Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(11.1539349347579065694605247753 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.48828655 \pm 2.3 \cdot 10^{-7} \) | \(a_{3}= -0.69640225 \pm 2.5 \cdot 10^{-7} \) |
\(a_{4}= +1.21499686 \pm 2.0 \cdot 10^{-7} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -1.03644610 \pm 2.3 \cdot 10^{-7} \) |
\(a_{7}= -0.71279555 \pm 9.6 \cdot 10^{-8} \) | \(a_{8}= +0.31997694 \pm 2.1 \cdot 10^{-7} \) | \(a_{9}= -0.51502391 \pm 1.2 \cdot 10^{-7} \) |
\(a_{10}= -0.66558198 \pm 2.4 \cdot 10^{-7} \) | \(a_{11}= +0.51774918 \pm 1.2 \cdot 10^{-7} \) | \(a_{12}= -0.84612655 \pm 2.1 \cdot 10^{-7} \) |
\(a_{13}= -1.48686381 \pm 1.6 \cdot 10^{-7} \) | \(a_{14}= -1.06084404 \pm 9.8 \cdot 10^{-8} \) | \(a_{15}= +0.31144055 \pm 2.6 \cdot 10^{-7} \) |
\(a_{16}= -0.73877948 \pm 1.0 \cdot 10^{-7} \) | \(a_{17}= +1.13353925 \pm 2.5 \cdot 10^{-7} \) | \(a_{18}= -0.76650316 \pm 1.0 \cdot 10^{-7} \) |
\(a_{19}= -1.63881495 \pm 2.3 \cdot 10^{-7} \) | \(a_{20}= -0.54336312 \pm 2.1 \cdot 10^{-7} \) | \(a_{21}= +0.49639242 \pm 1.0 \cdot 10^{-7} \) |
\(a_{22}= +0.77055915 \pm 1.3 \cdot 10^{-7} \) | \(a_{23}= +0.60856473 \pm 1.0 \cdot 10^{-7} \) | \(a_{24}= -0.22283266 \pm 2.2 \cdot 10^{-7} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -2.21287941 \pm 1.9 \cdot 10^{-7} \) | \(a_{27}= +1.05506606 \pm 1.9 \cdot 10^{-7} \) |
\(a_{28}= -0.86604436 \pm 7.9 \cdot 10^{-8} \) | \(a_{29}= +1.22542299 \pm 1.1 \cdot 10^{-7} \) | \(a_{30}= +0.46351279 \pm 4.9 \cdot 10^{-7} \) |
\(a_{31}= +0.05438510 \pm 2.4 \cdot 10^{-7} \) | \(a_{32}= -1.41949251 \pm 2.5 \cdot 10^{-7} \) | \(a_{33}= -0.36056169 \pm 9.3 \cdot 10^{-8} \) |
\(a_{34}= +1.68703123 \pm 2.4 \cdot 10^{-7} \) | \(a_{35}= +0.31877186 \pm 1.0 \cdot 10^{-7} \) | \(a_{36}= -0.62575244 \pm 5.7 \cdot 10^{-8} \) |
\(a_{37}= +0.87246569 \pm 3.0 \cdot 10^{-7} \) | \(a_{38}= -2.43902625 \pm 1.6 \cdot 10^{-7} \) | \(a_{39}= +1.03545530 \pm 1.3 \cdot 10^{-7} \) |
\(a_{40}= -0.14309804 \pm 2.2 \cdot 10^{-7} \) | \(a_{41}= -0.12814554 \pm 2.6 \cdot 10^{-7} \) | \(a_{42}= +0.73877417 \pm 1.0 \cdot 10^{-7} \) |
\(a_{43}= -1.16468558 \pm 2.6 \cdot 10^{-7} \) | \(a_{44}= +0.62906363 \pm 9.8 \cdot 10^{-8} \) | \(a_{45}= +0.23032569 \pm 1.3 \cdot 10^{-7} \) |
\(a_{46}= +0.90571871 \pm 1.2 \cdot 10^{-7} \) | \(a_{47}= -0.13919694 \pm 1.5 \cdot 10^{-7} \) | \(a_{48}= +0.51448769 \pm 1.0 \cdot 10^{-7} \) |
\(a_{49}= -0.49192250 \pm 2.1 \cdot 10^{-7} \) | \(a_{50}= +0.29765731 \pm 2.4 \cdot 10^{-7} \) | \(a_{51}= -0.78939928 \pm 2.5 \cdot 10^{-7} \) |
\(a_{52}= -1.80653486 \pm 1.5 \cdot 10^{-7} \) | \(a_{53}= -0.73622937 \pm 2.4 \cdot 10^{-7} \) | \(a_{54}= +1.57024062 \pm 1.9 \cdot 10^{-7} \) |
\(a_{55}= -0.23154447 \pm 1.3 \cdot 10^{-7} \) | \(a_{56}= -0.22807814 \pm 8.4 \cdot 10^{-8} \) | \(a_{57}= +1.14127441 \pm 2.7 \cdot 10^{-7} \) |
\(a_{58}= +1.82378056 \pm 9.1 \cdot 10^{-8} \) | \(a_{59}= -0.06746689 \pm 1.9 \cdot 10^{-7} \) | \(a_{60}= +0.37839930 \pm 4.6 \cdot 10^{-7} \) |
\(a_{61}= -1.93584991 \pm 1.4 \cdot 10^{-7} \) | \(a_{62}= +0.08094061 \pm 3.4 \cdot 10^{-7} \) | \(a_{63}= +0.36710675 \pm 7.5 \cdot 10^{-8} \) |
\(a_{64}= -1.37383214 \pm 2.3 \cdot 10^{-7} \) | \(a_{65}= +0.66494571 \pm 1.7 \cdot 10^{-7} \) | \(a_{66}= -0.53661912 \pm 1.1 \cdot 10^{-7} \) |
\(a_{67}= -1.17889405 \pm 1.5 \cdot 10^{-7} \) | \(a_{68}= +1.37724664 \pm 2.1 \cdot 10^{-7} \) | \(a_{69}= -0.42380585 \pm 1.1 \cdot 10^{-7} \) |
\(a_{70}= +0.47442388 \pm 3.3 \cdot 10^{-7} \) | \(a_{71}= +0.97212417 \pm 1.2 \cdot 10^{-7} \) | \(a_{72}= -0.16479578 \pm 1.2 \cdot 10^{-7} \) |
\(a_{73}= -0.31734406 \pm 2.0 \cdot 10^{-7} \) | \(a_{74}= +1.29847895 \pm 2.1 \cdot 10^{-7} \) | \(a_{75}= -0.13928045 \pm 2.6 \cdot 10^{-7} \) |
\(a_{76}= -1.99115502 \pm 1.5 \cdot 10^{-7} \) | \(a_{77}= -0.36904932 \pm 6.4 \cdot 10^{-8} \) | \(a_{78}= +1.54105419 \pm 1.8 \cdot 10^{-7} \) |
\(a_{79}= -0.43569750 \pm 2.9 \cdot 10^{-7} \) | \(a_{80}= +0.33039223 \pm 1.1 \cdot 10^{-7} \) | \(a_{81}= -0.21972646 \pm 2.6 \cdot 10^{-7} \) |
\(a_{82}= -0.19071729 \pm 3.4 \cdot 10^{-7} \) | \(a_{83}= +1.09582218 \pm 2.5 \cdot 10^{-7} \) | \(a_{84}= +0.60311524 \pm 7.1 \cdot 10^{-8} \) |
\(a_{85}= -0.50693417 \pm 2.6 \cdot 10^{-7} \) | \(a_{86}= -1.73338588 \pm 1.5 \cdot 10^{-7} \) | \(a_{87}= -0.85338733 \pm 1.3 \cdot 10^{-7} \) |
\(a_{88}= +0.16566780 \pm 1.1 \cdot 10^{-7} \) | \(a_{89}= -0.70547345 \pm 2.9 \cdot 10^{-7} \) | \(a_{90}= +0.34279063 \pm 3.6 \cdot 10^{-7} \) |
\(a_{91}= +1.05982991 \pm 7.0 \cdot 10^{-8} \) | \(a_{92}= +0.73940424 \pm 8.6 \cdot 10^{-8} \) | \(a_{93}= -0.03787391 \pm 2.5 \cdot 10^{-7} \) |
\(a_{94}= -0.20716494 \pm 1.4 \cdot 10^{-7} \) | \(a_{95}= +0.73290032 \pm 2.5 \cdot 10^{-7} \) | \(a_{96}= +0.98853778 \pm 2.6 \cdot 10^{-7} \) |
\(a_{97}= +0.56272810 \pm 1.9 \cdot 10^{-7} \) | \(a_{98}= -0.73212164 \pm 1.9 \cdot 10^{-7} \) | \(a_{99}= -0.26665321 \pm 1.1 \cdot 10^{-7} \) |
\(a_{100}= +0.24299937 \pm 2.1 \cdot 10^{-7} \) | \(a_{101}= -0.90267498 \pm 1.9 \cdot 10^{-7} \) | \(a_{102}= -1.17485234 \pm 2.4 \cdot 10^{-7} \) |
\(a_{103}= +0.45849634 \pm 1.9 \cdot 10^{-7} \) | \(a_{104}= -0.47576213 \pm 1.4 \cdot 10^{-7} \) | \(a_{105}= -0.22199344 \pm 3.5 \cdot 10^{-7} \) |
\(a_{106}= -1.09572027 \pm 1.9 \cdot 10^{-7} \) | \(a_{107}= +0.26734015 \pm 1.9 \cdot 10^{-7} \) | \(a_{108}= +1.28190195 \pm 1.8 \cdot 10^{-7} \) |
\(a_{109}= +0.15992616 \pm 1.2 \cdot 10^{-7} \) | \(a_{110}= -0.34460453 \pm 3.7 \cdot 10^{-7} \) | \(a_{111}= -0.60758707 \pm 3.3 \cdot 10^{-7} \) |
\(a_{112}= +0.52659873 \pm 6.9 \cdot 10^{-8} \) | \(a_{113}= -0.27521685 \pm 1.7 \cdot 10^{-7} \) | \(a_{114}= +1.69854336 \pm 1.9 \cdot 10^{-7} \) |
\(a_{115}= -0.27215842 \pm 1.1 \cdot 10^{-7} \) | \(a_{116}= +1.48888510 \pm 6.3 \cdot 10^{-8} \) | \(a_{117}= +0.76577041 \pm 1.2 \cdot 10^{-7} \) |
\(a_{118}= -0.10041006 \pm 1.9 \cdot 10^{-7} \) | \(a_{119}= -0.80798174 \pm 8.4 \cdot 10^{-8} \) | \(a_{120}= +0.09965380 \pm 4.7 \cdot 10^{-7} \) |
\(a_{121}= -0.73193578 \pm 2.0 \cdot 10^{-7} \) | \(a_{122}= -2.88109939 \pm 1.1 \cdot 10^{-7} \) | \(a_{123}= +0.08924085 \pm 2.6 \cdot 10^{-7} \) |
\(a_{124}= +0.06607773 \pm 2.9 \cdot 10^{-7} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.54636004 \pm 7.7 \cdot 10^{-8} \) |
