Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [100,2,Mod(49,100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("100.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.798504020213\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 20) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 49.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 100.49 |
Dual form | 100.2.c.a.49.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).
\(n\) | \(51\) | \(77\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − 2.00000i | − 1.15470i | −0.816497 | − | 0.577350i | \(-0.804087\pi\) | ||||
0.816497 | − | 0.577350i | \(-0.195913\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 2.00000i | − 0.755929i | −0.925820 | − | 0.377964i | \(-0.876624\pi\) | ||||
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −4.00000 | −0.872872 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.00000i | 1.25109i | 0.780189 | + | 0.625543i | \(0.215123\pi\) | ||||
−0.780189 | + | 0.625543i | \(0.784877\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 4.00000i | − 0.769800i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 2.00000i | − 0.328798i | −0.986394 | − | 0.164399i | \(-0.947432\pi\) | ||||
0.986394 | − | 0.164399i | \(-0.0525685\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 4.00000 | 0.640513 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 10.0000i | − 1.52499i | −0.646997 | − | 0.762493i | \(-0.723975\pi\) | ||||
0.646997 | − | 0.762493i | \(-0.276025\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 6.00000i | 0.875190i | 0.899172 | + | 0.437595i | \(0.144170\pi\) | ||||
−0.899172 | + | 0.437595i | \(0.855830\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 12.0000 | 1.68034 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 6.00000i | − 0.824163i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) | ||||
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 8.00000i | − 1.05963i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −12.0000 | −1.56227 | −0.781133 | − | 0.624364i | \(-0.785358\pi\) | ||||
−0.781133 | + | 0.624364i | \(0.785358\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 2.00000i | 0.251976i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 2.00000i | − 0.244339i | −0.992509 | − | 0.122169i | \(-0.961015\pi\) | ||||
0.992509 | − | 0.122169i | \(-0.0389851\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 12.0000 | 1.44463 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −12.0000 | −1.42414 | −0.712069 | − | 0.702109i | \(-0.752242\pi\) | ||||
−0.712069 | + | 0.702109i | \(0.752242\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −11.0000 | −1.22222 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000i | 0.658586i | 0.944228 | + | 0.329293i | \(0.106810\pi\) | ||||
−0.944228 | + | 0.329293i | \(0.893190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 12.0000i | 1.28654i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 8.00000i | 0.829561i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 6.00000 | 0.597022 | 0.298511 | − | 0.954406i | \(-0.403510\pi\) | ||||
0.298511 | + | 0.954406i | \(0.403510\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 14.0000i | 1.37946i | 0.724066 | + | 0.689730i | \(0.242271\pi\) | ||||
−0.724066 | + | 0.689730i | \(0.757729\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 6.00000i | 0.580042i | 0.957020 | + | 0.290021i | \(0.0936623\pi\) | ||||
−0.957020 | + | 0.290021i | \(0.906338\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −4.00000 | −0.379663 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 6.00000i | − 0.564433i | −0.959351 | − | 0.282216i | \(-0.908930\pi\) | ||||
0.959351 | − | 0.282216i | \(-0.0910696\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 2.00000i | − 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 12.0000 | 1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 12.0000i | − 1.08200i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 2.00000i | − 0.177471i | −0.996055 | − | 0.0887357i | \(-0.971717\pi\) | ||||
0.996055 | − | 0.0887357i | \(-0.0282826\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −20.0000 | −1.76090 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 8.00000i | − 0.693688i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 18.0000i | − 1.53784i | −0.639343 | − | 0.768922i | \(-0.720793\pi\) | ||||
0.639343 | − | 0.768922i | \(-0.279207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.00000 | 0.339276 | 0.169638 | − | 0.985506i | \(-0.445740\pi\) | ||||
0.169638 | + | 0.985506i | \(0.445740\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 12.0000 | 1.01058 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 6.00000i | − 0.494872i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 20.0000 | 1.62758 | 0.813788 | − | 0.581161i | \(-0.197401\pi\) | ||||
0.813788 | + | 0.581161i | \(0.197401\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 22.0000i | 1.75579i | 0.478852 | + | 0.877896i | \(0.341053\pi\) | ||||
