 6.97622 + 1.49160i 0.245727 + 0.0525392i
\(807\) 0 0
\(808\) 26.5010 11.6849i 0.932303 0.411072i
\(809\) 0.395982i 0.0139220i 0.999976 + 0.00696100i \(0.00221577\pi\)
−0.999976 + 0.00696100i \(0.997784\pi\)
\(810\) 0 0
\(811\) 45.9241i 1.61261i −0.591498 0.806307i \(-0.701463\pi\)
0.591498 0.806307i \(-0.298537\pi\)
\(812\) −49.6777 22.2610i −1.74334 0.781207i
\(813\) 0 0
\(814\) 11.1165 51.9921i 0.389633 1.82232i
\(815\) −7.05311 12.2163i −0.247060 0.427920i
\(816\) 0 0
\(817\) 5.82186 10.0838i 0.203681 0.352786i
\(818\) −23.2318 20.9685i −0.812279 0.733147i
\(819\) 0 0
\(820\) −1.45357 14.1566i −0.0507609 0.494370i
\(821\) −29.4827 17.0219i −1.02895 0.594067i −0.112270 0.993678i \(-0.535812\pi\)
−0.916685 + 0.399610i \(0.869145\pi\)
\(822\) 0 0
\(823\) 9.10490 5.25672i 0.317377 0.183238i −0.332846 0.942981i \(-0.608009\pi\)
0.650223 + 0.759744i \(0.274676\pi\)
\(824\) 2.95377 27.1621i 0.102899 0.946235i
\(825\) 0 0
\(826\) −4.88024 15.0814i −0.169805 0.524749i
\(827\) −40.8826 −1.42163 −0.710813 0.703381i \(-0.751673\pi\)
−0.710813 + 0.703381i \(0.751673\pi\)
\(828\) 0 0
\(829\) 24.0184 0.834194 0.417097 0.908862i \(-0.363048\pi\)
0.417097 + 0.908862i \(0.363048\pi\)
\(830\) 5.08236 + 15.7060i 0.176411 + 0.545164i
\(831\) 0 0
\(832\) −9.57563 + 10.4820i −0.331975 + 0.363399i
\(833\) 8.55420 4.93877i 0.296386 0.171118i
\(834\) 0 0
\(835\) 15.8767 + 9.16640i 0.549435 + 0.317216i
\(836\) 28.1047 2.88573i 0.972021 0.0998050i
\(837\) 0 0
\(838\) 33.1890 + 29.9557i 1.14649 + 1.03480i
\(839\) 17.0952 29.6098i 0.590192 1.02224i −0.404014 0.914753i \(-0.632385\pi\)
0.994206 0.107490i \(-0.0342813\pi\)
\(840\) 0 0
\(841\) 6.80125 + 11.7801i 0.234526 + 0.406211i
\(842\) −8.88749 + 41.5670i −0.306283 + 1.43249i
\(843\) 0 0
\(844\) 13.3510 29.7942i 0.459562 1.02556i
\(845\) 9.85054i 0.338869i
\(846\) 0 0
\(847\) 127.181i 4.37000i
\(848\) −18.5295 6.11912i −0.636307 0.210131i
\(849\) 0 0
\(850\) −1.31475 0.281109i −0.0450956 0.00964195i
\(851\) 5.89473 + 10.2100i 0.202069 + 0.349993i
\(852\) 0 0
\(853\) 12.3742 21.4327i 0.423683 0.733840i −0.572614 0.819825i \(-0.694070\pi\)
0.996296 + 0.0859851i \(0.0274038\pi\)
\(854\) −16.1733 + 17.9190i −0.553440 + 0.613176i
\(855\) 0 0
\(856\) 5.40243 7.37979i 0.184651 0.252236i
\(857\) 9.24145 + 5.33556i 0.315682 + 0.182259i 0.649466 0.760390i \(-0.274992\pi\)
−0.333784 + 0.942649i \(0.608326\pi\)
\(858\) 0 0
\(859\) −20.6204 + 11.9052i −0.703560 + 0.406200i −0.808672 0.588260i \(-0.799813\pi\)
0.105112 + 0.994460i \(0.466480\pi\)
\(860\) 8.60644 6.22143i 0.293477 0.212149i
\(861\) 0 0
