Properties

Label 1620.2.e.b.971.12
Level $1620$
Weight $2$
Character 1620.971
Analytic conductor $12.936$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(971,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.971");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 971.12
Character \(\chi\) \(=\) 1620.971
Dual form 1620.2.e.b.971.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04983 + 0.947554i) q^{2} +(0.204282 - 1.98954i) q^{4} -1.00000i q^{5} +4.17013i q^{7} +(1.67074 + 2.28224i) q^{8} +(0.947554 + 1.04983i) q^{10} +6.44191 q^{11} +1.77467 q^{13} +(-3.95142 - 4.37792i) q^{14} +(-3.91654 - 0.812853i) q^{16} +0.950682i q^{17} +2.19286i q^{19} +(-1.98954 - 0.204282i) q^{20} +(-6.76290 + 6.10406i) q^{22} +2.02013 q^{23} -1.00000 q^{25} +(-1.86310 + 1.68160i) q^{26} +(8.29663 + 0.851880i) q^{28} -6.52706i q^{29} +2.84246i q^{31} +(4.88192 - 2.85778i) q^{32} +(-0.900823 - 0.998053i) q^{34} +4.17013 q^{35} -5.83599 q^{37} +(-2.07786 - 2.30213i) q^{38} +(2.28224 - 1.67074i) q^{40} -7.11552i q^{41} +5.30982i q^{43} +(1.31596 - 12.8164i) q^{44} +(-2.12079 + 1.91418i) q^{46} -0.403992 q^{47} -10.3900 q^{49} +(1.04983 - 0.947554i) q^{50} +(0.362533 - 3.53078i) q^{52} +4.87844i q^{53} -6.44191i q^{55} +(-9.51725 + 6.96718i) q^{56} +(6.18474 + 6.85230i) q^{58} +2.68783 q^{59} +4.09304 q^{61} +(-2.69338 - 2.98409i) q^{62} +(-2.41728 + 7.62606i) q^{64} -1.77467i q^{65} +10.8959i q^{67} +(1.89142 + 0.194207i) q^{68} +(-4.37792 + 3.95142i) q^{70} -2.23126 q^{71} -1.74662 q^{73} +(6.12679 - 5.52992i) q^{74} +(4.36279 + 0.447962i) q^{76} +26.8636i q^{77} -0.247600i q^{79} +(-0.812853 + 3.91654i) q^{80} +(6.74234 + 7.47008i) q^{82} +11.6728 q^{83} +0.950682 q^{85} +(-5.03135 - 5.57441i) q^{86} +(10.7627 + 14.7020i) q^{88} +6.13881i q^{89} +7.40061i q^{91} +(0.412675 - 4.01913i) q^{92} +(0.424123 - 0.382804i) q^{94} +2.19286 q^{95} +18.1701 q^{97} +(10.9077 - 9.84505i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{25} + 12 q^{34} + 12 q^{40} - 12 q^{46} - 48 q^{49} + 36 q^{52} + 36 q^{58} - 48 q^{64} - 24 q^{73} - 12 q^{76} - 36 q^{82} - 36 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04983 + 0.947554i −0.742341 + 0.670022i
\(3\) 0 0
\(4\) 0.204282 1.98954i 0.102141 0.994770i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.17013i 1.57616i 0.615573 + 0.788080i \(0.288925\pi\)
−0.615573 + 0.788080i \(0.711075\pi\)
\(8\) 1.67074 + 2.28224i 0.590694 + 0.806895i
\(9\) 0 0
\(10\) 0.947554 + 1.04983i 0.299643 + 0.331985i
\(11\) 6.44191 1.94231 0.971154 0.238453i \(-0.0766403\pi\)
0.971154 + 0.238453i \(0.0766403\pi\)
\(12\) 0 0
\(13\) 1.77467 0.492205 0.246103 0.969244i \(-0.420850\pi\)
0.246103 + 0.969244i \(0.420850\pi\)
\(14\) −3.95142 4.37792i −1.05606 1.17005i
\(15\) 0 0
\(16\) −3.91654 0.812853i −0.979135 0.203213i
\(17\) 0.950682i 0.230574i 0.993332 + 0.115287i \(0.0367788\pi\)
−0.993332 + 0.115287i \(0.963221\pi\)
\(18\) 0 0
\(19\) 2.19286i 0.503078i 0.967847 + 0.251539i \(0.0809366\pi\)
−0.967847 + 0.251539i \(0.919063\pi\)
\(20\) −1.98954 0.204282i −0.444875 0.0456788i
\(21\) 0 0
\(22\) −6.76290 + 6.10406i −1.44186 + 1.30139i
\(23\) 2.02013 0.421226 0.210613 0.977569i \(-0.432454\pi\)
0.210613 + 0.977569i \(0.432454\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −1.86310 + 1.68160i −0.365384 + 0.329788i
\(27\) 0 0
\(28\) 8.29663 + 0.851880i 1.56792 + 0.160990i
\(29\) 6.52706i 1.21204i −0.795448 0.606022i \(-0.792764\pi\)
0.795448 0.606022i \(-0.207236\pi\)
\(30\) 0 0
\(31\) 2.84246i 0.510521i 0.966872 + 0.255260i \(0.0821612\pi\)
−0.966872 + 0.255260i \(0.917839\pi\)
\(32\) 4.88192 2.85778i 0.863009 0.505188i
\(33\) 0 0
\(34\) −0.900823 0.998053i −0.154490 0.171165i
\(35\) 4.17013 0.704880
\(36\) 0 0
\(37\) −5.83599 −0.959431 −0.479715 0.877424i \(-0.659260\pi\)
−0.479715 + 0.877424i \(0.659260\pi\)
\(38\) −2.07786 2.30213i −0.337073 0.373455i
\(39\) 0 0
\(40\) 2.28224 1.67074i 0.360855 0.264167i
\(41\) 7.11552i 1.11126i −0.831430 0.555629i \(-0.812478\pi\)
0.831430 0.555629i \(-0.187522\pi\)
\(42\) 0 0
\(43\) 5.30982i 0.809741i 0.914374 + 0.404870i \(0.132683\pi\)
−0.914374 + 0.404870i \(0.867317\pi\)
\(44\) 1.31596 12.8164i 0.198389 1.93215i
\(45\) 0 0
\(46\) −2.12079 + 1.91418i −0.312694 + 0.282231i
\(47\) −0.403992 −0.0589283 −0.0294641 0.999566i \(-0.509380\pi\)
−0.0294641 + 0.999566i \(0.509380\pi\)
\(48\) 0 0
\(49\) −10.3900 −1.48428
\(50\) 1.04983 0.947554i 0.148468 0.134004i
\(51\) 0 0
\(52\) 0.362533 3.53078i 0.0502743 0.489631i
\(53\) 4.87844i 0.670106i 0.942199 + 0.335053i \(0.108754\pi\)
−0.942199 + 0.335053i \(0.891246\pi\)
\(54\) 0 0
\(55\) 6.44191i 0.868627i
\(56\) −9.51725 + 6.96718i −1.27180 + 0.931029i
\(57\) 0 0
\(58\) 6.18474 + 6.85230i 0.812097 + 0.899751i
\(59\) 2.68783 0.349926 0.174963 0.984575i \(-0.444019\pi\)
0.174963 + 0.984575i \(0.444019\pi\)
\(60\) 0 0
\(61\) 4.09304 0.524060 0.262030 0.965060i \(-0.415608\pi\)
0.262030 + 0.965060i \(0.415608\pi\)
\(62\) −2.69338 2.98409i −0.342060 0.378980i
\(63\) 0 0
\(64\) −2.41728 + 7.62606i −0.302160 + 0.953257i
\(65\) 1.77467i 0.220121i
\(66\) 0 0
\(67\) 10.8959i 1.33115i 0.746331 + 0.665575i \(0.231814\pi\)
−0.746331 + 0.665575i \(0.768186\pi\)
\(68\) 1.89142 + 0.194207i 0.229368 + 0.0235510i
\(69\) 0 0
\(70\) −4.37792 + 3.95142i −0.523262 + 0.472285i
\(71\) −2.23126 −0.264802 −0.132401 0.991196i \(-0.542269\pi\)
−0.132401 + 0.991196i \(0.542269\pi\)
\(72\) 0 0
\(73\) −1.74662 −0.204426 −0.102213 0.994763i \(-0.532592\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(74\) 6.12679 5.52992i 0.712225 0.642840i
\(75\) 0 0
\(76\) 4.36279 + 0.447962i 0.500447 + 0.0513848i