−0.478852 | + | 0.877896i | \(0.658947\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −12.0000 | −0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 12.0000 | 0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 10.0000i | − 0.783260i | −0.920123 | − | 0.391630i | \(-0.871911\pi\) | ||||
0.920123 | − | 0.391630i | \(-0.128089\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 18.0000i | − 1.39288i | −0.717614 | − | 0.696441i | \(-0.754766\pi\) | ||||
0.717614 | − | 0.696441i | \(-0.245234\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −4.00000 | −0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 6.00000i | − 0.456172i | −0.973641 | − | 0.228086i | \(-0.926753\pi\) | ||||
0.973641 | − | 0.228086i | \(-0.0732467\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 24.0000i | 1.80395i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.0000 | 0.896922 | 0.448461 | − | 0.893802i | \(-0.351972\pi\) | ||||
0.448461 | + | 0.893802i | \(0.351972\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | − 4.00000i | − 0.295689i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −8.00000 | −0.581914 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 26.0000i | 1.87152i | 0.352636 | + | 0.935760i | \(0.385285\pi\) | ||||
−0.352636 | + | 0.935760i | \(0.614715\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 18.0000i | − 1.28245i | −0.767354 | − | 0.641223i | \(-0.778427\pi\) | ||||
0.767354 | − | 0.641223i | \(-0.221573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −4.00000 | −0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 12.0000i | 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 6.00000i | − 0.417029i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −16.0000 | −1.10149 | −0.550743 | − | 0.834675i | \(-0.685655\pi\) | ||||
−0.550743 | + | 0.834675i | \(0.685655\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 24.0000i | 1.64445i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 8.00000i | 0.543075i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 4.00000 | 0.270295 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 10.0000i | − 0.669650i | −0.942280 | − | 0.334825i | \(-0.891323\pi\) | ||||
0.942280 | − | 0.334825i | \(-0.108677\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 6.00000i | 0.398234i | 0.979976 | + | 0.199117i | \(0.0638074\pi\) | ||||
−0.979976 | + | 0.199117i | \(0.936193\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 6.00000i | − 0.393073i | −0.980497 | − | 0.196537i | \(-0.937031\pi\) | ||||
0.980497 | − | 0.196537i | \(-0.0629694\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 16.0000i | 1.03931i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.0000 | 1.55243 | 0.776215 | − | 0.630468i | \(-0.217137\pi\) | ||||
0.776215 | + | 0.630468i | \(0.217137\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 14.0000 | 0.901819 | 0.450910 | − | 0.892570i | \(-0.351100\pi\) | ||||
0.450910 | + | 0.892570i | \(0.351100\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 10.0000i | 0.641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 8.00000i | 0.509028i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 12.0000 | 0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000i | 0.374270i | 0.982334 | + | 0.187135i | \(0.0599201\pi\) | ||||
−0.982334 | + | 0.187135i | \(0.940080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −4.00000 | −0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 18.0000i | − 1.10993i | −0.831875 | − | 0.554964i | \(-0.812732\pi\) | ||||
0.831875 | − | 0.554964i | \(-0.187268\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 12.0000i | − 0.734388i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −18.0000 | −1.09748 | −0.548740 | − | 0.835993i | \(-0.684892\pi\) | ||||
−0.548740 | + | 0.835993i | \(0.684892\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 20.0000 | 1.21491 | 0.607457 | − | 0.794353i | \(-0.292190\pi\) | ||||
0.607457 | + | 0.794353i | \(0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | − 8.00000i | − 0.484182i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 26.0000i | − 1.56219i | −0.624413 | − | 0.781094i | \(-0.714662\pi\) | ||||
0.624413 | − | 0.781094i | \(-0.285338\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 4.00000 | 0.239474 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6.00000 | 0.357930 | 0.178965 | − | 0.983855i | \(-0.442725\pi\) | ||||
0.178965 | + | 0.983855i | \(0.442725\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 14.0000i | 0.832214i | 0.909316 | + | 0.416107i | \(0.136606\pi\) | ||||
−0.909316 | + | 0.416107i | \(0.863394\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 12.0000i | − 0.708338i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −4.00000 | −0.234484 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 30.0000i | − 1.75262i | −0.481749 | − | 0.876309i | \(-0.659998\pi\) | ||||