\(862\) −33.7500 + 10.9213i −1.14953 + 0.371980i
\(863\) −53.1072 −1.80779 −0.903896 0.427753i \(-0.859305\pi\)
−0.903896 + 0.427753i \(0.859305\pi\)
\(864\) 0 0
\(865\) 7.88176 0.267988
\(866\) 39.5983 12.8137i 1.34561 0.435429i
\(867\) 0 0
\(868\) −19.2126 + 13.8884i −0.652119 + 0.471404i
\(869\) 1.38132 0.797508i 0.0468582 0.0270536i
\(870\) 0 0
\(871\) 16.7461 + 9.66836i 0.567419 + 0.327600i
\(872\) 4.81758 6.58087i 0.163144 0.222856i
\(873\) 0 0
\(874\) −4.19754 + 4.65061i −0.141984 + 0.157309i
\(875\) 2.08506 3.61144i 0.0704880 0.122089i
\(876\) 0 0
\(877\) 20.7138 + 35.8774i 0.699456 + 1.21149i 0.968655 + 0.248409i \(0.0799077\pi\)
−0.269199 + 0.963085i \(0.586759\pi\)
\(878\) 39.6289 + 8.47311i 1.33741 + 0.285954i
\(879\) 0 0
\(880\) 24.4680 + 8.08020i 0.824815 + 0.272383i
\(881\) 18.8579i 0.635340i 0.948201 + 0.317670i \(0.102900\pi\)
−0.948201 + 0.317670i \(0.897100\pi\)
\(882\) 0 0
\(883\) 36.0305i 1.21252i 0.795266 + 0.606261i \(0.207331\pi\)
−0.795266 + 0.606261i \(0.792669\pi\)
\(884\) −1.37985 + 3.07927i −0.0464092 + 0.103567i
\(885\) 0 0
\(886\) −8.82874 + 41.2922i −0.296607 + 1.38724i
\(887\) 9.66809 + 16.7456i 0.324623 + 0.562263i 0.981436 0.191790i \(-0.0614293\pi\)
−0.656813 + 0.754053i \(0.728096\pi\)
\(888\) 0 0
\(889\) −4.51044 + 7.81231i −0.151275 + 0.262016i
\(890\) −6.44470 5.81686i −0.216027 0.194981i
\(891\) 0 0
\(892\) −35.6640 + 3.66190i −1.19412 + 0.122609i
\(893\) −0.767212 0.442950i −0.0256738 0.0148228i
\(894\) 0 0
\(895\) −8.52262 + 4.92054i −0.284880 + 0.164475i
\(896\) −4.53722 46.9609i −0.151578 1.56885i
\(897\) 0 0
\(898\) 6.40113 + 19.7814i 0.213609 + 0.660114i
\(899\) 18.5529 0.618774
\(900\) 0 0
\(901\) −4.63785 −0.154509
\(902\) 19.9577 + 61.6753i 0.664520 + 2.05356i
\(903\) 0 0
\(904\) −0.944311 + 8.68363i −0.0314073 + 0.288813i
\(905\) 15.8669 9.16075i 0.527433 0.304514i
\(906\) 0 0
\(907\) −14.8178 8.55508i −0.492018 0.284067i 0.233393 0.972382i \(-0.425017\pi\)
−0.725411 + 0.688316i \(0.758350\pi\)
\(908\) 2.13075 + 20.7518i 0.0707114 + 0.688672i
\(909\) 0 0
\(910\) −7.76937 7.01248i −0.257552 0.232461i
\(911\) 5.66416 9.81062i 0.187662 0.325040i −0.756808 0.653637i \(-0.773242\pi\)
0.944470 + 0.328597i \(0.106576\pi\)
\(912\) 0 0
\(913\) −37.5976 65.1210i −1.24430 2.15519i
\(914\) 2.61195 12.2161i 0.0863956 0.404074i
\(915\) 0 0
\(916\) 34.2902 + 15.3657i 1.13298 + 0.507697i
\(917\) 7.98334i 0.263633i
\(918\) 0 0
\(919\) 33.3567i 1.10034i −0.835054 0.550169i \(-0.814563\pi\)
0.835054 0.550169i \(-0.185437\pi\)
\(920\) −5.22814 + 2.30520i −0.172367 + 0.0760001i