\(a_{127}= +0.71320728 \pm 2.7 \cdot 10^{-7} \) | \(a_{128}= -0.62516338 \pm 1.7 \cdot 10^{-7} \) | \(a_{129}= +0.81108965 \pm 2.9 \cdot 10^{-7} \) |
\(a_{130}= +0.98962976 \pm 4.0 \cdot 10^{-7} \) | \(a_{131}= -0.27057540 \pm 2.3 \cdot 10^{-7} \) | \(a_{132}= -0.43808133 \pm 8.9 \cdot 10^{-8} \) |
\(a_{133}= +1.16814000 \pm 9.8 \cdot 10^{-8} \) | \(a_{134}= -1.75453216 \pm 1.1 \cdot 10^{-7} \) | \(a_{135}= -0.47183988 \pm 2.0 \cdot 10^{-7} \) |
\(a_{136}= +0.36270642 \pm 2.3 \cdot 10^{-7} \) | \(a_{137}= +1.13798333 \pm 2.8 \cdot 10^{-7} \) | \(a_{138}= -0.63074455 \pm 1.2 \cdot 10^{-7} \) |
\(a_{139}= -0.50777646 \pm 2.7 \cdot 10^{-7} \) | \(a_{140}= +0.38730681 \pm 3.0 \cdot 10^{-7} \) | \(a_{141}= +0.09693706 \pm 8.1 \cdot 10^{-8} \) |
\(a_{142}= +1.44679933 \pm 1.2 \cdot 10^{-7} \) | \(a_{143}= -0.76982252 \pm 1.4 \cdot 10^{-7} \) | \(a_{144}= +0.38048910 \pm 8.3 \cdot 10^{-8} \) |
\(a_{145}= -0.54802582 \pm 1.2 \cdot 10^{-7} \) | \(a_{146}= -0.47229889 \pm 1.7 \cdot 10^{-7} \) | \(a_{147}= +0.34257593 \pm 2.1 \cdot 10^{-7} \) |
\(a_{148}= +1.06004308 \pm 2.1 \cdot 10^{-7} \) | \(a_{149}= +0.97687525 \pm 8.9 \cdot 10^{-8} \) | \(a_{150}= -0.20728922 \pm 4.9 \cdot 10^{-7} \) |
\(a_{151}= -1.76492045 \pm 1.5 \cdot 10^{-7} \) | \(a_{152}= -0.52438299 \pm 2.3 \cdot 10^{-7} \) | \(a_{153}= -0.58379982 \pm 1.3 \cdot 10^{-7} \) |
\(a_{154}= -0.54925113 \pm 7.2 \cdot 10^{-8} \) | \(a_{155}= -0.02432176 \pm 2.5 \cdot 10^{-7} \) | \(a_{156}= +1.25807494 \pm 1.5 \cdot 10^{-7} \) |
\(a_{157}= -1.45344977 \pm 2.2 \cdot 10^{-7} \) | \(a_{158}= -0.64844272 \pm 2.0 \cdot 10^{-7} \) | \(a_{159}= +0.51271179 \pm 2.5 \cdot 10^{-7} \) |
\(a_{160}= +0.63481635 \pm 2.6 \cdot 10^{-7} \) | \(a_{161}= -0.43378224 \pm 7.3 \cdot 10^{-8} \) | \(a_{162}= -0.32701594 \pm 2.4 \cdot 10^{-7} \) |
\(a_{163}= +1.78148218 \pm 2.0 \cdot 10^{-7} \) | \(a_{164}= -0.15569644 \pm 2.9 \cdot 10^{-7} \) | \(a_{165}= +0.16124809 \pm 3.9 \cdot 10^{-7} \) |
\(a_{166}= +1.63089742 \pm 1.9 \cdot 10^{-7} \) | \(a_{167}= +0.27605543 \pm 1.9 \cdot 10^{-7} \) | \(a_{168}= +0.15883413 \pm 1.0 \cdot 10^{-7} \) |
\(a_{169}= +1.21076398 \pm 1.9 \cdot 10^{-7} \) | \(a_{170}= -0.75446330 \pm 5.0 \cdot 10^{-7} \) | \(a_{171}= +0.84402888 \pm 1.1 \cdot 10^{-7} \) |
\(a_{172}= -1.41508932 \pm 1.7 \cdot 10^{-7} \) | \(a_{173}= -0.86360438 \pm 2.2 \cdot 10^{-7} \) | \(a_{174}= -1.27008488 \pm 1.0 \cdot 10^{-7} \) |
\(a_{175}= -0.14255911 \pm 1.0 \cdot 10^{-7} \) | \(a_{176}= -0.38250247 \pm 8.3 \cdot 10^{-8} \) | \(a_{177}= +0.04698409 \pm 2.3 \cdot 10^{-7} \) |
\(a_{178}= -1.04994665 \pm 2.7 \cdot 10^{-7} \) | \(a_{179}= -0.05056904 \pm 2.4 \cdot 10^{-7} \) | \(a_{180}= +0.27984500 \pm 3.3 \cdot 10^{-7} \) |
\(a_{181}= -1.61325645 \pm 2.5 \cdot 10^{-7} \) | \(a_{182}= +1.57733060 \pm 8.9 \cdot 10^{-8} \) | \(a_{183}= +1.34813023 \pm 1.5 \cdot 10^{-7} \) |
\(a_{184}= +0.19472668 \pm 7.9 \cdot 10^{-8} \) | \(a_{185}= -0.39017852 \pm 3.1 \cdot 10^{-7} \) | \(a_{186}= -0.05636723 \pm 3.5 \cdot 10^{-7} \) |
\(a_{187}= +0.58688902 \pm 1.5 \cdot 10^{-7} \) | \(a_{188}= -0.16912385 \pm 1.0 \cdot 10^{-7} \) | \(a_{189}= -0.75204639 \pm 6.8 \cdot 10^{-8} \) |
\(a_{190}= +1.09076570 \pm 4.8 \cdot 10^{-7} \) | \(a_{191}= -0.49277616 \pm 6.4 \cdot 10^{-8} \) | \(a_{192}= +0.95673979 \pm 2.3 \cdot 10^{-7} \) |
\(a_{193}= -0.01654357 \pm 1.0 \cdot 10^{-7} \) | \(a_{194}= +0.83750066 \pm 1.6 \cdot 10^{-7} \) | \(a_{195}= -0.46306969 \pm 4.2 \cdot 10^{-7} \) |
\(a_{196}= -0.59768430 \pm 1.8 \cdot 10^{-7} \) | \(a_{197}= +0.68787647 \pm 2.3 \cdot 10^{-7} \) | \(a_{198}= -0.39685639 \pm 1.0 \cdot 10^{-7} \) |
\(a_{199}= +0.25082331 \pm 3.2 \cdot 10^{-7} \) | \(a_{200}= +0.06399539 \pm 2.2 \cdot 10^{-7} \) | \(a_{201}= +0.82098447 \pm 1.7 \cdot 10^{-7} \) |
\(a_{202}= -1.34343903 \pm 1.8 \cdot 10^{-7} \) | \(a_{203}= -0.87347606 \pm 6.2 \cdot 10^{-8} \) | \(a_{204}= -0.95911765 \pm 2.2 \cdot 10^{-7} \) |
\(a_{205}= +0.05730843 \pm 2.7 \cdot 10^{-7} \) | \(a_{206}= +0.68237394 \pm 2.8 \cdot 10^{-7} \) | \(a_{207}= -0.31342539 \pm 9.1 \cdot 10^{-8} \) |
\(a_{208}= +1.09846448 \pm 9.2 \cdot 10^{-8} \) | \(a_{209}= -0.84849510 \pm 5.8 \cdot 10^{-8} \) | \(a_{210}= -0.33038985 \pm 5.9 \cdot 10^{-7} \) |
\(a_{211}= +1.45265366 \pm 1.3 \cdot 10^{-7} \) | \(a_{212}= -0.89451637 \pm 1.8 \cdot 10^{-7} \) | \(a_{213}= -0.67698946 \pm 1.4 \cdot 10^{-7} \) |
\(a_{214}= +0.39787875 \pm 2.1 \cdot 10^{-7} \) | \(a_{215}= +0.52086322 \pm 2.7 \cdot 10^{-7} \) | \(a_{216}= +0.33759681 \pm 1.6 \cdot 10^{-7} \) |
\(a_{217}= -0.03876546 \pm 1.0 \cdot 10^{-7} \) | \(a_{218}= +0.23801596 \pm 1.5 \cdot 10^{-7} \) | \(a_{219}= +0.22099911 \pm 2.1 \cdot 10^{-7} \) |
\(a_{220}= -0.28132581 \pm 3.4 \cdot 10^{-7} \) | \(a_{221}= -1.68541849 \pm 2.0 \cdot 10^{-7} \) | \(a_{222}= -0.90426366 \pm 2.2 \cdot 10^{-7} \) |
\(a_{223}= +0.53357802 \pm 2.5 \cdot 10^{-7} \) | \(a_{224}= +1.01180795 \pm 8.9 \cdot 10^{-8} \) | \(a_{225}= -0.10300478 \pm 1.3 \cdot 10^{-7} \) |
\(a_{226}= -0.40960153 \pm 2.1 \cdot 10^{-7} \) | \(a_{227}= +0.51074635 \pm 1.9 \cdot 10^{-7} \) | \(a_{228}= +1.38664483 \pm 1.7 \cdot 10^{-7} \) |
\(a_{229}= +0.67953905 \pm 3.5 \cdot 10^{-7} \) | \(a_{230}= -0.40504972 \pm 3.4 \cdot 10^{-7} \) | \(a_{231}= +0.25700677 \pm 5.3 \cdot 10^{-8} \) |
\(a_{232}= +0.39210710 \pm 1.2 \cdot 10^{-7} \) | \(a_{233}= -0.31711100 \pm 3.2 \cdot 10^{-7} \) | \(a_{234}= +1.13968581 \pm 1.0 \cdot 10^{-7} \) |
\(a_{235}= +0.06225077 \pm 1.6 \cdot 10^{-7} \) | \(a_{236}= -0.08197206 \pm 1.6 \cdot 10^{-7} \) | \(a_{237}= +0.30342072 \pm 3.2 \cdot 10^{-7} \) |
\(a_{238}= -1.20250836 \pm 8.5 \cdot 10^{-8} \) | \(a_{239}= -0.04660896 \pm 2.3 \cdot 10^{-7} \) | \(a_{240}= -0.23008589 \pm 3.6 \cdot 10^{-7} \) |
\(a_{241}= -1.22041936 \pm 1.3 \cdot 10^{-7} \) | \(a_{242}= -1.08933018 \pm 1.8 \cdot 10^{-7} \) | \(a_{243}= -0.90204805 \pm 1.3 \cdot 10^{-7} \) |
\(a_{244}= -2.35205157 \pm 9.9 \cdot 10^{-8} \) | \(a_{245}= +0.21999443 \pm 2.2 \cdot 10^{-7} \) | \(a_{246}= +0.13281595 \pm 3.4 \cdot 10^{-7} \) |
\(a_{247}= +2.43669463 \pm 7.0 \cdot 10^{-8} \) | \(a_{248}= +0.01740198 \pm 1.6 \cdot 10^{-7} \) | \(a_{249}= -0.76313303 \pm 2.8 \cdot 10^{-7} \) |
\(a_{250}= -0.13311640 \pm 2.4 \cdot 10^{-7} \) | \(a_{251}= +1.39626577 \pm 3.5 \cdot 10^{-7} \) | \(a_{252}= +0.44603355 \pm 4.1 \cdot 10^{-8} \) |