0.481749 | − | 0.876309i | \(-0.340002\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −12.0000 | −0.693978 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −20.0000 | −1.15278 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 12.0000i | − 0.689382i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 2.00000i | − 0.114146i | −0.998370 | − | 0.0570730i | \(-0.981823\pi\) | ||||
0.998370 | − | 0.0570730i | \(-0.0181768\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 28.0000 | 1.59286 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 12.0000 | 0.680458 | 0.340229 | − | 0.940343i | \(-0.389495\pi\) | ||||
0.340229 | + | 0.940343i | \(0.389495\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 22.0000i | − 1.24351i | −0.783210 | − | 0.621757i | \(-0.786419\pi\) | ||||
0.783210 | − | 0.621757i | \(-0.213581\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000i | 0.336994i | 0.985702 | + | 0.168497i | \(0.0538913\pi\) | ||||
−0.985702 | + | 0.168497i | \(0.946109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 12.0000 | 0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 24.0000i | 1.33540i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 4.00000i | 0.221201i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 8.00000 | 0.439720 | 0.219860 | − | 0.975531i | \(-0.429440\pi\) | ||||
0.219860 | + | 0.975531i | \(0.429440\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 2.00000i | 0.109599i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 2.00000i | − 0.108947i | −0.998515 | − | 0.0544735i | \(-0.982652\pi\) | ||||
0.998515 | − | 0.0544735i | \(-0.0173480\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −12.0000 | −0.651751 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 20.0000i | − 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 30.0000i | 1.61048i | 0.592946 | + | 0.805242i | \(0.297965\pi\) | ||||
−0.592946 | + | 0.805242i | \(0.702035\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 10.0000 | 0.535288 | 0.267644 | − | 0.963518i | \(-0.413755\pi\) | ||||
0.267644 | + | 0.963518i | \(0.413755\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 8.00000 | 0.427008 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000i | 0.958043i | 0.877803 | + | 0.479022i | \(0.159008\pi\) | ||||
−0.877803 | + | 0.479022i | \(0.840992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 24.0000i | − 1.27021i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 22.0000i | 1.15470i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 22.0000i | 1.14839i | 0.818718 | + | 0.574195i | \(0.194685\pi\) | ||||
−0.818718 | + | 0.574195i | \(0.805315\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −6.00000 | −0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −12.0000 | −0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 26.0000i | 1.34623i | 0.739538 | + | 0.673114i | \(0.235044\pi\) | ||||
−0.739538 | + | 0.673114i | \(0.764956\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 12.0000i | − 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 28.0000 | 1.43826 | 0.719132 | − | 0.694874i | \(-0.244540\pi\) | ||||
0.719132 | + | 0.694874i | \(0.244540\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −4.00000 | −0.204926 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 6.00000i | 0.306586i | 0.988181 | + | 0.153293i | \(0.0489878\pi\) | ||||
−0.988181 | + | 0.153293i | \(0.951012\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 10.0000i | 0.508329i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −36.0000 | −1.82060 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2.00000i | − 0.100377i | −0.998740 | − | 0.0501886i | \(-0.984018\pi\) | ||||
0.998740 | − | 0.0501886i | \(-0.0159822\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −16.0000 | −0.801002 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.0000 | −1.49813 | −0.749064 | − | 0.662497i | \(-0.769497\pi\) | ||||
−0.749064 | + | 0.662497i | \(0.769497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 8.00000i | − 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 34.0000 | 1.68119 | 0.840596 | − | 0.541663i | \(-0.182205\pi\) | ||||
0.840596 | + | 0.541663i | \(0.182205\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −36.0000 | −1.77575 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 24.0000i | 1.18096i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | − 8.00000i | − 0.391762i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −36.0000 | −1.75872 | −0.879358 | − | 0.476162i | \(-0.842028\pi\) | ||||
−0.879358 | + | 0.476162i | \(0.842028\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 26.0000 | 1.26716 | 0.633581 | − | 0.773676i | \(-0.281584\pi\) | ||||
0.633581 | + | 0.773676i | \(0.281584\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 6.00000i | − 0.291730i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 4.00000i | − 0.193574i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 36.0000 | 1.73406 | 0.867029 | − | 0.498257i | \(-0.166026\pi\) | ||||