\(921\) 0 0
\(922\) −1.26315 0.270077i −0.0415997 0.00889450i
\(923\) 1.97988 + 3.42925i 0.0651685 + 0.112875i
\(924\) 0 0
\(925\) −2.91799 + 5.05411i −0.0959431 + 0.166178i
\(926\) 7.45853 8.26357i 0.245102 0.271558i
\(927\) 0 0
\(928\) −18.6529 + 31.8646i −0.612311 + 1.04601i
\(929\) 9.08679 + 5.24626i 0.298128 + 0.172124i 0.641602 0.767038i \(-0.278270\pi\)
−0.343474 + 0.939162i \(0.611604\pi\)
\(930\) 0 0
\(931\) 19.7313 11.3919i 0.646668 0.373354i
\(932\) 8.53797 + 11.8110i 0.279670 + 0.386883i
\(933\) 0 0
\(934\) −38.5848 + 12.4858i −1.26253 + 0.408547i
\(935\) 6.12420 0.200283
\(936\) 0 0
\(937\) 29.4458 0.961952 0.480976 0.876734i \(-0.340282\pi\)
0.480976 + 0.876734i \(0.340282\pi\)
\(938\) −61.1370 + 19.7835i −1.99619 + 0.645955i
\(939\) 0 0
\(940\) −0.473351 0.654811i −0.0154390 0.0213576i
\(941\) 31.2128 18.0207i 1.01751 0.587459i 0.104128 0.994564i \(-0.466795\pi\)
0.913382 + 0.407105i \(0.133462\pi\)
\(942\) 0 0
\(943\) −12.4485 7.18714i −0.405379 0.234045i
\(944\) −10.5270 + 2.18481i −0.342624 + 0.0711095i
\(945\) 0 0
\(946\) −32.4115 + 35.9098i −1.05379 + 1.16753i
\(947\) 6.08631 10.5418i 0.197778 0.342562i −0.750029 0.661405i \(-0.769961\pi\)
0.947808 + 0.318842i \(0.103294\pi\)
\(948\) 0 0
\(949\) 1.54984 + 2.68439i 0.0503098 + 0.0871391i
\(950\) −3.03263 0.648412i −0.0983917 0.0210373i
\(951\) 0 0
\(952\) −4.52390 10.2601i −0.146621 0.332532i
\(953\) 25.0300i 0.810801i 0.914139 + 0.405400i \(0.132868\pi\)
−0.914139 + 0.405400i \(0.867132\pi\)
\(954\) 0 0
\(955\) 19.0805i 0.617430i
\(956\) −54.1730 24.2753i −1.75208 0.785121i
\(957\) 0 0
\(958\) −7.80086 + 36.4848i −0.252034 + 1.17877i
\(959\) 24.3135 + 42.1122i 0.785124 + 1.35988i
\(960\) 0 0
\(961\) −11.4602 + 19.8497i −0.369684 + 0.640312i
\(962\) 10.8730 + 9.81379i 0.350561 + 0.316409i
\(963\) 0 0
\(964\) −2.60466 25.3673i −0.0838905 0.817026i
\(965\) 11.2610 + 6.50154i 0.362505 + 0.209292i
\(966\) 0 0
\(967\) 2.38621 1.37768i 0.0767353 0.0443032i −0.461141 0.887327i \(-0.652560\pi\)
0.537877 + 0.843023i \(0.319227\pi\)
\(968\) −85.7563 9.32566i −2.75631 0.299738i
\(969\) 0 0
\(970\) 7.91127 + 24.4482i 0.254016 + 0.784984i
\(971\) 33.6700 1.08052 0.540261 0.841497i \(-0.318325\pi\)
0.540261 + 0.841497i \(0.318325\pi\)
\(972\) 0 0
\(973\) −31.9476 −1.02419
\(974\) 3.42758 + 10.5922i 0.109827 + 0.339397i
\(975\) 0 0
\(976\) 10.8966 + 12.2193i 0.348791 + 0.391132i
\(977\) −48.5624 + 28.0375i −1.55365 + 0.897000i −0.555810 + 0.831309i \(0.687592\pi\)
−0.997840 + 0.0656907i \(0.979075\pi\)
\(978\) 0 0
\(979\) 34.2475 + 19.7728i 1.09456 + 0.631942i