\(77\) 26.8636i 3.06139i
\(78\) 0 0
\(79\) 0.247600i 0.0278572i −0.999903 0.0139286i \(-0.995566\pi\)
0.999903 0.0139286i \(-0.00443375\pi\)
\(80\) −0.812853 + 3.91654i −0.0908797 + 0.437882i
\(81\) 0 0
\(82\) 6.74234 + 7.47008i 0.744567 + 0.824932i
\(83\) 11.6728 1.28126 0.640629 0.767851i \(-0.278674\pi\)
0.640629 + 0.767851i \(0.278674\pi\)
\(84\) 0 0
\(85\) 0.950682 0.103116
\(86\) −5.03135 5.57441i −0.542544 0.601104i
\(87\) 0 0
\(88\) 10.7627 + 14.7020i 1.14731 + 1.56724i
\(89\) 6.13881i 0.650713i 0.945591 + 0.325356i \(0.105484\pi\)
−0.945591 + 0.325356i \(0.894516\pi\)
\(90\) 0 0
\(91\) 7.40061i 0.775794i
\(92\) 0.412675 4.01913i 0.0430244 0.419023i
\(93\) 0 0
\(94\) 0.424123 0.382804i 0.0437449 0.0394833i
\(95\) 2.19286 0.224983
\(96\) 0 0
\(97\) 18.1701 1.84489 0.922446 0.386127i \(-0.126187\pi\)
0.922446 + 0.386127i \(0.126187\pi\)
\(98\) 10.9077 9.84505i 1.10184 0.994500i
\(99\) 0 0
\(100\) −0.204282 + 1.98954i −0.0204282 + 0.198954i
\(101\) 10.2399i 1.01891i 0.860499 + 0.509453i \(0.170152\pi\)
−0.860499 + 0.509453i \(0.829848\pi\)
\(102\) 0 0
\(103\) 9.65985i 0.951814i −0.879496 0.475907i \(-0.842120\pi\)
0.879496 0.475907i \(-0.157880\pi\)
\(104\) 2.96501 + 4.05023i 0.290743 + 0.397158i
\(105\) 0 0
\(106\) −4.62259 5.12153i −0.448986 0.497447i
\(107\) 3.23356 0.312600 0.156300 0.987710i \(-0.450043\pi\)
0.156300 + 0.987710i \(0.450043\pi\)
\(108\) 0 0
\(109\) 2.88351 0.276190 0.138095 0.990419i \(-0.455902\pi\)
0.138095 + 0.990419i \(0.455902\pi\)
\(110\) 6.10406 + 6.76290i 0.581999 + 0.644817i
\(111\) 0 0
\(112\) 3.38970 16.3325i 0.320297 1.54327i
\(113\) 3.08823i 0.290516i 0.989394 + 0.145258i \(0.0464012\pi\)
−0.989394 + 0.145258i \(0.953599\pi\)
\(114\) 0 0
\(115\) 2.02013i 0.188378i
\(116\) −12.9858 1.33336i −1.20571 0.123799i
\(117\) 0 0
\(118\) −2.82176 + 2.54686i −0.259764 + 0.234458i
\(119\) −3.96446 −0.363422
\(120\) 0 0
\(121\) 30.4982 2.77256
\(122\) −4.29699 + 3.87838i −0.389031 + 0.351132i
\(123\) 0 0
\(124\) 5.65518 + 0.580662i 0.507850 + 0.0521450i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 2.16321i 0.191954i −0.995384 0.0959771i \(-0.969402\pi\)
0.995384 0.0959771i \(-0.0305976\pi\)
\(128\) −4.68837 10.2966i −0.414398 0.910096i
\(129\) 0 0
\(130\) 1.68160 + 1.86310i 0.147486 + 0.163405i
\(131\) 1.91441 0.167263 0.0836315 0.996497i \(-0.473348\pi\)
0.0836315 + 0.996497i \(0.473348\pi\)
\(132\) 0 0
\(133\) −9.14452 −0.792931
\(134\) −10.3245 11.4389i −0.891901 0.988168i
\(135\) 0 0
\(136\) −2.16969 + 1.58834i −0.186049 + 0.136199i
\(137\) 11.6608i 0.996250i 0.867105 + 0.498125i \(0.165978\pi\)
−0.867105 + 0.498125i \(0.834022\pi\)
\(138\) 0 0
\(139\) 7.66107i 0.649804i 0.945748 + 0.324902i \(0.105331\pi\)
−0.945748 + 0.324902i \(0.894669\pi\)
\(140\) 0.851880 8.29663i 0.0719970 0.701194i
\(141\) 0 0
\(142\) 2.34244 2.11424i 0.196574 0.177423i
\(143\) 11.4323 0.956014
\(144\) 0 0
\(145\) −6.52706 −0.542043
\(146\) 1.83365 1.65501i 0.151754 0.136970i
\(147\) 0 0
\(148\) −1.19219 + 11.6109i −0.0979970 + 0.954413i
\(149\) 3.49438i 0.286271i −0.989703 0.143135i \(-0.954282\pi\)
0.989703 0.143135i \(-0.0457184\pi\)
\(150\) 0 0
\(151\) 7.11211i 0.578775i 0.957212 + 0.289388i \(0.0934517\pi\)
−0.957212 + 0.289388i \(0.906548\pi\)
\(152\) −5.00465 + 3.66370i −0.405931 + 0.297165i
\(153\) 0 0
\(154\) −25.4547 28.2022i −2.05120 2.27259i
\(155\) 2.84246 0.228312
\(156\) 0 0
\(157\) −3.15875 −0.252096 −0.126048 0.992024i \(-0.540229\pi\)
−0.126048 + 0.992024i \(0.540229\pi\)
\(158\) 0.234614 + 0.259938i 0.0186649 + 0.0206795i
\(159\) 0 0
\(160\) −2.85778 4.88192i −0.225927 0.385949i
\(161\) 8.42420i 0.663920i
\(162\) 0 0
\(163\) 14.1062i 1.10488i 0.833551 + 0.552442i \(0.186304\pi\)
−0.833551 + 0.552442i \(0.813696\pi\)
\(164\) −14.1566 1.45357i −1.10545 0.113505i
\(165\) 0 0
\(166\) −12.2545 + 11.0606i −0.951131 + 0.858471i
\(167\) −18.3328 −1.41863 −0.709317 0.704890i \(-0.750997\pi\)
−0.709317 + 0.704890i \(0.750997\pi\)
\(168\) 0 0
\(169\) −9.85054 −0.757734
\(170\) −0.998053 + 0.900823i −0.0765472 + 0.0690899i
\(171\) 0 0
\(172\) 10.5641 + 1.08470i 0.805506 + 0.0827076i
\(173\) 7.88176i 0.599239i 0.954059 + 0.299620i \(0.0968598\pi\)
−0.954059 + 0.299620i \(0.903140\pi\)
\(174\) 0 0
\(175\) 4.17013i 0.315232i
\(176\) −25.2300 5.23632i −1.90178 0.394703i
\(177\) 0 0
\(178\) −5.81686 6.44470i −0.435992 0.483051i
\(179\) −9.84108 −0.735557 −0.367778 0.929914i \(-0.619881\pi\)
−0.367778 + 0.929914i \(0.619881\pi\)
\(180\) 0 0
\(181\) 18.3215 1.36183 0.680913 0.732364i \(-0.261583\pi\)
0.680913 + 0.732364i \(0.261583\pi\)
\(182\) −7.01248 7.76937i −0.519799 0.575904i
\(183\) 0 0
\(184\) 3.37510 + 4.61043i 0.248816 + 0.339885i
\(185\) 5.83599i 0.429070i
\(186\) 0 0
\(187\) 6.12420i 0.447846i
\(188\) −0.0825282 + 0.803758i −0.00601898 + 0.0586201i
\(189\) 0 0
\(190\) −2.30213 + 2.07786i −0.167014 + 0.150744i
\(191\) −19.0805 −1.38061 −0.690307 0.723516i \(-0.742525\pi\)
−0.690307 + 0.723516i \(0.742525\pi\)
\(192\) 0 0
\(193\) −13.0031 −0.935983 −0.467991 0.883733i \(-0.655022\pi\)
−0.467991 + 0.883733i \(0.655022\pi\)
\(194\) −19.0755 + 17.2171i −1.36954 + 1.23612i
\(195\) 0 0
\(196\) −2.12248 + 20.6712i −0.151606 + 1.47652i
\(197\) 15.8462i 1.12899i −0.825436 0.564496i \(-0.809071\pi\)
0.825436 0.564496i \(-0.190929\pi\)
\(198\) 0 0
\(199\) 1.24563i 0.0883001i 0.999025 + 0.0441500i \(0.0140580\pi\)
−0.999025 + 0.0441500i \(0.985942\pi\)
\(200\) −1.67074 2.28224i −0.118139 0.161379i
\(201\) 0 0
\(202\) −9.70284 10.7501i −0.682689 0.756375i
\(203\) 27.2187 1.91038
\(204\) 0 0
\(205\) −7.11552 −0.496970
\(206\) 9.15324 + 10.1412i 0.637736 + 0.706571i