0.867029 | + | 0.498257i | \(0.166026\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.00000i | 0.0961139i | 0.998845 | + | 0.0480569i | \(0.0153029\pi\) | ||||
−0.998845 | + | 0.0480569i | \(0.984697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 24.0000i | 1.14808i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −3.00000 | −0.142857 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 6.00000i | 0.285069i | 0.989790 | + | 0.142534i | \(0.0455251\pi\) | ||||
−0.989790 | + | 0.142534i | \(0.954475\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 12.0000i | − 0.567581i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −6.00000 | −0.283158 | −0.141579 | − | 0.989927i | \(-0.545218\pi\) | ||||
−0.141579 | + | 0.989927i | \(0.545218\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 40.0000i | − 1.87936i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 26.0000i | − 1.21623i | −0.793849 | − | 0.608114i | \(-0.791926\pi\) | ||||
0.793849 | − | 0.608114i | \(-0.208074\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 24.0000 | 1.12022 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 30.0000 | 1.39724 | 0.698620 | − | 0.715493i | \(-0.253798\pi\) | ||||
0.698620 | + | 0.715493i | \(0.253798\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 14.0000i | 0.650635i | 0.945605 | + | 0.325318i | \(0.105471\pi\) | ||||
−0.945605 | + | 0.325318i | \(0.894529\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 30.0000i | 1.38823i | 0.719862 | + | 0.694117i | \(0.244205\pi\) | ||||
−0.719862 | + | 0.694117i | \(0.755795\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 44.0000 | 2.02741 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 6.00000i | 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 24.0000 | 1.09659 | 0.548294 | − | 0.836286i | \(-0.315277\pi\) | ||||
0.548294 | + | 0.836286i | \(0.315277\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.00000 | 0.182384 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | − 24.0000i | − 1.09204i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 26.0000i | − 1.17817i | −0.808070 | − | 0.589086i | \(-0.799488\pi\) | ||||
0.808070 | − | 0.589086i | \(-0.200512\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −20.0000 | −0.904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 36.0000i | − 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 24.0000i | 1.07655i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 4.00000 | 0.179065 | 0.0895323 | − | 0.995984i | \(-0.471463\pi\) | ||||
0.0895323 | + | 0.995984i | \(0.471463\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −36.0000 | −1.60836 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 18.0000i | − 0.802580i | −0.915951 | − | 0.401290i | \(-0.868562\pi\) | ||||
0.915951 | − | 0.401290i | \(-0.131438\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 18.0000i | − 0.799408i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 4.00000 | 0.176950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 16.0000i | − 0.706417i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | −12.0000 | −0.526742 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 14.0000i | 0.612177i | 0.952003 | + | 0.306089i | \(0.0990204\pi\) | ||||
−0.952003 | + | 0.306089i | \(0.900980\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 24.0000i | − 1.04546i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 12.0000 | 0.520756 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000i | 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 24.0000i | − 1.03568i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 14.0000 | 0.601907 | 0.300954 | − | 0.953639i | \(-0.402695\pi\) | ||||
0.300954 | + | 0.953639i | \(0.402695\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 20.0000i | 0.858282i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 26.0000i | − 1.11168i | −0.831289 | − | 0.555840i | \(-0.812397\pi\) | ||||
0.831289 | − | 0.555840i | \(-0.187603\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −2.00000 | −0.0853579 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −24.0000 | −1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 16.0000i | 0.680389i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 30.0000i | 1.27114i | 0.772043 | + | 0.635570i | \(0.219235\pi\) | ||||
−0.772043 | + | 0.635570i | \(0.780765\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 20.0000 | 0.845910 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 18.0000i | − 0.758610i | −0.925272 | − | 0.379305i | \(-0.876163\pi\) | ||||
0.925272 | − | 0.379305i | \(-0.123837\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 22.0000i | 0.923913i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −30.0000 | −1.25767 | −0.628833 | − | 0.777541i | \(-0.716467\pi\) | ||||