\(a_{253}= +0.31508389 \pm 8.1 \cdot 10^{-8} \) | \(a_{254}= +1.06145680 \pm 2.1 \cdot 10^{-7} \) | \(a_{255}= +0.35303009 \pm 5.1 \cdot 10^{-7} \) |
\(a_{256}= +0.44340988 \pm 1.9 \cdot 10^{-7} \) | \(a_{257}= -1.32243334 \pm 1.9 \cdot 10^{-7} \) | \(a_{258}= +1.20713382 \pm 1.7 \cdot 10^{-7} \) |
\(a_{259}= -0.62188966 \pm 1.0 \cdot 10^{-7} \) | \(a_{260}= +0.80790695 \pm 3.7 \cdot 10^{-7} \) | \(a_{261}= -0.63112214 \pm 1.0 \cdot 10^{-7} \) |
\(a_{262}= -0.40269372 \pm 2.9 \cdot 10^{-7} \) | \(a_{263}= +0.67592268 \pm 2.7 \cdot 10^{-7} \) | \(a_{264}= -0.11537143 \pm 7.8 \cdot 10^{-8} \) |
\(a_{265}= +0.32925178 \pm 2.5 \cdot 10^{-7} \) | \(a_{266}= +1.73852706 \pm 8.5 \cdot 10^{-8} \) | \(a_{267}= +0.49129330 \pm 3.2 \cdot 10^{-7} \) |
\(a_{268}= -1.43235258 \pm 1.0 \cdot 10^{-7} \) | \(a_{269}= -1.61519398 \pm 2.3 \cdot 10^{-7} \) | \(a_{270}= -0.70223295 \pm 4.3 \cdot 10^{-7} \) |
\(a_{271}= -1.44879007 \pm 1.8 \cdot 10^{-7} \) | \(a_{272}= -0.83743555 \pm 1.0 \cdot 10^{-7} \) | \(a_{273}= -0.73806793 \pm 6.3 \cdot 10^{-8} \) |
\(a_{274}= +1.69364528 \pm 3.4 \cdot 10^{-7} \) | \(a_{275}= +0.10354984 \pm 1.3 \cdot 10^{-7} \) | \(a_{276}= -0.51492278 \pm 8.4 \cdot 10^{-8} \) |
\(a_{277}= +0.87177688 \pm 2.5 \cdot 10^{-7} \) | \(a_{278}= -0.75571688 \pm 1.9 \cdot 10^{-7} \) | \(a_{279}= -0.02800963 \pm 8.3 \cdot 10^{-8} \) |
\(a_{280}= +0.10199965 \pm 3.2 \cdot 10^{-7} \) | \(a_{281}= +0.74975685 \pm 1.0 \cdot 10^{-7} \) | \(a_{282}= +0.14427013 \pm 1.0 \cdot 10^{-7} \) |
\(a_{283}= +0.87959605 \pm 2.5 \cdot 10^{-7} \) | \(a_{284}= +1.18112782 \pm 6.6 \cdot 10^{-8} \) | \(a_{285}= -0.51039343 \pm 5.0 \cdot 10^{-7} \) |
\(a_{286}= -1.14571651 \pm 1.4 \cdot 10^{-7} \) | \(a_{287}= +0.09134157 \pm 1.0 \cdot 10^{-7} \) | \(a_{288}= +0.73107259 \pm 8.8 \cdot 10^{-8} \) |
\(a_{289}= +0.28491124 \pm 1.0 \cdot 10^{-7} \) | \(a_{290}= -0.81561946 \pm 3.6 \cdot 10^{-7} \) | \(a_{291}= -0.39188511 \pm 2.0 \cdot 10^{-7} \) |
\(a_{292}= -0.38557203 \pm 1.6 \cdot 10^{-7} \) | \(a_{293}= -0.29249159 \pm 3.0 \cdot 10^{-7} \) | \(a_{294}= +0.50985116 \pm 2.0 \cdot 10^{-7} \) |
\(a_{295}= +0.03017211 \pm 2.0 \cdot 10^{-7} \) | \(a_{296}= +0.27916890 \pm 2.9 \cdot 10^{-7} \) | \(a_{297}= +0.54625959 \pm 7.7 \cdot 10^{-8} \) |
\(a_{298}= +1.45387029 \pm 1.0 \cdot 10^{-7} \) | \(a_{299}= -0.90485288 \pm 7.7 \cdot 10^{-8} \) | \(a_{300}= -0.16922531 \pm 4.6 \cdot 10^{-7} \) |
\(a_{301}= +0.83018270 \pm 7.8 \cdot 10^{-8} \) | \(a_{302}= -2.62670737 \pm 1.9 \cdot 10^{-7} \) | \(a_{303}= +0.62862488 \pm 2.0 \cdot 10^{-7} \) |
\(a_{304}= +1.21072286 \pm 8.2 \cdot 10^{-8} \) | \(a_{305}= +0.86573840 \pm 1.5 \cdot 10^{-7} \) | \(a_{306}= -0.86886142 \pm 1.0 \cdot 10^{-7} \) |
\(a_{307}= +0.67144564 \pm 2.1 \cdot 10^{-7} \) | \(a_{308}= -0.44839376 \pm 5.0 \cdot 10^{-8} \) | \(a_{309}= -0.31929788 \pm 2.0 \cdot 10^{-7} \) |
\(a_{310}= -0.03619774 \pm 4.9 \cdot 10^{-7} \) | \(a_{311}= +1.26120406 \pm 2.3 \cdot 10^{-7} \) | \(a_{312}= +0.33132182 \pm 9.1 \cdot 10^{-8} \) |
\(a_{313}= -1.48956321 \pm 2.2 \cdot 10^{-7} \) | \(a_{314}= -2.16314975 \pm 1.9 \cdot 10^{-7} \) | \(a_{315}= -0.16417513 \pm 2.3 \cdot 10^{-7} \) |
\(a_{316}= -0.52937109 \pm 1.9 \cdot 10^{-7} \) | \(a_{317}= +0.33528960 \pm 3.4 \cdot 10^{-7} \) | \(a_{318}= +0.76306206 \pm 2.0 \cdot 10^{-7} \) |
\(a_{319}= +0.63446175 \pm 7.8 \cdot 10^{-8} \) | \(a_{320}= +0.61439641 \pm 2.4 \cdot 10^{-7} \) | \(a_{321}= -0.18617628 \pm 1.9 \cdot 10^{-7} \) |
\(a_{322}= -0.64559227 \pm 7.7 \cdot 10^{-8} \) | \(a_{323}= -1.85766107 \pm 2.4 \cdot 10^{-7} \) | \(a_{324}= -0.26696696 \pm 2.2 \cdot 10^{-7} \) |
\(a_{325}= -0.29737276 \pm 1.7 \cdot 10^{-7} \) | \(a_{326}= +2.65135598 \pm 1.9 \cdot 10^{-7} \) | \(a_{327}= -0.11137294 \pm 1.1 \cdot 10^{-7} \) |
\(a_{328}= -0.04100362 \pm 1.8 \cdot 10^{-7} \) | \(a_{329}= +0.09921896 \pm 6.0 \cdot 10^{-8} \) | \(a_{330}= +0.23998337 \pm 6.2 \cdot 10^{-7} \) |
\(a_{331}= -1.41733029 \pm 1.9 \cdot 10^{-7} \) | \(a_{332}= +1.33142052 \pm 1.8 \cdot 10^{-7} \) | \(a_{333}= -0.44934069 \pm 1.0 \cdot 10^{-7} \) |
\(a_{334}= +0.41084958 \pm 1.3 \cdot 10^{-7} \) | \(a_{335}= +0.52721745 \pm 1.6 \cdot 10^{-7} \) | \(a_{336}= -0.36672454 \pm 7.1 \cdot 10^{-8} \) |
\(a_{337}= +0.42591599 \pm 3.4 \cdot 10^{-7} \) | \(a_{338}= +1.80196374 \pm 1.3 \cdot 10^{-7} \) | \(a_{339}= +0.19166163 \pm 2.0 \cdot 10^{-7} \) |
\(a_{340}= -0.61592342 \pm 4.7 \cdot 10^{-7} \) | \(a_{341}= +0.02815784 \pm 1.3 \cdot 10^{-7} \) | \(a_{342}= +1.25615684 \pm 9.8 \cdot 10^{-8} \) |
\(a_{343}= +1.06343572 \pm 1.5 \cdot 10^{-7} \) | \(a_{344}= -0.37267253 \pm 2.5 \cdot 10^{-7} \) | \(a_{345}= +0.18953174 \pm 3.6 \cdot 10^{-7} \) |
\(a_{346}= -1.28529079 \pm 2.8 \cdot 10^{-7} \) | \(a_{347}= +0.53938068 \pm 1.6 \cdot 10^{-7} \) | \(a_{348}= -1.03686293 \pm 6.5 \cdot 10^{-8} \) |
\(a_{349}= -1.77124692 \pm 2.5 \cdot 10^{-7} \) | \(a_{350}= -0.21216881 \pm 3.3 \cdot 10^{-7} \) | \(a_{351}= -1.56873953 \pm 1.1 \cdot 10^{-7} \) |
\(a_{352}= -0.73494109 \pm 1.2 \cdot 10^{-7} \) | \(a_{353}= -0.32934155 \pm 9.9 \cdot 10^{-8} \) | \(a_{354}= +0.06992579 \pm 2.2 \cdot 10^{-7} \) |
\(a_{355}= -0.43474715 \pm 1.3 \cdot 10^{-7} \) | \(a_{356}= -0.85714803 \pm 2.5 \cdot 10^{-7} \) | \(a_{357}= +0.56268030 \pm 8.9 \cdot 10^{-8} \) |
\(a_{358}= -0.07526122 \pm 3.4 \cdot 10^{-7} \) | \(a_{359}= +1.01553944 \pm 1.1 \cdot 10^{-7} \) | \(a_{360}= +0.07369891 \pm 3.4 \cdot 10^{-7} \) |
\(a_{361}= +1.68571443 \pm 1.8 \cdot 10^{-7} \) | \(a_{362}= -2.40098789 \pm 2.7 \cdot 10^{-7} \) | \(a_{363}= +0.50972172 \pm 2.2 \cdot 10^{-7} \) |
\(a_{364}= +1.28769001 \pm 7.1 \cdot 10^{-8} \) | \(a_{365}= +0.14192058 \pm 2.1 \cdot 10^{-7} \) | \(a_{366}= +2.00640409 \pm 1.2 \cdot 10^{-7} \) |
\(a_{367}= +0.67226565 \pm 2.0 \cdot 10^{-7} \) | \(a_{368}= -0.44959514 \pm 8.0 \cdot 10^{-8} \) | \(a_{369}= +0.06599802 \pm 1.0 \cdot 10^{-7} \) |
\(a_{370}= -0.58069744 \pm 5.5 \cdot 10^{-7} \) | \(a_{371}= +0.52478102 \pm 7.7 \cdot 10^{-8} \) | \(a_{372}= -0.04601668 \pm 3.0 \cdot 10^{-7} \) |
\(a_{373}= +0.75456420 \pm 2.8 \cdot 10^{-7} \) | \(a_{374}= +0.87345904 \pm 1.5 \cdot 10^{-7} \) | \(a_{375}= +0.06228811 \pm 2.6 \cdot 10^{-7} \) |