\(207\) 0 0
\(208\) −6.95057 1.44255i −0.481935 0.100023i
\(209\) 14.1262i 0.977132i
\(210\) 0 0
\(211\) 16.3244i 1.12382i −0.827198 0.561910i \(-0.810067\pi\)
0.827198 0.561910i \(-0.189933\pi\)
\(212\) 9.70586 + 0.996577i 0.666601 + 0.0684452i
\(213\) 0 0
\(214\) −3.39469 + 3.06398i −0.232056 + 0.209449i
\(215\) 5.30982 0.362127
\(216\) 0 0
\(217\) −11.8534 −0.804662
\(218\) −3.02719 + 2.73228i −0.205027 + 0.185053i
\(219\) 0 0
\(220\) −12.8164 1.31596i −0.864084 0.0887222i
\(221\) 1.68715i 0.113490i
\(222\) 0 0
\(223\) 17.9257i 1.20040i −0.799851 0.600198i \(-0.795088\pi\)
0.799851 0.600198i \(-0.204912\pi\)
\(224\) 11.9173 + 20.3582i 0.796257 + 1.36024i
\(225\) 0 0
\(226\) −2.92626 3.24211i −0.194652 0.215662i
\(227\) 10.4304 0.692293 0.346146 0.938180i \(-0.387490\pi\)
0.346146 + 0.938180i \(0.387490\pi\)
\(228\) 0 0
\(229\) −18.7878 −1.24153 −0.620765 0.783997i \(-0.713178\pi\)
−0.620765 + 0.783997i \(0.713178\pi\)
\(230\) 1.91418 + 2.12079i 0.126217 + 0.139841i
\(231\) 0 0
\(232\) 14.8963 10.9050i 0.977993 0.715948i
\(233\) 7.28693i 0.477382i −0.971096 0.238691i \(-0.923282\pi\)
0.971096 0.238691i \(-0.0767184\pi\)
\(234\) 0 0
\(235\) 0.403992i 0.0263535i
\(236\) 0.549074 5.34754i 0.0357417 0.348096i
\(237\) 0 0
\(238\) 4.16201 3.75654i 0.269783 0.243501i
\(239\) 29.6817 1.91995 0.959973 0.280091i \(-0.0903647\pi\)
0.959973 + 0.280091i \(0.0903647\pi\)
\(240\) 0 0
\(241\) −12.7503 −0.821321 −0.410661 0.911788i \(-0.634702\pi\)
−0.410661 + 0.911788i \(0.634702\pi\)
\(242\) −32.0179 + 28.8987i −2.05819 + 1.85768i
\(243\) 0 0
\(244\) 0.836133 8.14327i 0.0535279 0.521319i
\(245\) 10.3900i 0.663790i
\(246\) 0 0
\(247\) 3.89161i 0.247618i
\(248\) −6.48718 + 4.74900i −0.411937 + 0.301562i
\(249\) 0 0
\(250\) −0.947554 1.04983i −0.0599286 0.0663970i
\(251\) −2.89830 −0.182939 −0.0914694 0.995808i \(-0.529156\pi\)
−0.0914694 + 0.995808i \(0.529156\pi\)
\(252\) 0 0
\(253\) 13.0135 0.818151
\(254\) 2.04976 + 2.27101i 0.128614 + 0.142496i
\(255\) 0 0
\(256\) 14.6785 + 6.36714i 0.917409 + 0.397946i
\(257\) 9.96613i 0.621670i −0.950464 0.310835i \(-0.899391\pi\)
0.950464 0.310835i \(-0.100609\pi\)
\(258\) 0 0
\(259\) 24.3368i 1.51222i
\(260\) −3.53078 0.362533i −0.218970 0.0224833i
\(261\) 0 0
\(262\) −2.00981 + 1.81401i −0.124166 + 0.112070i
\(263\) 1.22162 0.0753281 0.0376640 0.999290i \(-0.488008\pi\)
0.0376640 + 0.999290i \(0.488008\pi\)
\(264\) 0 0
\(265\) 4.87844 0.299680
\(266\) 9.60019 8.66493i 0.588625 0.531281i
\(267\) 0 0
\(268\) 21.6779 + 2.22584i 1.32419 + 0.135965i
\(269\) 19.0910i 1.16400i 0.813190 + 0.581998i \(0.197729\pi\)
−0.813190 + 0.581998i \(0.802271\pi\)
\(270\) 0 0
\(271\) 12.0019i 0.729061i −0.931191 0.364531i \(-0.881229\pi\)
0.931191 0.364531i \(-0.118771\pi\)
\(272\) 0.772764 3.72338i 0.0468557 0.225763i
\(273\) 0 0
\(274\) −11.0492 12.2418i −0.667509 0.739557i
\(275\) −6.44191 −0.388462
\(276\) 0 0
\(277\) −24.0283 −1.44372 −0.721860 0.692039i \(-0.756712\pi\)
−0.721860 + 0.692039i \(0.756712\pi\)
\(278\) −7.25928 8.04282i −0.435383 0.482376i
\(279\) 0 0
\(280\) 6.96718 + 9.51725i 0.416369 + 0.568764i
\(281\) 1.54857i 0.0923797i −0.998933 0.0461898i \(-0.985292\pi\)
0.998933 0.0461898i \(-0.0147079\pi\)
\(282\) 0 0
\(283\) 24.5575i 1.45979i 0.683559 + 0.729895i \(0.260431\pi\)
−0.683559 + 0.729895i \(0.739569\pi\)
\(284\) −0.455806 + 4.43919i −0.0270471 + 0.263417i
\(285\) 0 0
\(286\) −12.0019 + 10.8327i −0.709689 + 0.640551i
\(287\) 29.6726 1.75152
\(288\) 0 0
\(289\) 16.0962 0.946836
\(290\) 6.85230 6.18474i 0.402381 0.363181i
\(291\) 0 0
\(292\) −0.356802 + 3.47496i −0.0208802 + 0.203357i
\(293\) 27.1687i 1.58721i −0.608431 0.793607i \(-0.708201\pi\)
0.608431 0.793607i \(-0.291799\pi\)
\(294\) 0 0
\(295\) 2.68783i 0.156492i
\(296\) −9.75040 13.3192i −0.566730 0.774160i
\(297\) 0 0
\(298\) 3.31111 + 3.66850i 0.191808 + 0.212511i
\(299\) 3.58507 0.207330
\(300\) 0 0
\(301\) −22.1426 −1.27628
\(302\) −6.73911 7.46650i −0.387792 0.429649i
\(303\) 0 0
\(304\) 1.78248 8.58844i 0.102232 0.492581i
\(305\) 4.09304i 0.234367i
\(306\) 0 0
\(307\) 3.96646i 0.226378i −0.993573 0.113189i \(-0.963893\pi\)
0.993573 0.113189i \(-0.0361065\pi\)
\(308\) 53.4461 + 5.48773i 3.04538 + 0.312693i
\(309\) 0 0
\(310\) −2.98409 + 2.69338i −0.169485 + 0.152974i
\(311\) −19.3841 −1.09917 −0.549586 0.835437i \(-0.685215\pi\)
−0.549586 + 0.835437i \(0.685215\pi\)
\(312\) 0 0
\(313\) 21.9702 1.24183 0.620915 0.783878i \(-0.286761\pi\)
0.620915 + 0.783878i \(0.286761\pi\)
\(314\) 3.31615 2.99309i 0.187141 0.168910i
\(315\) 0 0
\(316\) −0.492610 0.0505801i −0.0277115 0.00284535i
\(317\) 26.6227i 1.49528i −0.664104 0.747640i \(-0.731187\pi\)
0.664104 0.747640i \(-0.268813\pi\)
\(318\) 0 0
\(319\) 42.0467i 2.35416i
\(320\) 7.62606 + 2.41728i 0.426310 + 0.135130i
\(321\) 0 0
\(322\) −7.98238 8.84397i −0.444841 0.492855i
\(323\) −2.08472 −0.115997
\(324\) 0 0
\(325\) −1.77467 −0.0984411
\(326\) −13.3664 14.8091i −0.740297 0.820201i
\(327\) 0 0
\(328\) 16.2394 11.8882i 0.896669 0.656414i
\(329\) 1.68470i 0.0928804i
\(330\) 0 0
\(331\) 33.2166i 1.82575i −0.408238 0.912876i \(-0.633857\pi\)
0.408238 0.912876i \(-0.366143\pi\)
\(332\) 2.38454 23.2235i 0.130869 1.27456i
\(333\) 0 0
\(334\) 19.2463 17.3713i 1.05311 0.950516i
\(335\) 10.8959 0.595309
\(336\) 0 0
\(337\) 1.61717 0.0880927 0.0440463 0.999029i \(-0.485975\pi\)
0.0440463 + 0.999029i \(0.485975\pi\)
\(338\) 10.3414 9.33392i 0.562497 0.507698i
\(339\) 0 0
\(340\) 0.194207 1.89142i 0.0105323 0.102577i
\(341\) 18.3109i 0.991588i
\(342\) 0 0
\(343\) 14.1366i 0.763302i
\(344\) −12.1183 + 8.87132i −0.653376 + 0.478309i