−0.628833 | + | 0.777541i | \(0.716467\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 8.00000 | 0.334790 | 0.167395 | − | 0.985890i | \(-0.446465\pi\) | ||||
0.167395 | + | 0.985890i | \(0.446465\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 24.0000i | 1.00261i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 22.0000i | 0.915872i | 0.888985 | + | 0.457936i | \(0.151411\pi\) | ||||
−0.888985 | + | 0.457936i | \(0.848589\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 52.0000 | 2.16105 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 12.0000 | 0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 6.00000i | 0.247647i | 0.992304 | + | 0.123823i | \(0.0395156\pi\) | ||||
−0.992304 | + | 0.123823i | \(0.960484\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −16.0000 | −0.659269 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −36.0000 | −1.48084 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 18.0000i | 0.739171i | 0.929197 | + | 0.369586i | \(0.120500\pi\) | ||||
−0.929197 | + | 0.369586i | \(0.879500\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 16.0000i | 0.654836i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −10.0000 | −0.407909 | −0.203954 | − | 0.978980i | \(-0.565379\pi\) | ||||
−0.203954 | + | 0.978980i | \(0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 2.00000i | 0.0814463i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 22.0000i | 0.892952i | 0.894795 | + | 0.446476i | \(0.147321\pi\) | ||||
−0.894795 | + | 0.446476i | \(0.852679\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 24.0000 | 0.972529 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −12.0000 | −0.485468 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000i | 0.0807792i | 0.999184 | + | 0.0403896i | \(0.0128599\pi\) | ||||
−0.999184 | + | 0.0403896i | \(0.987140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000i | 0.241551i | 0.992680 | + | 0.120775i | \(0.0385381\pi\) | ||||
−0.992680 | + | 0.120775i | \(0.961462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 24.0000 | 0.963087 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 12.0000i | − 0.480770i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000 | 0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −28.0000 | −1.11466 | −0.557331 | − | 0.830290i | \(-0.688175\pi\) | ||||
−0.557331 | + | 0.830290i | \(0.688175\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 32.0000i | 1.27189i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 6.00000i | 0.237729i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 12.0000 | 0.474713 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 14.0000i | 0.552106i | 0.961142 | + | 0.276053i | \(0.0890266\pi\) | ||||
−0.961142 | + | 0.276053i | \(0.910973\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 42.0000i | − 1.65119i | −0.564263 | − | 0.825595i | \(-0.690840\pi\) | ||||
0.564263 | − | 0.825595i | \(-0.309160\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 16.0000 | 0.627089 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 42.0000i | 1.64359i | 0.569785 | + | 0.821794i | \(0.307026\pi\) | ||||
−0.569785 | + | 0.821794i | \(0.692974\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −36.0000 | −1.40236 | −0.701180 | − | 0.712984i | \(-0.747343\pi\) | ||||
−0.701180 | + | 0.712984i | \(0.747343\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −22.0000 | −0.855701 | −0.427850 | − | 0.903850i | \(-0.640729\pi\) | ||||
−0.427850 | + | 0.903850i | \(0.640729\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 24.0000i | 0.932083i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 36.0000i | − 1.39393i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −20.0000 | −0.773245 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 46.0000i | − 1.77317i | −0.462566 | − | 0.886585i | \(-0.653071\pi\) | ||||
0.462566 | − | 0.886585i | \(-0.346929\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 18.0000i | − 0.691796i | −0.938272 | − | 0.345898i | \(-0.887574\pi\) | ||||
0.938272 | − | 0.345898i | \(-0.112426\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4.00000 | −0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 12.0000 | 0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 42.0000i | − 1.60709i | −0.595247 | − | 0.803543i | \(-0.702946\pi\) | ||||
0.595247 | − | 0.803543i | \(-0.297054\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 28.0000i | 1.06827i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 8.00000 | 0.304334 | 0.152167 | − | 0.988355i | \(-0.451375\pi\) | ||||
0.152167 | + | 0.988355i | \(0.451375\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000i | 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −12.0000 | −0.453882 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 8.00000i | − 0.301726i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 12.0000i | − 0.451306i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 34.0000 | 1.27690 | 0.638448 | − | 0.769665i | \(-0.279577\pi\) | ||||