\(a_{376}= -0.04453981 \pm 1.5 \cdot 10^{-7} \) | \(a_{377}= -1.82203710 \pm 8.4 \cdot 10^{-8} \) | \(a_{378}= -1.11926053 \pm 6.8 \cdot 10^{-8} \) |
\(a_{379}= -0.29079086 \pm 1.9 \cdot 10^{-7} \) | \(a_{380}= +0.89047160 \pm 4.5 \cdot 10^{-7} \) | \(a_{381}= -0.49667915 \pm 2.6 \cdot 10^{-7} \) |
\(a_{382}= -0.73339214 \pm 7.6 \cdot 10^{-8} \) | \(a_{383}= +0.19201861 \pm 2.7 \cdot 10^{-7} \) | \(a_{384}= +0.43536518 \pm 1.9 \cdot 10^{-7} \) |
\(a_{385}= +0.16504387 \pm 2.3 \cdot 10^{-7} \) | \(a_{386}= -0.02462157 \pm 1.0 \cdot 10^{-7} \) | \(a_{387}= +0.59984092 \pm 6.6 \cdot 10^{-8} \) |
\(a_{388}= +0.68371287 \pm 1.3 \cdot 10^{-7} \) | \(a_{389}= -1.67612032 \pm 2.8 \cdot 10^{-7} \) | \(a_{390}= -0.68918039 \pm 6.5 \cdot 10^{-7} \) |
\(a_{391}= +0.68983201 \pm 8.0 \cdot 10^{-8} \) | \(a_{392}= -0.15740386 \pm 1.8 \cdot 10^{-7} \) | \(a_{393}= +0.18842931 \pm 2.5 \cdot 10^{-7} \) |
\(a_{394}= +1.02375730 \pm 2.7 \cdot 10^{-7} \) | \(a_{395}= +0.19484984 \pm 3.0 \cdot 10^{-7} \) | \(a_{396}= -0.32398281 \pm 5.4 \cdot 10^{-8} \) |
\(a_{397}= -0.49553302 \pm 2.4 \cdot 10^{-7} \) | \(a_{398}= +0.37329696 \pm 2.8 \cdot 10^{-7} \) | \(a_{399}= -0.81349532 \pm 1.2 \cdot 10^{-7} \) |
\(a_{400}= -0.14775590 \pm 1.1 \cdot 10^{-7} \) | \(a_{401}= -0.55624406 \pm 3.7 \cdot 10^{-7} \) | \(a_{402}= +1.22186014 \pm 1.2 \cdot 10^{-7} \) |
\(a_{403}= -0.08086324 \pm 2.1 \cdot 10^{-7} \) | \(a_{404}= -1.09674727 \pm 1.5 \cdot 10^{-7} \) | \(a_{405}= +0.09826466 \pm 2.7 \cdot 10^{-7} \) |
\(a_{406}= -1.29998267 \pm 5.8 \cdot 10^{-8} \) | \(a_{407}= +0.45171840 \pm 1.0 \cdot 10^{-7} \) | \(a_{408}= -0.25258957 \pm 2.2 \cdot 10^{-7} \) |
\(a_{409}= +1.75545597 \pm 2.5 \cdot 10^{-7} \) | \(a_{410}= +0.08529137 \pm 5.0 \cdot 10^{-7} \) | \(a_{411}= -0.79249415 \pm 3.0 \cdot 10^{-7} \) |
\(a_{412}= +0.55707162 \pm 2.4 \cdot 10^{-7} \) | \(a_{413}= +0.04809010 \pm 1.0 \cdot 10^{-7} \) | \(a_{414}= -0.46646679 \pm 9.2 \cdot 10^{-8} \) |
\(a_{415}= -0.49006658 \pm 2.6 \cdot 10^{-7} \) | \(a_{416}= +2.11059204 \pm 1.7 \cdot 10^{-7} \) | \(a_{417}= +0.35361667 \pm 2.9 \cdot 10^{-7} \) |
\(a_{418}= -1.26280385 \pm 5.9 \cdot 10^{-8} \) | \(a_{419}= -0.53253372 \pm 1.1 \cdot 10^{-7} \) | \(a_{420}= -0.26972133 \pm 5.6 \cdot 10^{-7} \) |
\(a_{421}= -0.32366298 \pm 1.7 \cdot 10^{-7} \) | \(a_{422}= +2.16196490 \pm 1.2 \cdot 10^{-7} \) | \(a_{423}= +0.07168975 \pm 1.3 \cdot 10^{-7} \) |
\(a_{424}= -0.23557642 \pm 2.3 \cdot 10^{-7} \) | \(a_{425}= +0.22670785 \pm 2.6 \cdot 10^{-7} \) | \(a_{426}= -1.00755431 \pm 1.4 \cdot 10^{-7} \) |
\(a_{427}= +1.37986521 \pm 6.6 \cdot 10^{-8} \) | \(a_{428}= +0.32481744 \pm 1.5 \cdot 10^{-7} \) | \(a_{429}= +0.53610613 \pm 7.6 \cdot 10^{-8} \) |
\(a_{430}= +0.77519373 \pm 5.0 \cdot 10^{-7} \) | \(a_{431}= -0.20811873 \pm 2.3 \cdot 10^{-7} \) | \(a_{432}= -0.77946116 \pm 7.1 \cdot 10^{-8} \) |
\(a_{433}= -0.27547056 \pm 2.9 \cdot 10^{-7} \) | \(a_{434}= -0.05769411 \pm 1.1 \cdot 10^{-7} \) | \(a_{435}= +0.38164641 \pm 3.7 \cdot 10^{-7} \) |
\(a_{436}= +0.19430979 \pm 1.3 \cdot 10^{-7} \) | \(a_{437}= -0.99732498 \pm 8.4 \cdot 10^{-8} \) | \(a_{438}= +0.32891001 \pm 1.7 \cdot 10^{-7} \) |
\(a_{439}= -0.65399916 \pm 1.6 \cdot 10^{-7} \) | \(a_{440}= -0.07408889 \pm 3.5 \cdot 10^{-7} \) | \(a_{441}= +0.25335185 \pm 8.8 \cdot 10^{-8} \) |
\(a_{442}= -2.50838567 \pm 2.1 \cdot 10^{-7} \) | \(a_{443}= -1.56074727 \pm 2.1 \cdot 10^{-7} \) | \(a_{444}= -0.73821638 \pm 2.3 \cdot 10^{-7} \) |
\(a_{445}= +0.31549732 \pm 3.0 \cdot 10^{-7} \) | \(a_{446}= +0.79411699 \pm 2.5 \cdot 10^{-7} \) | \(a_{447}= -0.68029812 \pm 1.1 \cdot 10^{-7} \) |
\(a_{448}= +0.97926144 \pm 9.7 \cdot 10^{-8} \) | \(a_{449}= -0.22216390 \pm 2.6 \cdot 10^{-7} \) | \(a_{450}= -0.15330063 \pm 3.6 \cdot 10^{-7} \) |
\(a_{451}= -0.06634725 \pm 1.5 \cdot 10^{-7} \) | \(a_{452}= -0.33438760 \pm 1.7 \cdot 10^{-7} \) | \(a_{453}= +1.22909457 \pm 1.5 \cdot 10^{-7} \) |
\(a_{454}= +0.76013693 \pm 2.1 \cdot 10^{-7} \) | \(a_{455}= -0.47397034 \pm 2.7 \cdot 10^{-7} \) | \(a_{456}= +0.36518150 \pm 2.7 \cdot 10^{-7} \) |
\(a_{457}= +0.38243661 \pm 2.4 \cdot 10^{-7} \) | \(a_{458}= +1.01134884 \pm 2.7 \cdot 10^{-7} \) | \(a_{459}= +1.19595879 \pm 2.0 \cdot 10^{-7} \) |
\(a_{460}= -0.33067163 \pm 3.1 \cdot 10^{-7} \) | \(a_{461}= +1.24905364 \pm 3.3 \cdot 10^{-7} \) | \(a_{462}= +0.38249972 \pm 5.1 \cdot 10^{-8} \) |
\(a_{463}= -1.64499199 \pm 1.9 \cdot 10^{-7} \) | \(a_{464}= -0.90531737 \pm 6.0 \cdot 10^{-8} \) | \(a_{465}= +0.01693773 \pm 5.1 \cdot 10^{-7} \) |
\(a_{466}= -0.47195203 \pm 2.3 \cdot 10^{-7} \) | \(a_{467}= +0.38946978 \pm 1.1 \cdot 10^{-7} \) | \(a_{468}= +0.93040865 \pm 5.9 \cdot 10^{-8} \) |
\(a_{469}= +0.84031044 \pm 6.9 \cdot 10^{-8} \) | \(a_{470}= +0.09264698 \pm 3.9 \cdot 10^{-7} \) | \(a_{471}= +1.01218569 \pm 2.3 \cdot 10^{-7} \) |
\(a_{472}= -0.02158785 \pm 1.7 \cdot 10^{-7} \) | \(a_{473}= -0.60301501 \pm 4.3 \cdot 10^{-8} \) | \(a_{474}= +0.45157697 \pm 2.2 \cdot 10^{-7} \) |
\(a_{475}= -0.32776299 \pm 2.5 \cdot 10^{-7} \) | \(a_{476}= -0.98169528 \pm 6.9 \cdot 10^{-8} \) | \(a_{477}= +0.37917573 \pm 1.0 \cdot 10^{-7} \) |
\(a_{478}= -0.06936750 \pm 2.0 \cdot 10^{-7} \) | \(a_{479}= +0.88771799 \pm 2.1 \cdot 10^{-7} \) | \(a_{480}= -0.44208753 \pm 5.1 \cdot 10^{-7} \) |
\(a_{481}= -1.29723766 \pm 1.1 \cdot 10^{-7} \) | \(a_{482}= -1.81633372 \pm 1.6 \cdot 10^{-7} \) | \(a_{483}= +0.30208692 \pm 8.2 \cdot 10^{-8} \) |
\(a_{484}= -0.88929968 \pm 1.6 \cdot 10^{-7} \) | \(a_{485}= -0.25165965 \pm 2.0 \cdot 10^{-7} \) | \(a_{486}= -1.34250599 \pm 1.1 \cdot 10^{-7} \) |
\(a_{487}= +0.84488346 \pm 3.1 \cdot 10^{-7} \) | \(a_{488}= -0.61942733 \pm 1.3 \cdot 10^{-7} \) | \(a_{489}= -1.24062820 \pm 1.8 \cdot 10^{-7} \) |
\(a_{490}= +0.32741475 \pm 4.5 \cdot 10^{-7} \) | \(a_{491}= -0.09219779 \pm 1.6 \cdot 10^{-7} \) | \(a_{492}= +0.10842735 \pm 3.0 \cdot 10^{-7} \) |
\(a_{493}= +1.38906507 \pm 1.1 \cdot 10^{-7} \) | \(a_{494}= +3.62649985 \pm 8.2 \cdot 10^{-8} \) | \(a_{495}= +0.11925094 \pm 2.6 \cdot 10^{-7} \) |
\(a_{496}= -0.04017860 \pm 1.3 \cdot 10^{-7} \) | \(a_{497}= -0.69292579 \pm 9.2 \cdot 10^{-8} \) | \(a_{498}= -1.13576063 \pm 2.0 \cdot 10^{-7} \) |
\(a_{499}= -1.07067226 \pm 2.9 \cdot 10^{-7} \) | \(a_{500}= -0.10867262 \pm 2.1 \cdot 10^{-7} \) | \(a_{501}= -0.19224562 \pm 2.2 \cdot 10^{-7} \) |