\(345\) 0 0
\(346\) −7.46840 8.27450i −0.401503 0.444840i
\(347\) 5.18596 0.278397 0.139198 0.990265i \(-0.455547\pi\)
0.139198 + 0.990265i \(0.455547\pi\)
\(348\) 0 0
\(349\) −18.3343 −0.981414 −0.490707 0.871325i \(-0.663261\pi\)
−0.490707 + 0.871325i \(0.663261\pi\)
\(350\) 3.95142 + 4.37792i 0.211212 + 0.234010i
\(351\) 0 0
\(352\) 31.4489 18.4095i 1.67623 0.981231i
\(353\) 10.6975i 0.569368i −0.958621 0.284684i \(-0.908111\pi\)
0.958621 0.284684i \(-0.0918886\pi\)
\(354\) 0 0
\(355\) 2.23126i 0.118423i
\(356\) 12.2134 + 1.25405i 0.647309 + 0.0664643i
\(357\) 0 0
\(358\) 10.3314 9.32495i 0.546034 0.492839i
\(359\) 15.1958 0.802005 0.401002 0.916077i \(-0.368662\pi\)
0.401002 + 0.916077i \(0.368662\pi\)
\(360\) 0 0
\(361\) 14.1913 0.746913
\(362\) −19.2344 + 17.3606i −1.01094 + 0.912454i
\(363\) 0 0
\(364\) 14.7238 + 1.51181i 0.771737 + 0.0792403i
\(365\) 1.74662i 0.0914221i
\(366\) 0 0
\(367\) 24.5582i 1.28193i 0.767571 + 0.640964i \(0.221465\pi\)
−0.767571 + 0.640964i \(0.778535\pi\)
\(368\) −7.91192 1.64207i −0.412437 0.0855987i
\(369\) 0 0
\(370\) −5.52992 6.12679i −0.287487 0.318517i
\(371\) −20.3437 −1.05619
\(372\) 0 0
\(373\) 18.6090 0.963538 0.481769 0.876298i \(-0.339994\pi\)
0.481769 + 0.876298i \(0.339994\pi\)
\(374\) −5.80302 6.42937i −0.300067 0.332455i
\(375\) 0 0
\(376\) −0.674964 0.922009i −0.0348086 0.0475490i
\(377\) 11.5834i 0.596575i
\(378\) 0 0
\(379\) 27.9052i 1.43339i 0.697386 + 0.716696i \(0.254347\pi\)
−0.697386 + 0.716696i \(0.745653\pi\)
\(380\) 0.447962 4.36279i 0.0229800 0.223806i
\(381\) 0 0
\(382\) 20.0312 18.0798i 1.02489 0.925042i
\(383\) 7.40233 0.378241 0.189121 0.981954i \(-0.439436\pi\)
0.189121 + 0.981954i \(0.439436\pi\)
\(384\) 0 0
\(385\) 26.8636 1.36909
\(386\) 13.6510 12.3211i 0.694818 0.627129i
\(387\) 0 0
\(388\) 3.71181 36.1501i 0.188439 1.83524i
\(389\) 17.9397i 0.909579i 0.890599 + 0.454789i \(0.150285\pi\)
−0.890599 + 0.454789i \(0.849715\pi\)
\(390\) 0 0
\(391\) 1.92050i 0.0971239i
\(392\) −17.3589 23.7124i −0.876756 1.19766i
\(393\) 0 0
\(394\) 15.0151 + 16.6358i 0.756450 + 0.838097i
\(395\) −0.247600 −0.0124581
\(396\) 0 0
\(397\) −27.9101 −1.40077 −0.700383 0.713768i \(-0.746987\pi\)
−0.700383 + 0.713768i \(0.746987\pi\)
\(398\) −1.18030 1.30769i −0.0591630 0.0655488i
\(399\) 0 0
\(400\) 3.91654 + 0.812853i 0.195827 + 0.0406426i
\(401\) 3.99705i 0.199603i 0.995007 + 0.0998015i \(0.0318208\pi\)
−0.995007 + 0.0998015i \(0.968179\pi\)
\(402\) 0 0
\(403\) 5.04443i 0.251281i
\(404\) 20.3726 + 2.09182i 1.01358 + 0.104072i
\(405\) 0 0
\(406\) −28.5749 + 25.7912i −1.41815 + 1.27999i
\(407\) −37.5949 −1.86351
\(408\) 0 0
\(409\) 22.1291 1.09421 0.547107 0.837063i \(-0.315729\pi\)
0.547107 + 0.837063i \(0.315729\pi\)
\(410\) 7.47008 6.74234i 0.368921 0.332981i
\(411\) 0 0
\(412\) −19.2187 1.97333i −0.946836 0.0972190i
\(413\) 11.2086i 0.551539i
\(414\) 0 0
\(415\) 11.6728i 0.572996i
\(416\) 8.66380 5.07161i 0.424778 0.248656i
\(417\) 0 0
\(418\) −13.3854 14.8301i −0.654700 0.725365i
\(419\) −31.6137 −1.54443 −0.772215 0.635362i \(-0.780851\pi\)
−0.772215 + 0.635362i \(0.780851\pi\)
\(420\) 0 0
\(421\) 30.0566 1.46487 0.732435 0.680837i \(-0.238384\pi\)
0.732435 + 0.680837i \(0.238384\pi\)
\(422\) 15.4683 + 17.1379i 0.752984 + 0.834258i
\(423\) 0 0
\(424\) −11.1338 + 8.15059i −0.540705 + 0.395828i
\(425\) 0.950682i 0.0461148i
\(426\) 0 0
\(427\) 17.0685i 0.826002i
\(428\) 0.660558 6.43331i 0.0319293 0.310966i
\(429\) 0 0
\(430\) −5.57441 + 5.03135i −0.268822 + 0.242633i
\(431\) −25.0832 −1.20822 −0.604108 0.796902i \(-0.706471\pi\)
−0.604108 + 0.796902i \(0.706471\pi\)
\(432\) 0 0
\(433\) 29.4297 1.41430 0.707151 0.707062i \(-0.249980\pi\)
0.707151 + 0.707062i \(0.249980\pi\)
\(434\) 12.4441 11.2318i 0.597334 0.539141i
\(435\) 0 0
\(436\) 0.589048 5.73685i 0.0282103 0.274745i
\(437\) 4.42987i 0.211909i
\(438\) 0 0
\(439\) 28.6552i 1.36764i 0.729651 + 0.683819i \(0.239682\pi\)
−0.729651 + 0.683819i \(0.760318\pi\)
\(440\) 14.7020 10.7627i 0.700891 0.513093i
\(441\) 0 0
\(442\) −1.59866 1.77122i −0.0760407 0.0842482i
\(443\) 29.8579 1.41859 0.709297 0.704910i \(-0.249013\pi\)
0.709297 + 0.704910i \(0.249013\pi\)
\(444\) 0 0
\(445\) 6.13881 0.291008
\(446\) 16.9856 + 18.8190i 0.804292 + 0.891104i
\(447\) 0 0
\(448\) −31.8016 10.0804i −1.50249 0.476252i
\(449\) 14.7017i 0.693815i −0.937899 0.346908i \(-0.887232\pi\)
0.937899 0.346908i \(-0.112768\pi\)
\(450\) 0 0
\(451\) 45.8375i 2.15841i
\(452\) 6.14415 + 0.630868i 0.288997 + 0.0296735i
\(453\) 0 0
\(454\) −10.9502 + 9.88341i −0.513918 + 0.463852i
\(455\) 7.40061 0.346946
\(456\) 0 0
\(457\) −8.83336 −0.413207 −0.206604 0.978425i \(-0.566241\pi\)
−0.206604 + 0.978425i \(0.566241\pi\)
\(458\) 19.7239 17.8024i 0.921639 0.831853i
\(459\) 0 0
\(460\) −4.01913 0.412675i −0.187393 0.0192411i
\(461\) 0.913372i 0.0425400i −0.999774 0.0212700i \(-0.993229\pi\)
0.999774 0.0212700i \(-0.00677096\pi\)
\(462\) 0 0
\(463\) 7.87134i 0.365812i −0.983130 0.182906i \(-0.941450\pi\)
0.983130 0.182906i \(-0.0585505\pi\)
\(464\) −5.30554 + 25.5635i −0.246303 + 1.18675i
\(465\) 0 0
\(466\) 6.90476 + 7.65003i 0.319857 + 0.354381i
\(467\) −28.6765 −1.32699 −0.663495 0.748181i \(-0.730928\pi\)
−0.663495 + 0.748181i \(0.730928\pi\)
\(468\) 0 0
\(469\) −45.4375 −2.09811
\(470\) −0.382804 0.424123i −0.0176575 0.0195633i
\(471\) 0 0
\(472\) 4.49066 + 6.13429i 0.206699 + 0.282353i
\(473\) 34.2054i 1.57277i
\(474\) 0 0
\(475\) 2.19286i 0.100616i
\(476\) −0.809867 + 7.88746i −0.0371202 + 0.361521i
\(477\) 0 0
\(478\) −31.1607 + 28.1250i −1.42526 + 1.28641i
\(479\) 26.3817 1.20541 0.602706 0.797963i \(-0.294089\pi\)