0.638448 | + | 0.769665i | \(0.279577\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 8.00000 | 0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 24.0000i | − 0.898807i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 48.0000i | − 1.79259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 24.0000 | 0.895049 | 0.447524 | − | 0.894272i | \(-0.352306\pi\) | ||||
0.447524 | + | 0.894272i | \(0.352306\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 28.0000 | 1.04277 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | − 28.0000i | − 1.04133i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 46.0000i | 1.70605i | 0.521874 | + | 0.853023i | \(0.325233\pi\) | ||||
−0.521874 | + | 0.853023i | \(0.674767\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 60.0000 | 2.21918 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 22.0000i | − 0.812589i | −0.913742 | − | 0.406294i | \(-0.866821\pi\) | ||||
0.913742 | − | 0.406294i | \(-0.133179\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.0000 | −0.735712 | −0.367856 | − | 0.929883i | \(-0.619908\pi\) | ||||
−0.367856 | + | 0.929883i | \(0.619908\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 16.0000 | 0.587775 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 6.00000i | 0.220119i | 0.993925 | + | 0.110059i | \(0.0351041\pi\) | ||||
−0.993925 | + | 0.110059i | \(0.964896\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 6.00000i | − 0.219529i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 12.0000 | 0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −4.00000 | −0.145962 | −0.0729810 | − | 0.997333i | \(-0.523251\pi\) | ||||
−0.0729810 | + | 0.997333i | \(0.523251\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 22.0000i | 0.799604i | 0.916602 | + | 0.399802i | \(0.130921\pi\) | ||||
−0.916602 | + | 0.399802i | \(0.869079\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 42.0000 | 1.52250 | 0.761249 | − | 0.648459i | \(-0.224586\pi\) | ||||
0.761249 | + | 0.648459i | \(0.224586\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 4.00000i | 0.144810i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 24.0000i | − 0.866590i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −2.00000 | −0.0721218 | −0.0360609 | − | 0.999350i | \(-0.511481\pi\) | ||||
−0.0360609 | + | 0.999350i | \(0.511481\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 12.0000 | 0.432169 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 30.0000i | − 1.07903i | −0.841978 | − | 0.539513i | \(-0.818609\pi\) | ||||
0.841978 | − | 0.539513i | \(-0.181391\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 8.00000i | 0.286998i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 24.0000 | 0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 24.0000i | 0.857690i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 26.0000i | − 0.926800i | −0.886149 | − | 0.463400i | \(-0.846629\pi\) | ||||
0.886149 | − | 0.463400i | \(-0.153371\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −36.0000 | −1.28163 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −12.0000 | −0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 4.00000i | 0.142044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 42.0000i | − 1.48772i | −0.668338 | − | 0.743858i | \(-0.732994\pi\) | ||||
0.668338 | − | 0.743858i | \(-0.267006\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −36.0000 | −1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 36.0000i | 1.26726i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 6.00000 | 0.210949 | 0.105474 | − | 0.994422i | \(-0.466364\pi\) | ||||
0.105474 | + | 0.994422i | \(0.466364\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −16.0000 | −0.561836 | −0.280918 | − | 0.959732i | \(-0.590639\pi\) | ||||
−0.280918 | + | 0.959732i | \(0.590639\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 40.0000i | − 1.40286i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 40.0000i | − 1.39942i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −4.00000 | −0.139771 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −54.0000 | −1.88461 | −0.942306 | − | 0.334751i | \(-0.891348\pi\) | ||||
−0.942306 | + | 0.334751i | \(0.891348\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 38.0000i | 1.32460i | 0.749240 | + | 0.662298i | \(0.230419\pi\) | ||||
−0.749240 | + | 0.662298i | \(0.769581\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 30.0000i | 1.04320i | 0.853189 | + | 0.521601i | \(0.174665\pi\) | ||||
−0.853189 | + | 0.521601i | \(0.825335\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −2.00000 | −0.0694629 | −0.0347314 | − | 0.999397i | \(-0.511058\pi\) | ||||
−0.0347314 | + | 0.999397i | \(0.511058\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −52.0000 | −1.80386 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 18.0000i | 0.623663i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 16.0000i | 0.553041i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 48.0000 | 1.65714 | 0.828572 | − | 0.559883i | \(-0.189154\pi\) | ||||