\(a_{502}= +2.07804358 \pm 2.2 \cdot 10^{-7} \) | \(a_{503}= +0.71909041 \pm 3.0 \cdot 10^{-7} \) | \(a_{504}= +0.11746570 \pm 7.3 \cdot 10^{-8} \) |
\(a_{505}= +0.40368852 \pm 2.1 \cdot 10^{-7} \) | \(a_{506}= +0.46893512 \pm 9.8 \cdot 10^{-8} \) | \(a_{507}= -0.84317875 \pm 2.0 \cdot 10^{-7} \) |
\(a_{508}= +0.86654461 \pm 1.7 \cdot 10^{-7} \) | \(a_{509}= -1.61205775 \pm 1.7 \cdot 10^{-7} \) | \(a_{510}= +0.52540994 \pm 7.5 \cdot 10^{-7} \) |
\(a_{511}= +0.22620143 \pm 7.6 \cdot 10^{-8} \) | \(a_{512}= +1.28508435 \pm 1.6 \cdot 10^{-7} \) | \(a_{513}= -1.72905802 \pm 1.9 \cdot 10^{-7} \) |
\(a_{514}= -1.96815976 \pm 2.7 \cdot 10^{-7} \) | \(a_{515}= -0.20504580 \pm 2.0 \cdot 10^{-7} \) | \(a_{516}= +0.98547138 \pm 1.9 \cdot 10^{-7} \) |
\(a_{517}= -0.07206910 \pm 1.6 \cdot 10^{-7} \) | \(a_{518}= -0.92555002 \pm 8.5 \cdot 10^{-8} \) | \(a_{519}= +0.60141603 \pm 2.3 \cdot 10^{-7} \) |
\(a_{520}= +0.21276729 \pm 3.9 \cdot 10^{-7} \) | \(a_{521}= +1.06814825 \pm 2.2 \cdot 10^{-7} \) | \(a_{522}= -0.93929060 \pm 8.8 \cdot 10^{-8} \) |
\(a_{523}= +0.70059616 \pm 3.2 \cdot 10^{-7} \) | \(a_{524}= -0.32874826 \pm 2.5 \cdot 10^{-7} \) | \(a_{525}= +0.09927848 \pm 3.5 \cdot 10^{-7} \) |
\(a_{526}= +1.00596663 \pm 3.1 \cdot 10^{-7} \) | \(a_{527}= +0.06164765 \pm 2.6 \cdot 10^{-7} \) | \(a_{528}= +0.26637558 \pm 5.8 \cdot 10^{-8} \) |
\(a_{529}= -0.62964896 \pm 2.1 \cdot 10^{-7} \) | \(a_{530}= +0.49002100 \pm 4.8 \cdot 10^{-7} \) | \(a_{531}= +0.03474706 \pm 1.1 \cdot 10^{-7} \) |
\(a_{532}= +1.41928644 \pm 6.2 \cdot 10^{-8} \) | \(a_{533}= +0.19053497 \pm 2.2 \cdot 10^{-7} \) | \(a_{534}= +0.73118520 \pm 2.9 \cdot 10^{-7} \) |
\(a_{535}= -0.11955815 \pm 2.0 \cdot 10^{-7} \) | \(a_{536}= -0.37721891 \pm 1.5 \cdot 10^{-7} \) | \(a_{537}= +0.03521639 \pm 2.5 \cdot 10^{-7} \) |
\(a_{538}= -2.40387149 \pm 2.1 \cdot 10^{-7} \) | \(a_{539}= -0.25469247 \pm 1.0 \cdot 10^{-7} \) | \(a_{540}= -0.57328398 \pm 4.0 \cdot 10^{-7} \) |
\(a_{541}= +0.11195416 \pm 2.1 \cdot 10^{-7} \) | \(a_{542}= -2.15621478 \pm 1.8 \cdot 10^{-7} \) | \(a_{543}= +1.12347542 \pm 2.6 \cdot 10^{-7} \) |
\(a_{544}= -1.60905049 \pm 2.6 \cdot 10^{-7} \) | \(a_{545}= -0.07152115 \pm 1.3 \cdot 10^{-7} \) | \(a_{546}= -1.09845657 \pm 7.3 \cdot 10^{-8} \) |
\(a_{547}= +0.26239256 \pm 1.7 \cdot 10^{-7} \) | \(a_{548}= +1.38264617 \pm 3.0 \cdot 10^{-7} \) | \(a_{549}= +0.99700899 \pm 8.6 \cdot 10^{-8} \) |
\(a_{550}= +0.15411183 \pm 3.7 \cdot 10^{-7} \) | \(a_{551}= -2.00824152 \pm 1.2 \cdot 10^{-7} \) | \(a_{552}= -0.13560810 \pm 1.0 \cdot 10^{-7} \) |
\(a_{553}= +0.31056324 \pm 1.0 \cdot 10^{-7} \) | \(a_{554}= +1.29745381 \pm 3.2 \cdot 10^{-7} \) | \(a_{555}= +0.27172120 \pm 5.7 \cdot 10^{-7} \) |
\(a_{556}= -0.61694681 \pm 1.7 \cdot 10^{-7} \) | \(a_{557}= +0.87769786 \pm 1.9 \cdot 10^{-7} \) | \(a_{558}= -0.04168635 \pm 7.5 \cdot 10^{-8} \) |
\(a_{559}= +1.73172883 \pm 3.5 \cdot 10^{-8} \) | \(a_{560}= -0.23550211 \pm 2.1 \cdot 10^{-7} \) | \(a_{561}= -0.40871083 \pm 8.4 \cdot 10^{-8} \) |
\(a_{562}= +1.11585304 \pm 1.0 \cdot 10^{-7} \) | \(a_{563}= -0.74537227 \pm 8.6 \cdot 10^{-8} \) | \(a_{564}= +0.11777823 \pm 8.8 \cdot 10^{-8} \) |
\(a_{565}= +0.12308072 \pm 1.8 \cdot 10^{-7} \) | \(a_{566}= +1.30909098 \pm 3.5 \cdot 10^{-7} \) | \(a_{567}= +0.15662004 \pm 9.2 \cdot 10^{-8} \) |
\(a_{568}= +0.31105732 \pm 1.2 \cdot 10^{-7} \) | \(a_{569}= -0.07992005 \pm 1.4 \cdot 10^{-7} \) | \(a_{570}= -0.75961168 \pm 7.3 \cdot 10^{-7} \) |
\(a_{571}= +0.83184888 \pm 2.0 \cdot 10^{-7} \) | \(a_{572}= -0.93533195 \pm 9.3 \cdot 10^{-8} \) | \(a_{573}= +0.34317043 \pm 7.1 \cdot 10^{-8} \) |
\(a_{574}= +0.13594244 \pm 1.3 \cdot 10^{-7} \) | \(a_{575}= +0.12171295 \pm 1.1 \cdot 10^{-7} \) | \(a_{576}= +0.70755640 \pm 1.2 \cdot 10^{-7} \) |
\(a_{577}= +0.14194596 \pm 2.1 \cdot 10^{-7} \) | \(a_{578}= +0.42402957 \pm 9.1 \cdot 10^{-8} \) | \(a_{579}= +0.01152098 \pm 9.5 \cdot 10^{-8} \) |
\(a_{580}= -0.66584966 \pm 3.3 \cdot 10^{-7} \) | \(a_{581}= -0.78109718 \pm 1.0 \cdot 10^{-7} \) | \(a_{582}= -0.58323734 \pm 1.7 \cdot 10^{-7} \) |
\(a_{583}= -0.38118215 \pm 1.1 \cdot 10^{-7} \) | \(a_{584}= -0.10154278 \pm 1.9 \cdot 10^{-7} \) | \(a_{585}= -0.34246294 \pm 2.9 \cdot 10^{-7} \) |
\(a_{586}= -0.43531131 \pm 1.9 \cdot 10^{-7} \) | \(a_{587}= -1.84306651 \pm 2.1 \cdot 10^{-7} \) | \(a_{588}= +0.41622869 \pm 1.8 \cdot 10^{-7} \) |
\(a_{589}= -0.08912712 \pm 1.5 \cdot 10^{-7} \) | \(a_{590}= +0.04490475 \pm 4.4 \cdot 10^{-7} \) | \(a_{591}= -0.47903872 \pm 2.4 \cdot 10^{-7} \) |
\(a_{592}= -0.64455975 \pm 7.7 \cdot 10^{-8} \) | \(a_{593}= -0.50051274 \pm 2.8 \cdot 10^{-7} \) | \(a_{594}= +0.81299080 \pm 9.5 \cdot 10^{-8} \) |
\(a_{595}= +0.36134042 \pm 3.6 \cdot 10^{-7} \) | \(a_{596}= +1.18690036 \pm 6.9 \cdot 10^{-8} \) | \(a_{597}= -0.17467392 \pm 3.4 \cdot 10^{-7} \) |
\(a_{598}= -1.34668037 \pm 1.0 \cdot 10^{-7} \) | \(a_{599}= -0.88059324 \pm 2.9 \cdot 10^{-7} \) | \(a_{600}= -0.04456653 \pm 4.7 \cdot 10^{-7} \) |
\(a_{601}= +0.49790304 \pm 2.9 \cdot 10^{-7} \) | \(a_{602}= +1.23554975 \pm 5.1 \cdot 10^{-8} \) | \(a_{603}= +0.60715862 \pm 7.1 \cdot 10^{-8} \) |
\(a_{604}= -2.14437281 \pm 1.6 \cdot 10^{-7} \) | \(a_{605}= +0.32733163 \pm 2.1 \cdot 10^{-7} \) | \(a_{606}= +0.93557396 \pm 1.8 \cdot 10^{-7} \) |
\(a_{607}= -0.24650567 \pm 1.6 \cdot 10^{-7} \) | \(a_{608}= +2.32628555 \pm 2.3 \cdot 10^{-7} \) | \(a_{609}= +0.60829069 \pm 8.7 \cdot 10^{-8} \) |
\(a_{610}= +1.28846682 \pm 3.8 \cdot 10^{-7} \) | \(a_{611}= +0.20696690 \pm 1.9 \cdot 10^{-7} \) | \(a_{612}= -0.70931495 \pm 5.7 \cdot 10^{-8} \) |
\(a_{613}= -0.72667695 \pm 2.6 \cdot 10^{-7} \) | \(a_{614}= +0.99930351 \pm 1.5 \cdot 10^{-7} \) | \(a_{615}= -0.03990972 \pm 5.2 \cdot 10^{-7} \) |
\(a_{616}= -0.11808727 \pm 4.7 \cdot 10^{-8} \) | \(a_{617}= -0.09306599 \pm 3.3 \cdot 10^{-7} \) | \(a_{618}= -0.47520675 \pm 2.9 \cdot 10^{-7} \) |
\(a_{619}= -0.73904623 \pm 3.4 \cdot 10^{-7} \) | \(a_{620}= -0.02955086 \pm 4.6 \cdot 10^{-7} \) | \(a_{621}= +0.64207599 \pm 6.5 \cdot 10^{-8} \) |
\(a_{622}= +1.87703304 \pm 2.1 \cdot 10^{-7} \) | \(a_{623}= +0.50285834 \pm 1.0 \cdot 10^{-7} \) | \(a_{624}= -0.76497313 \pm 7.9 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -2.21689690 \pm 2.0 \cdot 10^{-7} \) | \(a_{627}= +0.59089389 \pm 7.3 \cdot 10^{-8} \) |