0.602706 + 0.797963i \(0.294089\pi\)
\(480\) 0 0
\(481\) −10.3570 −0.472237
\(482\) 13.3857 12.0816i 0.609701 0.550304i
\(483\) 0 0
\(484\) 6.23022 60.6773i 0.283192 2.75806i
\(485\) 18.1701i 0.825060i
\(486\) 0 0
\(487\) 7.87222i 0.356724i −0.983965 0.178362i \(-0.942920\pi\)
0.983965 0.178362i \(-0.0570799\pi\)
\(488\) 6.83839 + 9.34132i 0.309559 + 0.422862i
\(489\) 0 0
\(490\) −9.84505 10.9077i −0.444754 0.492759i
\(491\) −19.4940 −0.879751 −0.439876 0.898059i \(-0.644977\pi\)
−0.439876 + 0.898059i \(0.644977\pi\)
\(492\) 0 0
\(493\) 6.20516 0.279466
\(494\) −3.68752 4.08553i −0.165909 0.183817i
\(495\) 0 0
\(496\) 2.31050 11.1326i 0.103745 0.499868i
\(497\) 9.30465i 0.417371i
\(498\) 0 0
\(499\) 0.846463i 0.0378929i −0.999821 0.0189464i \(-0.993969\pi\)
0.999821 0.0189464i \(-0.00603120\pi\)
\(500\) 1.98954 + 0.204282i 0.0889749 + 0.00913575i
\(501\) 0 0
\(502\) 3.04272 2.74629i 0.135803 0.122573i
\(503\) 18.5253 0.826002 0.413001 0.910731i \(-0.364481\pi\)
0.413001 + 0.910731i \(0.364481\pi\)
\(504\) 0 0
\(505\) 10.2399 0.455668
\(506\) −13.6619 + 12.3310i −0.607347 + 0.548179i
\(507\) 0 0
\(508\) −4.30380 0.441905i −0.190950 0.0196064i
\(509\) 27.3040i 1.21023i −0.796138 0.605115i \(-0.793127\pi\)
0.796138 0.605115i \(-0.206873\pi\)
\(510\) 0 0
\(511\) 7.28361i 0.322208i
\(512\) −21.4432 + 7.22431i −0.947663 + 0.319272i
\(513\) 0 0
\(514\) 9.44345 + 10.4627i 0.416533 + 0.461491i
\(515\) −9.65985 −0.425664
\(516\) 0 0
\(517\) −2.60248 −0.114457
\(518\) 23.0605 + 25.5495i 1.01322 + 1.12258i
\(519\) 0 0
\(520\) 4.05023 2.96501i 0.177615 0.130024i
\(521\) 25.9868i 1.13850i −0.822163 0.569252i \(-0.807233\pi\)
0.822163 0.569252i \(-0.192767\pi\)
\(522\) 0 0
\(523\) 30.1683i 1.31917i 0.751631 + 0.659584i \(0.229268\pi\)
−0.751631 + 0.659584i \(0.770732\pi\)
\(524\) 0.391079 3.80880i 0.0170844 0.166388i
\(525\) 0 0
\(526\) −1.28249 + 1.15755i −0.0559191 + 0.0504715i
\(527\) −2.70227 −0.117713
\(528\) 0 0
\(529\) −18.9191 −0.822568
\(530\) −5.12153 + 4.62259i −0.222465 + 0.200793i
\(531\) 0 0
\(532\) −1.86806 + 18.1934i −0.0809906 + 0.788784i
\(533\) 12.6277i 0.546967i
\(534\) 0 0
\(535\) 3.23356i 0.139799i
\(536\) −24.8672 + 18.2042i −1.07410 + 0.786304i
\(537\) 0 0
\(538\) −18.0897 20.0423i −0.779904 0.864083i
\(539\) −66.9311 −2.88293
\(540\) 0 0
\(541\) −34.2068 −1.47067 −0.735333 0.677706i \(-0.762974\pi\)
−0.735333 + 0.677706i \(0.762974\pi\)
\(542\) 11.3724 + 12.5999i 0.488487 + 0.541212i
\(543\) 0 0
\(544\) 2.71684 + 4.64115i 0.116483 + 0.198988i
\(545\) 2.88351i 0.123516i
\(546\) 0 0
\(547\) 16.0152i 0.684761i −0.939561 0.342380i \(-0.888767\pi\)
0.939561 0.342380i \(-0.111233\pi\)
\(548\) 23.1996 + 2.38209i 0.991039 + 0.101758i
\(549\) 0 0
\(550\) 6.76290 6.10406i 0.288371 0.260278i
\(551\) 14.3130 0.609753
\(552\) 0 0
\(553\) 1.03252 0.0439073
\(554\) 25.2256 22.7681i 1.07173 0.967324i
\(555\) 0 0
\(556\) 15.2420 + 1.56502i 0.646405 + 0.0663715i
\(557\) 16.0344i 0.679401i −0.940534 0.339701i \(-0.889674\pi\)
0.940534 0.339701i \(-0.110326\pi\)
\(558\) 0 0
\(559\) 9.42320i 0.398559i
\(560\) −16.3325 3.38970i −0.690172 0.143241i
\(561\) 0 0
\(562\) 1.46735 + 1.62573i 0.0618964 + 0.0685772i
\(563\) 4.47364 0.188541 0.0942707 0.995547i \(-0.469948\pi\)
0.0942707 + 0.995547i \(0.469948\pi\)
\(564\) 0 0
\(565\) 3.08823 0.129923
\(566\) −23.2695 25.7812i −0.978092 1.08366i
\(567\) 0 0
\(568\) −3.72785 5.09229i −0.156417 0.213668i
\(569\) 41.0451i 1.72070i −0.509705 0.860349i \(-0.670245\pi\)
0.509705 0.860349i \(-0.329755\pi\)
\(570\) 0 0
\(571\) 45.2501i 1.89366i −0.321741 0.946828i \(-0.604268\pi\)
0.321741 0.946828i \(-0.395732\pi\)
\(572\) 2.33540 22.7450i 0.0976481 0.951014i
\(573\) 0 0
\(574\) −31.1512 + 28.1164i −1.30023 + 1.17356i
\(575\) −2.02013 −0.0842452
\(576\) 0 0
\(577\) −27.1400 −1.12985 −0.564927 0.825141i \(-0.691096\pi\)
−0.564927 + 0.825141i \(0.691096\pi\)
\(578\) −16.8983 + 15.2520i −0.702875 + 0.634401i
\(579\) 0 0
\(580\) −1.33336 + 12.9858i −0.0553647 + 0.539208i
\(581\) 48.6771i 2.01947i
\(582\) 0 0
\(583\) 31.4265i 1.30155i
\(584\) −2.91814 3.98621i −0.120753 0.164950i
\(585\) 0 0
\(586\) 25.7438 + 28.5225i 1.06347 + 1.17825i
\(587\) 17.5383 0.723883 0.361941 0.932201i \(-0.382114\pi\)
0.361941 + 0.932201i \(0.382114\pi\)
\(588\) 0 0
\(589\) −6.23313 −0.256831
\(590\) 2.54686 + 2.82176i 0.104853 + 0.116170i
\(591\) 0 0
\(592\) 22.8569 + 4.74380i 0.939412 + 0.194969i
\(593\) 15.6793i 0.643872i 0.946761 + 0.321936i \(0.104334\pi\)
−0.946761 + 0.321936i \(0.895666\pi\)
\(594\) 0 0
\(595\) 3.96446i 0.162527i
\(596\) −6.95221 0.713837i −0.284773 0.0292399i
\(597\) 0 0
\(598\) −3.76371 + 3.39705i −0.153909 + 0.138916i
\(599\) −7.21949 −0.294980 −0.147490 0.989064i \(-0.547119\pi\)
−0.147490 + 0.989064i \(0.547119\pi\)
\(600\) 0 0
\(601\) 45.9916 1.87604 0.938019 0.346583i \(-0.112658\pi\)
0.938019 + 0.346583i \(0.112658\pi\)
\(602\) 23.2460 20.9814i 0.947436 0.855136i
\(603\) 0 0
\(604\) 14.1498 + 1.45287i 0.575748 + 0.0591166i
\(605\) 30.4982i 1.23993i
\(606\) 0 0
\(607\) 2.14863i 0.0872103i −0.999049 0.0436052i \(-0.986116\pi\)
0.999049 0.0436052i \(-0.0138844\pi\)
\(608\) 6.26672 + 10.7054i 0.254149 + 0.434161i
\(609\) 0 0
\(610\) 3.87838 + 4.29699i 0.157031 + 0.173980i
\(611\) −0.716953 −0.0290048
\(612\) 0 0
\(613\) −44.8432 −1.81120 −0.905601 0.424131i \(-0.860579\pi\)
−0.905601 + 0.424131i \(0.860579\pi\)
\(614\) 3.75844 + 4.16411i 0.151678 + 0.168050i
\(615\) 0 0
\(616\) −61.3092 + 44.8819i −2.47022 + 1.80835i
\(617\) 34.4459i 1.38674i −0.720581 0.693371i \(-0.756125\pi\)
0.720581 0.693371i \(-0.243875\pi\)