\(980\) 20.6712 2.12248i 0.660318 0.0678001i
\(981\) 0 0
\(982\) 20.4654 + 18.4716i 0.653076 + 0.589453i
\(983\) 7.52662 13.0365i 0.240062 0.415799i −0.720670 0.693278i \(-0.756166\pi\)
0.960732 + 0.277479i \(0.0894989\pi\)
\(984\) 0 0
\(985\) 7.92308 + 13.7232i 0.252450 + 0.437257i
\(986\) −1.83481 + 8.58146i −0.0584323 + 0.273289i
\(987\) 0 0
\(988\) −3.18278 + 7.10271i −0.101258 + 0.225967i
\(989\) 10.7265i 0.341084i
\(990\) 0 0
\(991\) 32.4096i 1.02953i 0.857333 + 0.514763i \(0.172120\pi\)
−0.857333 + 0.514763i \(0.827880\pi\)
\(992\) 7.95597 + 13.9731i 0.252602 + 0.443648i
\(993\) 0 0
\(994\) −12.8679 2.75131i −0.408146 0.0872662i
\(995\) −0.622813 1.07874i −0.0197445 0.0341985i
\(996\) 0 0
\(997\) 22.0749 38.2349i 0.699120 1.21091i −0.269652 0.962958i \(-0.586909\pi\)
0.968772 0.247954i \(-0.0797581\pi\)
\(998\) 0.802069 0.888641i 0.0253891 0.0281294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.q.a.251.22 48
3.2 odd 2 180.2.q.a.11.3 48
4.3 odd 2 inner 540.2.q.a.251.15 48
9.2 odd 6 1620.2.e.b.971.38 48
9.4 even 3 180.2.q.a.131.10 yes 48
9.5 odd 6 inner 540.2.q.a.71.15 48
9.7 even 3 1620.2.e.b.971.11 48
12.11 even 2 180.2.q.a.11.10 yes 48
15.2 even 4 900.2.o.c.299.10 48
15.8 even 4 900.2.o.b.299.15 48
15.14 odd 2 900.2.r.f.551.22 48
36.7 odd 6 1620.2.e.b.971.37 48
36.11 even 6 1620.2.e.b.971.12 48
36.23 even 6 inner 540.2.q.a.71.22 48
36.31 odd 6 180.2.q.a.131.3 yes 48
45.4 even 6 900.2.r.f.851.15 48
45.13 odd 12 900.2.o.c.599.23 48
45.22 odd 12 900.2.o.b.599.2 48
60.23 odd 4 900.2.o.b.299.2 48
60.47 odd 4 900.2.o.c.299.23 48
60.59 even 2 900.2.r.f.551.15 48
180.67 even 12 900.2.o.b.599.15 48
180.103 even 12 900.2.o.c.599.10 48
180.139 odd 6 900.2.r.f.851.22 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.3 48 3.2 odd 2
180.2.q.a.11.10 yes 48 12.11 even 2
180.2.q.a.131.3 yes 48 36.31 odd 6
180.2.q.a.131.10 yes 48 9.4 even 3
540.2.q.a.71.15 48 9.5 odd 6 inner
540.2.q.a.71.22 48 36.23 even 6 inner
540.2.q.a.251.15 48 4.3 odd 2 inner
540.2.q.a.251.22 48 1.1 even 1 trivial
900.2.o.b.299.2 48 60.23 odd 4
900.2.o.b.299.15 48 15.8 even 4
900.2.o.b.599.2 48 45.22 odd 12
900.2.o.b.599.15 48 180.67 even 12
900.2.o.c.299.10 48 15.2 even 4
900.2.o.c.299.23 48 60.47 odd 4
900.2.o.c.599.10 48 180.103 even 12
900.2.o.c.599.23 48 45.13 odd 12
900.2.r.f.551.15 48 60.59 even 2
900.2.r.f.551.22 48 15.14 odd 2
900.2.r.f.851.15 48 45.4 even 6
900.2.r.f.851.22 48 180.139 odd 6
1620.2.e.b.971.11 48 9.7 even 3
1620.2.e.b.971.12 48 36.11 even 6
1620.2.e.b.971.37 48 36.7 odd 6
1620.2.e.b.971.38 48 9.2 odd 6