\(a_{628}= -1.76593691 \pm 1.5 \cdot 10^{-7} \) | \(a_{629}= +0.98897411 \pm 3.2 \cdot 10^{-7} \) | \(a_{630}= -0.24433964 \pm 4.6 \cdot 10^{-7} \) |
\(a_{631}= -0.84373499 \pm 2.7 \cdot 10^{-7} \) | \(a_{632}= -0.13941315 \pm 2.8 \cdot 10^{-7} \) | \(a_{633}= -1.01163127 \pm 9.0 \cdot 10^{-8} \) |
\(a_{634}= +0.49900701 \pm 2.3 \cdot 10^{-7} \) | \(a_{635}= -0.31895599 \pm 2.8 \cdot 10^{-7} \) | \(a_{636}= +0.62294321 \pm 1.9 \cdot 10^{-7} \) |
\(a_{637}= +0.73142176 \pm 1.4 \cdot 10^{-7} \) | \(a_{638}= +0.94426090 \pm 6.5 \cdot 10^{-8} \) | \(a_{639}= -0.50066719 \pm 1.2 \cdot 10^{-7} \) |
\(a_{640}= +0.27958156 \pm 1.8 \cdot 10^{-7} \) | \(a_{641}= +1.52111684 \pm 1.8 \cdot 10^{-7} \) | \(a_{642}= -0.27708365 \pm 2.1 \cdot 10^{-7} \) |
\(a_{643}= +0.10034303 \pm 1.4 \cdot 10^{-7} \) | \(a_{644}= -0.52704406 \pm 4.9 \cdot 10^{-8} \) | \(a_{645}= -0.36273032 \pm 5.2 \cdot 10^{-7} \) |
\(a_{646}= -2.76473199 \pm 1.6 \cdot 10^{-7} \) | \(a_{647}= +0.73069869 \pm 2.9 \cdot 10^{-7} \) | \(a_{648}= -0.07030740 \pm 2.3 \cdot 10^{-7} \) |
\(a_{649}= -0.03493093 \pm 7.7 \cdot 10^{-8} \) | \(a_{650}= -0.44257588 \pm 4.0 \cdot 10^{-7} \) | \(a_{651}= +0.02699635 \pm 1.0 \cdot 10^{-7} \) |
\(a_{652}= +2.16449527 \pm 1.5 \cdot 10^{-7} \) | \(a_{653}= -1.06861167 \pm 1.6 \cdot 10^{-7} \) | \(a_{654}= -0.16575485 \pm 1.5 \cdot 10^{-7} \) |
\(a_{655}= +0.12100500 \pm 2.4 \cdot 10^{-7} \) | \(a_{656}= +0.09467130 \pm 1.4 \cdot 10^{-7} \) | \(a_{657}= +0.16343978 \pm 7.8 \cdot 10^{-8} \) |
\(a_{658}= +0.14766625 \pm 4.9 \cdot 10^{-8} \) | \(a_{659}= -0.60979266 \pm 3.2 \cdot 10^{-7} \) | \(a_{660}= +0.19591593 \pm 5.9 \cdot 10^{-7} \) |
\(a_{661}= +1.05598537 \pm 2.2 \cdot 10^{-7} \) | \(a_{662}= -2.10939361 \pm 2.3 \cdot 10^{-7} \) | \(a_{663}= +1.17372922 \pm 1.3 \cdot 10^{-7} \) |
\(a_{664}= +0.35063783 \pm 2.4 \cdot 10^{-7} \) | \(a_{665}= -0.52240809 \pm 3.4 \cdot 10^{-7} \) | \(a_{666}= -0.66874771 \pm 8.9 \cdot 10^{-8} \) |
\(a_{667}= +0.74574922 \pm 8.1 \cdot 10^{-8} \) | \(a_{668}= +0.33540648 \pm 1.2 \cdot 10^{-7} \) | \(a_{669}= -0.37158493 \pm 2.8 \cdot 10^{-7} \) |
\(a_{670}= +0.78465064 \pm 3.9 \cdot 10^{-7} \) | \(a_{671}= -1.00228471 \pm 7.1 \cdot 10^{-8} \) | \(a_{672}= -0.70462533 \pm 8.3 \cdot 10^{-8} \) |
\(a_{673}= +0.55110243 \pm 2.0 \cdot 10^{-7} \) | \(a_{674}= +0.63388504 \pm 2.2 \cdot 10^{-7} \) | \(a_{675}= +0.21101321 \pm 2.0 \cdot 10^{-7} \) |
\(a_{676}= +1.47107443 \pm 1.2 \cdot 10^{-7} \) | \(a_{677}= -1.33730737 \pm 2.3 \cdot 10^{-7} \) | \(a_{678}= +0.28524743 \pm 2.3 \cdot 10^{-7} \) |
\(a_{679}= -0.40111008 \pm 9.4 \cdot 10^{-8} \) | \(a_{680}= -0.16220724 \pm 4.8 \cdot 10^{-7} \) | \(a_{681}= -0.35568491 \pm 1.9 \cdot 10^{-7} \) |
\(a_{682}= +0.04190694 \pm 1.7 \cdot 10^{-7} \) | \(a_{683}= +0.40325826 \pm 3.2 \cdot 10^{-7} \) | \(a_{684}= +1.02549244 \pm 4.5 \cdot 10^{-8} \) |
\(a_{685}= -0.50892161 \pm 2.9 \cdot 10^{-7} \) | \(a_{686}= +1.58269709 \pm 1.5 \cdot 10^{-7} \) | \(a_{687}= -0.47323252 \pm 3.8 \cdot 10^{-7} \) |
\(a_{688}= +0.86044581 \pm 2.9 \cdot 10^{-8} \) | \(a_{689}= +1.09467280 \pm 1.3 \cdot 10^{-7} \) | \(a_{690}= +0.28207754 \pm 5.9 \cdot 10^{-7} \) |
\(a_{691}= +0.64477788 \pm 1.6 \cdot 10^{-7} \) | \(a_{692}= -1.04927662 \pm 2.4 \cdot 10^{-7} \) | \(a_{693}= +0.19006922 \pm 6.1 \cdot 10^{-8} \) |
\(a_{694}= +0.80275302 \pm 1.3 \cdot 10^{-7} \) | \(a_{695}= +0.22708454 \pm 2.8 \cdot 10^{-7} \) | \(a_{696}= -0.27306427 \pm 1.3 \cdot 10^{-7} \) |
\(a_{697}= -0.14525801 \pm 2.7 \cdot 10^{-7} \) | \(a_{698}= -2.63612297 \pm 3.0 \cdot 10^{-7} \) | \(a_{699}= +0.22083681 \pm 3.4 \cdot 10^{-7} \) |
\(a_{700}= -0.17320887 \pm 3.0 \cdot 10^{-7} \) | \(a_{701}= +0.44022470 \pm 1.3 \cdot 10^{-7} \) | \(a_{702}= -2.33473395 \pm 1.6 \cdot 10^{-7} \) |
\(a_{703}= -1.42980981 \pm 3.6 \cdot 10^{-7} \) | \(a_{704}= -0.71130047 \pm 1.4 \cdot 10^{-7} \) | \(a_{705}= -0.04335157 \pm 4.1 \cdot 10^{-7} \) |
\(a_{706}= -0.49015460 \pm 8.6 \cdot 10^{-8} \) | \(a_{707}= +0.64342271 \pm 8.6 \cdot 10^{-8} \) | \(a_{708}= +0.05708553 \pm 1.7 \cdot 10^{-7} \) |
\(a_{709}= -1.90433825 \pm 2.9 \cdot 10^{-7} \) | \(a_{710}= -0.64702833 \pm 3.6 \cdot 10^{-7} \) | \(a_{711}= +0.22439463 \pm 1.4 \cdot 10^{-7} \) |
\(a_{712}= -0.22573524 \pm 2.6 \cdot 10^{-7} \) | \(a_{713}= +0.03309685 \pm 1.1 \cdot 10^{-7} \) | \(a_{714}= +0.83742952 \pm 8.8 \cdot 10^{-8} \) |
\(a_{715}= +0.34427510 \pm 3.0 \cdot 10^{-7} \) | \(a_{716}= -0.06144122 \pm 3.0 \cdot 10^{-7} \) | \(a_{717}= +0.03245859 \pm 1.9 \cdot 10^{-7} \) |
\(a_{718}= +1.51141369 \pm 1.3 \cdot 10^{-7} \) | \(a_{719}= +1.37249974 \pm 9.5 \cdot 10^{-8} \) | \(a_{720}= -0.17015990 \pm 2.3 \cdot 10^{-7} \) |
\(a_{721}= -0.32681415 \pm 7.9 \cdot 10^{-8} \) | \(a_{722}= +2.50882611 \pm 1.9 \cdot 10^{-7} \) | \(a_{723}= +0.84990279 \pm 1.4 \cdot 10^{-7} \) |
\(a_{724}= -1.96010153 \pm 2.3 \cdot 10^{-7} \) | \(a_{725}= +0.24508460 \pm 1.2 \cdot 10^{-7} \) | \(a_{726}= +0.75861199 \pm 1.9 \cdot 10^{-7} \) |
\(a_{727}= -0.06132489 \pm 2.6 \cdot 10^{-7} \) | \(a_{728}= +0.33912113 \pm 5.4 \cdot 10^{-8} \) | \(a_{729}= +0.84791475 \pm 1.9 \cdot 10^{-7} \) |
\(a_{730}= +0.21121849 \pm 4.5 \cdot 10^{-7} \) | \(a_{731}= -1.32021682 \pm 2.7 \cdot 10^{-7} \) | \(a_{732}= +1.63797400 \pm 1.0 \cdot 10^{-7} \) |
\(a_{733}= -0.01839427 \pm 1.7 \cdot 10^{-7} \) | \(a_{734}= +1.00052392 \pm 3.1 \cdot 10^{-7} \) | \(a_{735}= -0.15320462 \pm 4.7 \cdot 10^{-7} \) |
\(a_{736}= -0.86385308 \pm 1.0 \cdot 10^{-7} \) | \(a_{737}= -0.61037143 \pm 5.2 \cdot 10^{-8} \) | \(a_{738}= +0.09822397 \pm 1.0 \cdot 10^{-7} \) |
\(a_{739}= +0.18944703 \pm 2.0 \cdot 10^{-7} \) | \(a_{740}= -0.47406568 \pm 5.2 \cdot 10^{-7} \) | \(a_{741}= -1.69691961 \pm 8.9 \cdot 10^{-8} \) |
\(a_{742}= +0.78102453 \pm 6.5 \cdot 10^{-8} \) | \(a_{743}= +0.02032251 \pm 3.3 \cdot 10^{-7} \) | \(a_{744}= -0.01211878 \pm 1.6 \cdot 10^{-7} \) |
\(a_{745}= -0.43687189 \pm 1.0 \cdot 10^{-7} \) | \(a_{746}= +1.12300776 \pm 3.4 \cdot 10^{-7} \) | \(a_{747}= -0.56437463 \pm 1.0 \cdot 10^{-7} \) |
\(a_{748}= +0.71306832 \pm 1.0 \cdot 10^{-7} \) | \(a_{749}= -0.19055887 \pm 1.1 \cdot 10^{-7} \) | \(a_{750}= +0.09270256 \pm 4.9 \cdot 10^{-7} \) |