\(618\) 0 0
\(619\) 12.7731i 0.513396i 0.966492 + 0.256698i \(0.0826345\pi\)
−0.966492 + 0.256698i \(0.917365\pi\)
\(620\) 0.580662 5.65518i 0.0233199 0.227118i
\(621\) 0 0
\(622\) 20.3500 18.3675i 0.815961 0.736469i
\(623\) −25.5996 −1.02563
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −23.0650 + 20.8180i −0.921862 + 0.832054i
\(627\) 0 0
\(628\) −0.645275 + 6.28446i −0.0257493 + 0.250777i
\(629\) 5.54817i 0.221220i
\(630\) 0 0
\(631\) 12.9765i 0.516586i −0.966067 0.258293i \(-0.916840\pi\)
0.966067 0.258293i \(-0.0831600\pi\)
\(632\) 0.565083 0.413674i 0.0224778 0.0164551i
\(633\) 0 0
\(634\) 25.2265 + 27.9493i 1.00187 + 1.11001i
\(635\) −2.16321 −0.0858445
\(636\) 0 0
\(637\) −18.4388 −0.730570
\(638\) 39.8415 + 44.1419i 1.57734 + 1.74759i
\(639\) 0 0
\(640\) −10.2966 + 4.68837i −0.407007 + 0.185324i
\(641\) 30.5564i 1.20691i −0.797398 0.603453i \(-0.793791\pi\)
0.797398 0.603453i \(-0.206209\pi\)
\(642\) 0 0
\(643\) 6.17425i 0.243489i 0.992561 + 0.121744i \(0.0388488\pi\)
−0.992561 + 0.121744i \(0.961151\pi\)
\(644\) 16.7603 + 1.72091i 0.660447 + 0.0678133i
\(645\) 0 0
\(646\) 2.18860 1.97538i 0.0861091 0.0777204i
\(647\) −9.68580 −0.380788 −0.190394 0.981708i \(-0.560977\pi\)
−0.190394 + 0.981708i \(0.560977\pi\)
\(648\) 0 0
\(649\) 17.3148 0.679663
\(650\) 1.86310 1.68160i 0.0730769 0.0659577i
\(651\) 0 0
\(652\) 28.0649 + 2.88164i 1.09911 + 0.112854i
\(653\) 16.3465i 0.639688i −0.947470 0.319844i \(-0.896369\pi\)
0.947470 0.319844i \(-0.103631\pi\)
\(654\) 0 0
\(655\) 1.91441i 0.0748023i
\(656\) −5.78387 + 27.8682i −0.225822 + 1.08807i
\(657\) 0 0
\(658\) 1.59634 + 1.76864i 0.0622319 + 0.0689490i
\(659\) −23.0858 −0.899295 −0.449648 0.893206i \(-0.648450\pi\)
−0.449648 + 0.893206i \(0.648450\pi\)
\(660\) 0 0
\(661\) 18.4701 0.718403 0.359202 0.933260i \(-0.383049\pi\)
0.359202 + 0.933260i \(0.383049\pi\)
\(662\) 31.4746 + 34.8718i 1.22329 + 1.35533i
\(663\) 0 0
\(664\) 19.5022 + 26.6402i 0.756832 + 1.03384i
\(665\) 9.14452i 0.354609i
\(666\) 0 0
\(667\) 13.1855i 0.510545i
\(668\) −3.74505 + 36.4738i −0.144900 + 1.41121i
\(669\) 0 0
\(670\) −11.4389 + 10.3245i −0.441922 + 0.398870i
\(671\) 26.3670 1.01789
\(672\) 0 0
\(673\) −30.3154 −1.16857 −0.584286 0.811548i \(-0.698625\pi\)
−0.584286 + 0.811548i \(0.698625\pi\)
\(674\) −1.69775 + 1.53235i −0.0653948 + 0.0590240i
\(675\) 0 0
\(676\) −2.01228 + 19.5980i −0.0773956 + 0.753771i
\(677\) 42.3891i 1.62915i 0.580061 + 0.814573i \(0.303029\pi\)
−0.580061 + 0.814573i \(0.696971\pi\)
\(678\) 0 0
\(679\) 75.7715i 2.90784i
\(680\) 1.58834 + 2.16969i 0.0609100 + 0.0832037i
\(681\) 0 0
\(682\) −17.3505 19.2233i −0.664386 0.736097i
\(683\) 20.7847 0.795303 0.397652 0.917536i \(-0.369825\pi\)
0.397652 + 0.917536i \(0.369825\pi\)
\(684\) 0 0
\(685\) 11.6608 0.445536
\(686\) 13.3952 + 14.8410i 0.511429 + 0.566631i
\(687\) 0 0
\(688\) 4.31611 20.7961i 0.164550 0.792845i
\(689\) 8.65764i 0.329830i
\(690\) 0 0
\(691\) 42.6767i 1.62350i −0.584007 0.811748i \(-0.698516\pi\)
0.584007 0.811748i \(-0.301484\pi\)
\(692\) 15.6811 + 1.61010i 0.596105 + 0.0612068i
\(693\) 0 0
\(694\) −5.44437 + 4.91398i −0.206665 + 0.186532i
\(695\) 7.66107 0.290601
\(696\) 0 0
\(697\) 6.76460 0.256227
\(698\) 19.2479 17.3728i 0.728544 0.657569i
\(699\) 0 0
\(700\) −8.29663 0.851880i −0.313583 0.0321981i
\(701\) 26.5424i 1.00249i −0.865305 0.501247i \(-0.832875\pi\)
0.865305 0.501247i \(-0.167125\pi\)
\(702\) 0 0
\(703\) 12.7975i 0.482668i
\(704\) −15.5719 + 49.1264i −0.586888 + 1.85152i
\(705\) 0 0
\(706\) 10.1364 + 11.2305i 0.381489 + 0.422665i
\(707\) −42.7016 −1.60596
\(708\) 0 0
\(709\) 46.2540 1.73711 0.868553 0.495596i \(-0.165050\pi\)
0.868553 + 0.495596i \(0.165050\pi\)
\(710\) −2.11424 2.34244i −0.0793461 0.0879104i
\(711\) 0 0
\(712\) −14.0103 + 10.2563i −0.525057 + 0.384372i
\(713\) 5.74213i 0.215045i
\(714\) 0 0
\(715\) 11.4323i 0.427543i
\(716\) −2.01035 + 19.5792i −0.0751304 + 0.731710i
\(717\) 0 0
\(718\) −15.9530 + 14.3989i −0.595361 + 0.537361i
\(719\) 44.9992 1.67819 0.839094 0.543986i \(-0.183086\pi\)
0.839094 + 0.543986i \(0.183086\pi\)
\(720\) 0 0
\(721\) 40.2828 1.50021
\(722\) −14.8985 + 13.4471i −0.554464 + 0.500448i
\(723\) 0 0
\(724\) 3.74275 36.4514i 0.139098 1.35470i
\(725\) 6.52706i 0.242409i
\(726\) 0 0
\(727\) 35.6578i 1.32247i 0.750177 + 0.661237i \(0.229968\pi\)
−0.750177 + 0.661237i \(0.770032\pi\)
\(728\) −16.8900 + 12.3645i −0.625985 + 0.458257i
\(729\) 0 0
\(730\) −1.65501 1.83365i −0.0612548 0.0678664i
\(731\) −5.04795 −0.186705
\(732\) 0 0
\(733\) −47.1392 −1.74113 −0.870563 0.492057i \(-0.836245\pi\)
−0.870563 + 0.492057i \(0.836245\pi\)
\(734\) −23.2702 25.7819i −0.858920 0.951628i
\(735\) 0 0
\(736\) 9.86211 5.77308i 0.363522 0.212798i
\(737\) 70.1906i 2.58551i
\(738\) 0 0
\(739\) 40.9282i 1.50557i −0.658268 0.752784i \(-0.728711\pi\)
0.658268 0.752784i \(-0.271289\pi\)
\(740\) 11.6109 + 1.19219i 0.426826 + 0.0438256i
\(741\) 0 0
\(742\) 21.3574 19.2768i 0.784056 0.707673i
\(743\) −33.8553 −1.24203 −0.621014 0.783799i \(-0.713279\pi\)
−0.621014 + 0.783799i \(0.713279\pi\)
\(744\) 0 0
\(745\) −3.49438 −0.128024
\(746\) −19.5363 + 17.6331i −0.715274 + 0.645592i
\(747\) 0 0
\(748\) 12.1843 + 1.25106i 0.445504 + 0.0457434i
\(749\) 13.4844i 0.492708i
\(750\) 0 0
\(751\) 6.85461i 0.250128i 0.992149 + 0.125064i \(0.0399137\pi\)
−0.992149 + 0.125064i \(0.960086\pi\)
\(752\) 1.58225 + 0.328386i 0.0576987 + 0.0119750i
\(753\) 0 0
\(754\) 10.9759 + 12.1606i 0.399718 + 0.442862i
\(755\) 7.11211 0.258836
\(756\) 0 0
\(757\) 40.8568 1.48497 0.742483 0.669865i \(-0.233648\pi\)
0.742483 + 0.669865i \(0.233648\pi\)