\(a_{751}= -0.22108263 \pm 2.2 \cdot 10^{-7} \) | \(a_{752}= +0.10283585 \pm 8.0 \cdot 10^{-8} \) | \(a_{753}= -0.97236262 \pm 3.7 \cdot 10^{-7} \) |
\(a_{754}= -2.71171331 \pm 7.4 \cdot 10^{-8} \) | \(a_{755}= +0.78929642 \pm 1.6 \cdot 10^{-7} \) | \(a_{756}= -0.91373401 \pm 6.8 \cdot 10^{-8} \) |
\(a_{757}= +1.45655956 \pm 1.8 \cdot 10^{-7} \) | \(a_{758}= -0.43278012 \pm 1.9 \cdot 10^{-7} \) | \(a_{759}= -0.21942513 \pm 7.4 \cdot 10^{-8} \) |
\(a_{760}= +0.23451120 \pm 4.6 \cdot 10^{-7} \) | \(a_{761}= +0.93852341 \pm 2.3 \cdot 10^{-7} \) | \(a_{762}= -0.73920090 \pm 2.0 \cdot 10^{-7} \) |
\(a_{763}= -0.11399466 \pm 5.7 \cdot 10^{-8} \) | \(a_{764}= -0.59872149 \pm 5.9 \cdot 10^{-8} \) | \(a_{765}= +0.26108322 \pm 3.9 \cdot 10^{-7} \) |
\(a_{766}= +0.28577872 \pm 2.6 \cdot 10^{-7} \) | \(a_{767}= +0.10031407 \pm 1.1 \cdot 10^{-7} \) | \(a_{768}= -0.30879164 \pm 1.9 \cdot 10^{-7} \) |
\(a_{769}= +0.35923649 \pm 1.7 \cdot 10^{-7} \) | \(a_{770}= +0.24563257 \pm 4.6 \cdot 10^{-7} \) | \(a_{771}= +0.92094555 \pm 1.8 \cdot 10^{-7} \) |
\(a_{772}= -0.02010039 \pm 6.7 \cdot 10^{-8} \) | \(a_{773}= -1.45780993 \pm 1.3 \cdot 10^{-7} \) | \(a_{774}= +0.89273517 \pm 4.2 \cdot 10^{-8} \) |
\(a_{775}= +0.01087702 \pm 2.5 \cdot 10^{-7} \) | \(a_{776}= +0.18006002 \pm 1.8 \cdot 10^{-7} \) | \(a_{777}= +0.43308536 \pm 1.0 \cdot 10^{-7} \) |
\(a_{778}= -2.49454734 \pm 1.9 \cdot 10^{-7} \) | \(a_{779}= +0.21000683 \pm 1.7 \cdot 10^{-7} \) | \(a_{780}= -0.56262822 \pm 6.2 \cdot 10^{-7} \) |
\(a_{781}= +0.50331650 \pm 9.2 \cdot 10^{-8} \) | \(a_{782}= +1.02666771 \pm 1.0 \cdot 10^{-7} \) | \(a_{783}= +1.29290221 \pm 7.8 \cdot 10^{-8} \) |
\(a_{784}= +0.36342225 \pm 7.6 \cdot 10^{-8} \) | \(a_{785}= +0.65000250 \pm 2.3 \cdot 10^{-7} \) | \(a_{786}= +0.28043681 \pm 2.9 \cdot 10^{-7} \) |
\(a_{787}= -1.58301079 \pm 1.5 \cdot 10^{-7} \) | \(a_{788}= +0.83576775 \pm 2.4 \cdot 10^{-7} \) | \(a_{789}= -0.47071407 \pm 2.7 \cdot 10^{-7} \) |
\(a_{790}= +0.28999240 \pm 5.3 \cdot 10^{-7} \) | \(a_{791}= +0.19617334 \pm 8.8 \cdot 10^{-8} \) | \(a_{792}= -0.08532288 \pm 1.1 \cdot 10^{-7} \) |
\(a_{793}= +2.87834517 \pm 8.3 \cdot 10^{-8} \) | \(a_{794}= -0.73749512 \pm 2.9 \cdot 10^{-7} \) | \(a_{795}= -0.22929168 \pm 5.0 \cdot 10^{-7} \) |
\(a_{796}= +0.30474954 \pm 2.5 \cdot 10^{-7} \) | \(a_{797}= -1.93834234 \pm 2.0 \cdot 10^{-7} \) | \(a_{798}= -1.21071415 \pm 1.0 \cdot 10^{-7} \) |
\(a_{799}= -0.15778520 \pm 2.1 \cdot 10^{-7} \) | \(a_{800}= -0.28389850 \pm 2.6 \cdot 10^{-7} \) | \(a_{801}= +0.36333569 \pm 9.8 \cdot 10^{-8} \) |
\(a_{802}= -0.82785055 \pm 3.5 \cdot 10^{-7} \) | \(a_{803}= -0.16430463 \pm 9.0 \cdot 10^{-8} \) | \(a_{804}= +0.99749355 \pm 1.1 \cdot 10^{-7} \) |
\(a_{805}= +0.19399331 \pm 2.0 \cdot 10^{-7} \) | \(a_{806}= -0.12034767 \pm 3.0 \cdot 10^{-7} \) | \(a_{807}= +1.12482472 \pm 2.4 \cdot 10^{-7} \) |
\(a_{808}= -0.28883518 \pm 1.8 \cdot 10^{-7} \) | \(a_{809}= +0.42853213 \pm 1.9 \cdot 10^{-7} \) | \(a_{810}= +0.14624597 \pm 5.0 \cdot 10^{-7} \) |
\(a_{811}= -0.97015490 \pm 1.5 \cdot 10^{-7} \) | \(a_{812}= -1.06127067 \pm 3.3 \cdot 10^{-8} \) | \(a_{813}= +1.00894066 \pm 1.8 \cdot 10^{-7} \) |
\(a_{814}= +0.67228642 \pm 1.1 \cdot 10^{-7} \) | \(a_{815}= -0.79670305 \pm 2.1 \cdot 10^{-7} \) | \(a_{816}= +0.58319200 \pm 9.1 \cdot 10^{-8} \) |
\(a_{817}= +1.90870413 \pm 3.2 \cdot 10^{-7} \) | \(a_{818}= +2.61262152 \pm 2.7 \cdot 10^{-7} \) | \(a_{819}= -0.54583774 \pm 6.1 \cdot 10^{-8} \) |
\(a_{820}= +0.06962956 \pm 4.7 \cdot 10^{-7} \) | \(a_{821}= -1.39092273 \pm 1.6 \cdot 10^{-7} \) | \(a_{822}= -1.17945838 \pm 3.6 \cdot 10^{-7} \) |
\(a_{823}= -1.42831266 \pm 2.7 \cdot 10^{-7} \) | \(a_{824}= +0.14670826 \pm 1.1 \cdot 10^{-7} \) | \(a_{825}= -0.07211234 \pm 3.9 \cdot 10^{-7} \) |
\(a_{826}= +0.07157185 \pm 1.0 \cdot 10^{-7} \) | \(a_{827}= -1.40719409 \pm 1.7 \cdot 10^{-7} \) | \(a_{828}= -0.38081086 \pm 3.9 \cdot 10^{-8} \) |
\(a_{829}= -0.28740884 \pm 3.5 \cdot 10^{-7} \) | \(a_{830}= -0.72935950 \pm 4.9 \cdot 10^{-7} \) | \(a_{831}= -0.60710738 \pm 2.3 \cdot 10^{-7} \) |
\(a_{832}= +2.04270128 \pm 2.0 \cdot 10^{-7} \) | \(a_{833}= -0.55761346 \pm 2.3 \cdot 10^{-7} \) | \(a_{834}= +0.52628293 \pm 2.0 \cdot 10^{-7} \) |
\(a_{835}= -0.12345574 \pm 2.0 \cdot 10^{-7} \) | \(a_{836}= -1.03091889 \pm 4.3 \cdot 10^{-8} \) | \(a_{837}= +0.05737987 \pm 2.2 \cdot 10^{-7} \) |
\(a_{838}= -0.79256277 \pm 1.0 \cdot 10^{-7} \) | \(a_{839}= -0.41930474 \pm 1.3 \cdot 10^{-7} \) | \(a_{840}= -0.07103278 \pm 5.7 \cdot 10^{-7} \) |
\(a_{841}= +0.50166152 \pm 2.0 \cdot 10^{-7} \) | \(a_{842}= -0.48170327 \pm 1.3 \cdot 10^{-7} \) | \(a_{843}= -0.52213236 \pm 9.6 \cdot 10^{-8} \) |
\(a_{844}= +1.76496964 \pm 8.1 \cdot 10^{-8} \) | \(a_{845}= -0.54147011 \pm 2.0 \cdot 10^{-7} \) | \(a_{846}= +0.10669490 \pm 1.0 \cdot 10^{-7} \) |
\(a_{847}= +0.52172057 \pm 7.7 \cdot 10^{-8} \) | \(a_{848}= +0.54391115 \pm 6.9 \cdot 10^{-8} \) | \(a_{849}= -0.61255267 \pm 2.7 \cdot 10^{-7} \) |
\(a_{850}= +0.33740625 \pm 5.0 \cdot 10^{-7} \) | \(a_{851}= +0.53095185 \pm 8.2 \cdot 10^{-8} \) | \(a_{852}= -0.82254007 \pm 5.3 \cdot 10^{-8} \) |
\(a_{853}= -0.81204628 \pm 2.0 \cdot 10^{-7} \) | \(a_{854}= +2.05363483 \pm 6.9 \cdot 10^{-8} \) | \(a_{855}= -0.37746119 \pm 3.7 \cdot 10^{-7} \) |
\(a_{856}= +0.08554268 \pm 1.7 \cdot 10^{-7} \) | \(a_{857}= +1.28417821 \pm 2.1 \cdot 10^{-7} \) | \(a_{858}= +0.79787955 \pm 9.5 \cdot 10^{-8} \) |
\(a_{859}= +0.88474180 \pm 2.0 \cdot 10^{-7} \) | \(a_{860}= +0.63284718 \pm 4.7 \cdot 10^{-7} \) | \(a_{861}= -0.06361048 \pm 9.5 \cdot 10^{-8} \) |
\(a_{862}= -0.30974031 \pm 1.6 \cdot 10^{-7} \) | \(a_{863}= +1.72773959 \pm 3.2 \cdot 10^{-7} \) | \(a_{864}= -1.49765837 \pm 2.1 \cdot 10^{-7} \) |
\(a_{865}= +0.38621562 \pm 2.3 \cdot 10^{-7} \) | \(a_{866}= -0.40997913 \pm 1.9 \cdot 10^{-7} \) | \(a_{867}= -0.19841283 \pm 6.8 \cdot 10^{-8} \) |
\(a_{868}= -0.04709991 \pm 1.1 \cdot 10^{-7} \) | \(a_{869}= -0.22558202 \pm 1.1 \cdot 10^{-7} \) | \(a_{870}= +0.56799923 \pm 6.1 \cdot 10^{-7} \) |
\(a_{871}= +1.75285490 \pm 5.7 \cdot 10^{-8} \) | \(a_{872}= +0.05117268 \pm 9.1 \cdot 10^{-8} \) | \(a_{873}= -0.28981842 \pm 1.3 \cdot 10^{-7} \) |
\(a_{874}= -1.48430536 \pm 8.1 \cdot 10^{-8} \) | \(a_{875}= +0.06375437 \pm 1.0 \cdot 10^{-7} \) | \(a_{876}= +0.26851323 \pm 1.7 \cdot 10^{-7} \) |
\(a_{877}= -1.60850025 \pm 1.9 \cdot 10^{-7} \) | \(a_{878}= -0.97333816 \pm 2.1 \cdot 10^{-7} \) | \(a_{879}= +0.20369180 \pm 3.3 \cdot 10^{-7} \) |
\(a_{880}= +0.17106031 \pm 2.4 \cdot 10^{-7} \) | \(a_{881}= +0.96208211 \pm 1.7 \cdot 10^{-7} \) | \(a_{882}= +0.37706015 \pm 6.9 \cdot 10^{-8} \) |
\(a_{883}= -0.62895374 \pm 1.8 \cdot 10^{-7} \) | \(a_{884}= -2.04777818 \pm 1.6 \cdot 10^{-7} \) | \(a_{885}= -0.02101193 \pm 4.6 \cdot 10^{-7} \) |
\(a_{886}= -2.32283917 \pm 2.5 \cdot 10^{-7} \) | \(a_{887}= +0.17928692 \pm 3.0 \cdot 10^{-7} \) | \(a_{888}= -0.19441385 \pm 3.1 \cdot 10^{-7} \) |
\(a_{889}= -0.50837098 \pm 1.0 \cdot 10^{-7} \) | \(a_{890}= +0.46955042 \pm 5.4 \cdot 10^{-7} \) | \(a_{891}= -0.11376320 \pm 1.1 \cdot 10^{-7} \) |
\(a_{892}= +0.64829562 \pm 2.2 \cdot 10^{-7} \) | \(a_{893}= +0.22811803 \pm 3.8 \cdot 10^{-8} \) | \(a_{894}= -1.01247854 \pm 1.2 \cdot 10^{-7} \) |
\(a_{895}= +0.02261516 \pm 2.5 \cdot 10^{-7} \) | \(a_{896}= +0.44561368 \pm 7.3 \cdot 10^{-8} \) | \(a_{897}= +0.63014158 \pm 8.1 \cdot 10^{-8} \) |
\(a_{898}= -0.33064355 \pm 2.3 \cdot 10^{-7} \) | \(a_{899}= +0.06664475 \pm 6.9 \cdot 10^{-8} \) | \(a_{900}= -0.12515049 \pm 3.3 \cdot 10^{-7} \) |
\(a_{901}= -0.83454489 \pm 2.6 \cdot 10^{-7} \) | \(a_{902}= -0.09874372 \pm 2.0 \cdot 10^{-7} \) | \(a_{903}= -0.57814110 \pm 8.6 \cdot 10^{-8} \) |
\(a_{904}= -0.08806304 \pm 1.4 \cdot 10^{-7} \) | \(a_{905}= +0.72147022 \pm 2.6 \cdot 10^{-7} \) | \(a_{906}= +1.82924491 \pm 1.9 \cdot 10^{-7} \) |
\(a_{907}= +1.11825161 \pm 3.1 \cdot 10^{-7} \) | \(a_{908}= +0.62055522 \pm 1.7 \cdot 10^{-7} \) | \(a_{909}= +0.46489920 \pm 1.3 \cdot 10^{-7} \) |
\(a_{910}= -0.70540369 \pm 5.0 \cdot 10^{-7} \) | \(a_{911}= +0.76120651 \pm 3.2 \cdot 10^{-7} \) | \(a_{912}= -0.84315012 \pm 1.0 \cdot 10^{-7} \) |
\(a_{913}= +0.56736104 \pm 9.1 \cdot 10^{-8} \) | \(a_{914}= +0.56917526 \pm 2.4 \cdot 10^{-7} \) | \(a_{915}= -0.60290217 \pm 4.0 \cdot 10^{-7} \) |
\(a_{916}= +0.82563782 \pm 2.5 \cdot 10^{-7} \) | \(a_{917}= +0.19286494 \pm 1.0 \cdot 10^{-7} \) | \(a_{918}= +1.77992938 \pm 2.1 \cdot 10^{-7} \) |
\(a_{919}= +0.18833133 \pm 2.2 \cdot 10^{-7} \) | \(a_{920}= -0.08708442 \pm 3.2 \cdot 10^{-7} \) | \(a_{921}= -0.46759625 \pm 2.1 \cdot 10^{-7} \) |
\(a_{922}= +1.85894974 \pm 2.3 \cdot 10^{-7} \) | \(a_{923}= -1.44541624 \pm 1.0 \cdot 10^{-7} \) | \(a_{924}= +0.31226242 \pm 3.5 \cdot 10^{-8} \) |
\(a_{925}= +0.17449314 \pm 3.1 \cdot 10^{-7} \) | \(a_{926}= -2.44821946 \pm 1.7 \cdot 10^{-7} \) | \(a_{927}= -0.23613658 \pm 6.5 \cdot 10^{-8} \) |
\(a_{928}= -1.73947877 \pm 9.5 \cdot 10^{-8} \) | \(a_{929}= -0.13463927 \pm 1.1 \cdot 10^{-7} \) | \(a_{930}= +0.02520819 \pm 7.4 \cdot 10^{-7} \) |
\(a_{931}= +0.80616995 \pm 2.0 \cdot 10^{-7} \) | \(a_{932}= -0.38528887 \pm 2.1 \cdot 10^{-7} \) | \(a_{933}= -0.87830534 \pm 1.8 \cdot 10^{-7} \) |
\(a_{934}= +0.57964264 \pm 1.3 \cdot 10^{-7} \) | \(a_{935}= -0.26246475 \pm 3.9 \cdot 10^{-7} \) | \(a_{936}= +0.24502887 \pm 1.2 \cdot 10^{-7} \) |
\(a_{937}= -1.55852422 \pm 3.7 \cdot 10^{-7} \) | \(a_{938}= +1.25062272 \pm 5.5 \cdot 10^{-8} \) | \(a_{939}= +1.03733517 \pm 2.0 \cdot 10^{-7} \) |
\(a_{940}= +0.07563448 \pm 3.6 \cdot 10^{-7} \) | \(a_{941}= -1.78488269 \pm 2.6 \cdot 10^{-7} \) | \(a_{942}= +1.50642235 \pm 2.1 \cdot 10^{-7} \) |
\(a_{943}= -0.07798486 \pm 1.3 \cdot 10^{-7} \) | \(a_{944}= +0.04984315 \pm 1.0 \cdot 10^{-7} \) | \(a_{945}= +0.33632537 \pm 3.0 \cdot 10^{-7} \) |
\(a_{946}= -0.89745912 \pm 3.4 \cdot 10^{-8} \) | \(a_{947}= +1.38529549 \pm 3.0 \cdot 10^{-7} \) | \(a_{948}= +0.36865522 \pm 2.0 \cdot 10^{-7} \) |
\(a_{949}= +0.47184739 \pm 1.1 \cdot 10^{-7} \) | \(a_{950}= -0.48780525 \pm 4.8 \cdot 10^{-7} \) | \(a_{951}= -0.23349643 \pm 3.7 \cdot 10^{-7} \) |
\(a_{952}= -0.25853553 \pm 7.4 \cdot 10^{-8} \) | \(a_{953}= +0.95973619 \pm 3.3 \cdot 10^{-7} \) | \(a_{954}= +0.56432214 \pm 7.8 \cdot 10^{-8} \) |
\(a_{955}= +0.22037620 \pm 7.5 \cdot 10^{-8} \) | \(a_{956}= -0.05662975 \pm 1.6 \cdot 10^{-7} \) | \(a_{957}= -0.44184059 \pm 7.8 \cdot 10^{-8} \) |
\(a_{958}= +1.32117874 \pm 2.8 \cdot 10^{-7} \) | \(a_{959}= -0.81114945 \pm 1.0 \cdot 10^{-7} \) | \(a_{960}= -0.42786704 \pm 4.9 \cdot 10^{-7} \) |
\(a_{961}= -0.99704226 \pm 3.0 \cdot 10^{-7} \) | \(a_{962}= -1.93066136 \pm 1.2 \cdot 10^{-7} \) | \(a_{963}= -0.13768657 \pm 1.5 \cdot 10^{-7} \) |
\(a_{964}= -1.48280570 \pm 1.4 \cdot 10^{-7} \) | \(a_{965}= +0.00739851 \pm 1.1 \cdot 10^{-7} \) | \(a_{966}= +0.44959191 \pm 7.6 \cdot 10^{-8} \) |
\(a_{967}= -1.60925088 \pm 1.5 \cdot 10^{-7} \) | \(a_{968}= -0.23420257 \pm 1.8 \cdot 10^{-7} \) | \(a_{969}= +1.29367934 \pm 2.7 \cdot 10^{-7} \) |
\(a_{970}= -0.37454168 \pm 4.3 \cdot 10^{-7} \) | \(a_{971}= +1.45786884 \pm 1.8 \cdot 10^{-7} \) | \(a_{972}= -1.09598556 \pm 7.0 \cdot 10^{-8} \) |
\(a_{973}= +0.36194080 \pm 1.1 \cdot 10^{-7} \) | \(a_{974}= +1.25742870 \pm 2.2 \cdot 10^{-7} \) | \(a_{975}= +0.20709106 \pm 4.2 \cdot 10^{-7} \) |
\(a_{976}= +1.43016620 \pm 6.1 \cdot 10^{-8} \) | \(a_{977}= +0.27386948 \pm 1.5 \cdot 10^{-7} \) | \(a_{978}= -1.84641026 \pm 1.8 \cdot 10^{-7} \) |
\(a_{979}= -0.36525830 \pm 1.0 \cdot 10^{-7} \) | \(a_{980}= +0.26729254 \pm 4.2 \cdot 10^{-7} \) | \(a_{981}= -0.08236580 \pm 6.6 \cdot 10^{-8} \) |
\(a_{982}= -0.13721673 \pm 1.2 \cdot 10^{-7} \) | \(a_{983}= -1.42709217 \pm 2.3 \cdot 10^{-7} \) | \(a_{984}= +0.02855501 \pm 1.8 \cdot 10^{-7} \) |
\(a_{985}= -0.30762771 \pm 2.4 \cdot 10^{-7} \) | \(a_{986}= +2.06732686 \pm 8.5 \cdot 10^{-8} \) | \(a_{987}= -0.06909631 \pm 4.7 \cdot 10^{-8} \) |
\(a_{988}= +2.96057633 \pm 5.9 \cdot 10^{-8} \) | \(a_{989}= -0.70878657 \pm 3.9 \cdot 10^{-8} \) | \(a_{990}= +0.17747957 \pm 4.9 \cdot 10^{-7} \) |
\(a_{991}= +0.33092827 \pm 2.3 \cdot 10^{-7} \) | \(a_{992}= -0.07719924 \pm 3.1 \cdot 10^{-7} \) | \(a_{993}= +0.98703200 \pm 1.7 \cdot 10^{-7} \) |
\(a_{994}= -1.03127213 \pm 9.7 \cdot 10^{-8} \) | \(a_{995}= -0.11217160 \pm 3.3 \cdot 10^{-7} \) | \(a_{996}= -0.92720424 \pm 1.9 \cdot 10^{-7} \) |
\(a_{997}= -0.27824431 \pm 3.3 \cdot 10^{-7} \) | \(a_{998}= -1.59346712 \pm 2.5 \cdot 10^{-7} \) | \(a_{999}= +0.92050893 \pm 2.5 \cdot 10^{-7} \) |
\(a_{1000}= -0.02861961 \pm 2.2 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000