\(758\) −26.4417 29.2957i −0.960404 1.06407i
\(759\) 0 0
\(760\) 3.66370 + 5.00465i 0.132896 + 0.181538i
\(761\) 27.9013i 1.01142i −0.862703 0.505710i \(-0.831231\pi\)
0.862703 0.505710i \(-0.168769\pi\)
\(762\) 0 0
\(763\) 12.0246i 0.435319i
\(764\) −3.89779 + 37.9614i −0.141017 + 1.37339i
\(765\) 0 0
\(766\) −7.77118 + 7.01411i −0.280784 + 0.253430i
\(767\) 4.77002 0.172235
\(768\) 0 0
\(769\) 6.12340 0.220816 0.110408 0.993886i \(-0.464784\pi\)
0.110408 + 0.993886i \(0.464784\pi\)
\(770\) −28.2022 + 25.4547i −1.01634 + 0.917323i
\(771\) 0 0
\(772\) −2.65629 + 25.8702i −0.0956020 + 0.931087i
\(773\) 14.8193i 0.533012i −0.963833 0.266506i \(-0.914131\pi\)
0.963833 0.266506i \(-0.0858692\pi\)
\(774\) 0 0
\(775\) 2.84246i 0.102104i
\(776\) 30.3574 + 41.4685i 1.08977 + 1.48863i
\(777\) 0 0
\(778\) −16.9988 18.8336i −0.609438 0.675218i
\(779\) 15.6034 0.559049
\(780\) 0 0
\(781\) −14.3736 −0.514328
\(782\) −1.81978 2.01620i −0.0650751 0.0720991i
\(783\) 0 0
\(784\) 40.6927 + 8.44551i 1.45331 + 0.301625i
\(785\) 3.15875i 0.112741i
\(786\) 0 0
\(787\) 15.7271i 0.560609i 0.959911 + 0.280305i \(0.0904355\pi\)
−0.959911 + 0.280305i \(0.909564\pi\)
\(788\) −31.5266 3.23708i −1.12309 0.115316i
\(789\) 0 0
\(790\) 0.259938 0.234614i 0.00924816 0.00834720i
\(791\) −12.8783 −0.457900
\(792\) 0 0
\(793\) 7.26380 0.257945
\(794\) 29.3008 26.4463i 1.03985 0.938544i
\(795\) 0 0
\(796\) 2.47822 + 0.254459i 0.0878383 + 0.00901904i
\(797\) 43.3678i 1.53617i −0.640350 0.768083i \(-0.721211\pi\)
0.640350 0.768083i \(-0.278789\pi\)
\(798\) 0 0
\(799\) 0.384068i 0.0135873i
\(800\) −4.88192 + 2.85778i −0.172602 + 0.101038i
\(801\) 0 0
\(802\) −3.78742 4.19622i −0.133738 0.148174i
\(803\) −11.2515 −0.397058
\(804\) 0 0
\(805\) 8.42420 0.296914
\(806\) −4.77987 5.29579i −0.168364 0.186536i
\(807\) 0 0
\(808\) −23.3699 + 17.1081i −0.822150 + 0.601862i
\(809\) 0.395982i 0.0139220i −0.999976 0.00696100i \(-0.997784\pi\)
0.999976 0.00696100i \(-0.00221577\pi\)
\(810\) 0 0
\(811\) 45.9241i 1.61261i 0.591498 + 0.806307i \(0.298537\pi\)
−0.591498 + 0.806307i \(0.701463\pi\)
\(812\) 5.56027 54.1526i 0.195127 1.90038i
\(813\) 0 0
\(814\) 39.4682 35.6232i 1.38336 1.24859i
\(815\) 14.1062 0.494119
\(816\) 0 0
\(817\) −11.6437 −0.407362
\(818\) −23.2318 + 20.9685i −0.812279 + 0.733147i
\(819\) 0 0
\(820\) −1.45357 + 14.1566i −0.0507609 + 0.494370i
\(821\) 34.0437i 1.18813i −0.804415 0.594067i \(-0.797521\pi\)
0.804415 0.594067i \(-0.202479\pi\)
\(822\) 0 0
\(823\) 10.5134i 0.366475i −0.983069 0.183238i \(-0.941342\pi\)
0.983069 0.183238i \(-0.0586578\pi\)
\(824\) 22.0462 16.1391i 0.768014 0.562231i
\(825\) 0 0
\(826\) −10.6207 11.7671i −0.369543 0.409430i
\(827\) −40.8826 −1.42163 −0.710813 0.703381i \(-0.751673\pi\)
−0.710813 + 0.703381i \(0.751673\pi\)
\(828\) 0 0
\(829\) 24.0184 0.834194 0.417097 0.908862i \(-0.363048\pi\)
0.417097 + 0.908862i \(0.363048\pi\)
\(830\) 11.0606 + 12.2545i 0.383920 + 0.425359i
\(831\) 0 0
\(832\) −4.28988 + 13.5337i −0.148725 + 0.469198i
\(833\) 9.87754i 0.342237i
\(834\) 0 0
\(835\) 18.3328i 0.634432i
\(836\) 28.1047 + 2.88573i 0.972021 + 0.0998050i
\(837\) 0 0
\(838\) 33.1890 29.9557i 1.14649 1.03480i
\(839\) −34.1904 −1.18038 −0.590192 0.807263i \(-0.700948\pi\)
−0.590192 + 0.807263i \(0.700948\pi\)
\(840\) 0 0
\(841\) −13.6025 −0.469052
\(842\) −31.5543 + 28.4803i −1.08743 + 0.981495i
\(843\) 0 0
\(844\) −32.4781 3.33478i −1.11794 0.114788i
\(845\) 9.85054i 0.338869i
\(846\) 0 0
\(847\) 127.181i 4.37000i
\(848\) 3.96546 19.1066i 0.136174 0.656124i
\(849\) 0 0
\(850\) 0.900823 + 0.998053i 0.0308980 + 0.0342329i
\(851\) −11.7895 −0.404137
\(852\) 0 0
\(853\) −24.7483 −0.847366 −0.423683 0.905811i \(-0.639263\pi\)
−0.423683 + 0.905811i \(0.639263\pi\)
\(854\) −16.1733 17.9190i −0.553440 0.613176i
\(855\) 0 0
\(856\) 5.40243 + 7.37979i 0.184651 + 0.252236i
\(857\) 10.6711i 0.364518i 0.983251 + 0.182259i \(0.0583410\pi\)
−0.983251 + 0.182259i \(0.941659\pi\)
\(858\) 0 0
\(859\) 23.8104i 0.812401i 0.913784 + 0.406200i \(0.133146\pi\)
−0.913784 + 0.406200i \(0.866854\pi\)
\(860\) 1.08470 10.5641i 0.0369880 0.360233i
\(861\) 0 0
\(862\) 26.3331 23.7677i 0.896909 0.809532i
\(863\) −53.1072 −1.80779 −0.903896 0.427753i \(-0.859305\pi\)
−0.903896 + 0.427753i \(0.859305\pi\)
\(864\) 0 0
\(865\) 7.88176 0.267988
\(866\) −30.8962 + 27.8863i −1.04989 + 0.947614i
\(867\) 0 0
\(868\) −2.42143 + 23.5828i −0.0821888 + 0.800454i
\(869\) 1.59502i 0.0541072i
\(870\) 0 0
\(871\) 19.3367i 0.655200i
\(872\) 4.81758 + 6.58087i 0.163144 + 0.222856i
\(873\) 0 0
\(874\) −4.19754 4.65061i −0.141984 0.157309i
\(875\) −4.17013 −0.140976
\(876\) 0 0
\(877\) −41.4276 −1.39891 −0.699456 0.714676i \(-0.746574\pi\)
−0.699456 + 0.714676i \(0.746574\pi\)
\(878\) −27.1524 30.0831i −0.916348 1.01525i
\(879\) 0 0
\(880\) −5.23632 + 25.2300i −0.176516 + 0.850502i
\(881\) 18.8579i 0.635340i −0.948201 0.317670i \(-0.897100\pi\)
0.948201 0.317670i \(-0.102900\pi\)
\(882\) 0 0
\(883\) 36.0305i 1.21252i −0.795266 0.606261i \(-0.792669\pi\)
0.795266 0.606261i \(-0.207331\pi\)
\(884\) 3.35665 + 0.344653i 0.112896 + 0.0115919i
\(885\) 0 0
\(886\) −31.3457 + 28.2920i −1.05308 + 0.950489i
\(887\) −19.3362 −0.649245 −0.324623 0.945844i \(-0.605237\pi\)
−0.324623 + 0.945844i \(0.605237\pi\)
\(888\) 0 0
\(889\) 9.02088 0.302551
\(890\) −6.44470 + 5.81686i −0.216027 + 0.194981i
\(891\) 0 0
\(892\) −35.6640 3.66190i −1.19412 0.122609i
\(893\) 0.885900i 0.0296455i
\(894\) 0 0
\(895\) 9.84108i 0.328951i
\(896\) 42.9380 19.5511i 1.43446 0.653157i
\(897\) 0 0
\(898\) 13.9306 + 15.4343i 0.464872 + 0.515048i
\(899\) 18.5529 0.618774
\(900\) 0 0
\(901\) −4.63785 −0.154509
\(902\) 43.4336 + 48.1216i 1.44618 + 1.60227i
\(903\) 0 0
\(904\) −7.04809 + 5.15961i −0.234416 + 0.171606i
\(905\) 18.3215i 0.609027i
\(906\) 0 0
\(907\) 17.1102i 0.568134i −0.958804 0.284067i \(-0.908316\pi\)
0.958804 0.284067i \(-0.0916838\pi\)
\(908\) 2.13075 20.7518i 0.0707114 0.688672i
\(909\) 0 0
\(910\) −7.76937 + 7.01248i −0.257552 + 0.232461i
\(911\) −11.3283 −0.375324 −0.187662 0.982234i \(-0.560091\pi\)
−0.187662 + 0.982234i \(0.560091\pi\)
\(912\) 0 0
\(913\) 75.1952 2.48860
\(914\) 9.27352 8.37009i 0.306741 0.276858i
\(915\) 0 0
\(916\) −3.83799 + 37.3790i −0.126811 + 1.23504i
\(917\) 7.98334i 0.263633i
\(918\) 0 0
\(919\) 33.3567i 1.10034i 0.835054 + 0.550169i \(0.185437\pi\)
−0.835054 + 0.550169i \(0.814563\pi\)
\(920\) 4.61043 3.37510i 0.152001 0.111274i
\(921\) 0 0
\(922\) 0.865470 + 0.958885i 0.0285027 + 0.0315792i
\(923\) −3.95976 −0.130337
\(924\) 0 0
\(925\) 5.83599 0.191886
\(926\) 7.45853 + 8.26357i 0.245102 + 0.271558i
\(927\) 0 0
\(928\) −18.6529 31.8646i −0.612311 1.04601i
\(929\) 10.4925i 0.344248i 0.985075 + 0.172124i \(0.0550630\pi\)
−0.985075 + 0.172124i \(0.944937\pi\)
\(930\) 0 0
\(931\) 22.7838i 0.746708i
\(932\) −14.4976 1.48859i −0.474886 0.0487602i
\(933\) 0 0
\(934\) 30.1054 27.1725i 0.985079 0.889113i
\(935\) 6.12420 0.200283
\(936\) 0 0
\(937\) 29.4458 0.961952 0.480976 0.876734i \(-0.340282\pi\)
0.480976 + 0.876734i \(0.340282\pi\)
\(938\) 47.7016 43.0545i 1.55751 1.40578i
\(939\) 0 0
\(940\) 0.803758 + 0.0825282i 0.0262157 + 0.00269177i
\(941\) 36.0415i 1.17492i −0.809254 0.587459i \(-0.800128\pi\)
0.809254 0.587459i \(-0.199872\pi\)
\(942\) 0 0
\(943\) 14.3743i 0.468091i
\(944\) −10.5270 2.18481i −0.342624 0.0711095i
\(945\) 0 0
\(946\) −32.4115 35.9098i −1.05379 1.16753i
\(947\) −12.1726 −0.395557 −0.197778 0.980247i \(-0.563373\pi\)
−0.197778 + 0.980247i \(0.563373\pi\)
\(948\) 0 0
\(949\) −3.09967 −0.100620
\(950\) 2.07786 + 2.30213i 0.0674146 + 0.0746911i
\(951\) 0 0
\(952\) −6.62357 9.04787i −0.214671 0.293243i
\(953\) 25.0300i 0.810801i −0.914139 0.405400i \(-0.867132\pi\)
0.914139 0.405400i \(-0.132868\pi\)
\(954\) 0 0
\(955\) 19.0805i 0.617430i
\(956\) 6.06342 59.0528i 0.196105 1.90991i
\(957\) 0 0
\(958\) −27.6963 + 24.9981i −0.894827 + 0.807653i
\(959\) −48.6270 −1.57025
\(960\) 0 0
\(961\) 22.9204 0.739369
\(962\) 10.8730 9.81379i 0.350561 0.316409i
\(963\) 0 0
\(964\) −2.60466 + 25.3673i −0.0838905 + 0.817026i
\(965\) 13.0031i 0.418584i
\(966\) 0 0
\(967\) 2.75536i 0.0886063i −0.999018 0.0443032i \(-0.985893\pi\)
0.999018 0.0443032i \(-0.0141068\pi\)
\(968\) 50.9544 + 69.6043i 1.63774 + 2.23717i
\(969\) 0 0
\(970\) 17.2171 + 19.0755i 0.552809 + 0.612476i
\(971\) 33.6700 1.08052 0.540261 0.841497i \(-0.318325\pi\)
0.540261 + 0.841497i \(0.318325\pi\)
\(972\) 0 0
\(973\) −31.9476 −1.02419
\(974\) 7.45936 + 8.26448i 0.239013 + 0.264811i
\(975\) 0 0
\(976\) −16.0305 3.32704i −0.513125 0.106496i
\(977\) 56.0751i 1.79400i 0.442030 + 0.897000i \(0.354258\pi\)
−0.442030 + 0.897000i \(0.645742\pi\)
\(978\) 0 0
\(979\) 39.5457i 1.26388i
\(980\) 20.6712 + 2.12248i 0.660318 + 0.0678001i
\(981\) 0 0
\(982\) 20.4654 18.4716i 0.653076 0.589453i
\(983\) −15.0532 −0.480124 −0.240062 0.970758i \(-0.577168\pi\)
−0.240062 + 0.970758i \(0.577168\pi\)
\(984\) 0 0
\(985\) −15.8462 −0.504901
\(986\) −6.51435 + 5.87972i −0.207459 + 0.187249i
\(987\) 0 0
\(988\) 7.74252 + 0.794985i 0.246322 + 0.0252919i
\(989\) 10.7265i 0.341084i
\(990\) 0 0
\(991\) 32.4096i 1.02953i −0.857333 0.514763i \(-0.827880\pi\)
0.857333 0.514763i \(-0.172120\pi\)
\(992\) 8.12311 + 13.8766i 0.257909 + 0.440584i
\(993\) 0 0
\(994\) 8.81666 + 9.76829i 0.279648 + 0.309831i
\(995\) 1.24563 0.0394890
\(996\) 0 0
\(997\) −44.1499 −1.39824 −0.699120 0.715004i \(-0.746425\pi\)
−0.699120 + 0.715004i \(0.746425\pi\)
\(998\) 0.802069 + 0.888641i 0.0253891 + 0.0281294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.e.b.971.12 48
3.2 odd 2 inner 1620.2.e.b.971.37 48
4.3 odd 2 inner 1620.2.e.b.971.38 48
9.2 odd 6 180.2.q.a.131.3 yes 48
9.4 even 3 180.2.q.a.11.10 yes 48
9.5 odd 6 540.2.q.a.251.15 48
9.7 even 3 540.2.q.a.71.22 48
12.11 even 2 inner 1620.2.e.b.971.11 48
36.7 odd 6 540.2.q.a.71.15 48
36.11 even 6 180.2.q.a.131.10 yes 48
36.23 even 6 540.2.q.a.251.22 48
36.31 odd 6 180.2.q.a.11.3 48
45.2 even 12 900.2.o.b.599.15 48
45.4 even 6 900.2.r.f.551.15 48
45.13 odd 12 900.2.o.b.299.2 48
45.22 odd 12 900.2.o.c.299.23 48
45.29 odd 6 900.2.r.f.851.22 48
45.38 even 12 900.2.o.c.599.10 48
180.47 odd 12 900.2.o.b.599.2 48
180.67 even 12 900.2.o.c.299.10 48
180.83 odd 12 900.2.o.c.599.23 48
180.103 even 12 900.2.o.b.299.15 48
180.119 even 6 900.2.r.f.851.15 48
180.139 odd 6 900.2.r.f.551.22 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.3 48 36.31 odd 6
180.2.q.a.11.10 yes 48 9.4 even 3
180.2.q.a.131.3 yes 48 9.2 odd 6
180.2.q.a.131.10 yes 48 36.11 even 6
540.2.q.a.71.15 48 36.7 odd 6
540.2.q.a.71.22 48 9.7 even 3
540.2.q.a.251.15 48 9.5 odd 6
540.2.q.a.251.22 48 36.23 even 6
900.2.o.b.299.2 48 45.13 odd 12
900.2.o.b.299.15 48 180.103 even 12
900.2.o.b.599.2 48 180.47 odd 12
900.2.o.b.599.15 48 45.2 even 12
900.2.o.c.299.10 48 180.67 even 12
900.2.o.c.299.23 48 45.22 odd 12
900.2.o.c.599.10 48 45.38 even 12
900.2.o.c.599.23 48 180.83 odd 12
900.2.r.f.551.15 48 45.4 even 6
900.2.r.f.551.22 48 180.139 odd 6
900.2.r.f.851.15 48 180.119 even 6
900.2.r.f.851.22 48 45.29 odd 6
1620.2.e.b.971.11 48 12.11 even 2 inner
1620.2.e.b.971.12 48 1.1 even 1 trivial
1620.2.e.b.971.37 48 3.2 odd 2 inner
1620.2.e.b.971.38 48 4.3 odd 2 inner