0.828572 | + | 0.559883i | \(0.189154\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 12.0000i | − 0.413302i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 22.0000i | 0.755929i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 28.0000 | 0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 12.0000 | 0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 50.0000i | 1.71197i | 0.517003 | + | 0.855984i | \(0.327048\pi\) | ||||
−0.517003 | + | 0.855984i | \(0.672952\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 18.0000i | − 0.614868i | −0.951569 | − | 0.307434i | \(-0.900530\pi\) | ||||
0.951569 | − | 0.307434i | \(-0.0994704\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 4.00000 | 0.136478 | 0.0682391 | − | 0.997669i | \(-0.478262\pi\) | ||||
0.0682391 | + | 0.997669i | \(0.478262\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −24.0000 | −0.817918 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 6.00000i | 0.204242i | 0.994772 | + | 0.102121i | \(0.0325630\pi\) | ||||
−0.994772 | + | 0.102121i | \(0.967437\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 38.0000i | 1.29055i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 4.00000 | 0.135535 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 2.00000i | 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 26.0000i | − 0.877958i | −0.898497 | − | 0.438979i | \(-0.855340\pi\) | ||||
0.898497 | − | 0.438979i | \(-0.144660\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −60.0000 | −2.02375 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −18.0000 | −0.606435 | −0.303218 | − | 0.952921i | \(-0.598061\pi\) | ||||
−0.303218 | + | 0.952921i | \(0.598061\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 14.0000i | 0.471138i | 0.971858 | + | 0.235569i | \(0.0756953\pi\) | ||||
−0.971858 | + | 0.235569i | \(0.924305\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 18.0000i | − 0.604381i | −0.953248 | − | 0.302190i | \(-0.902282\pi\) | ||||
0.953248 | − | 0.302190i | \(-0.0977178\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −4.00000 | −0.134156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 24.0000i | 0.803129i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 24.0000i | 0.801337i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 40.0000i | 1.33112i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 46.0000i | 1.52740i | 0.645568 | + | 0.763702i | \(0.276621\pi\) | ||||
−0.645568 | + | 0.763702i | \(0.723379\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −6.00000 | −0.199007 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 12.0000 | 0.397578 | 0.198789 | − | 0.980042i | \(-0.436299\pi\) | ||||
0.198789 | + | 0.980042i | \(0.436299\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −4.00000 | −0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 24.0000i | − 0.789970i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 14.0000i | − 0.459820i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 42.0000 | 1.37798 | 0.688988 | − | 0.724773i | \(-0.258055\pi\) | ||||
0.688988 | + | 0.724773i | \(0.258055\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 12.0000 | 0.393284 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | − 24.0000i | − 0.785725i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 22.0000i | 0.718709i | 0.933201 | + | 0.359354i | \(0.117003\pi\) | ||||
−0.933201 | + | 0.359354i | \(0.882997\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −44.0000 | −1.43589 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 36.0000i | 1.17232i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 18.0000i | − 0.584921i | −0.956278 | − | 0.292461i | \(-0.905526\pi\) | ||||
0.956278 | − | 0.292461i | \(-0.0944741\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −4.00000 | −0.129845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 12.0000 | 0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 6.00000i | − 0.194359i | −0.995267 | − | 0.0971795i | \(-0.969018\pi\) | ||||
0.995267 | − | 0.0971795i | \(-0.0309821\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −36.0000 | −1.16250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 6.00000i | − 0.193347i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 22.0000i | 0.707472i | 0.935345 | + | 0.353736i | \(0.115089\pi\) | ||||
−0.935345 | + | 0.353736i | \(0.884911\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 48.0000 | 1.54198 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −24.0000 | −0.770197 | −0.385098 | − | 0.922876i | \(-0.625832\pi\) | ||||
−0.385098 | + | 0.922876i | \(0.625832\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 8.00000i | − 0.256468i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 18.0000i | − 0.575871i | −0.957650 | − | 0.287936i | \(-0.907031\pi\) | ||||
0.957650 | − | 0.287936i | \(-0.0929689\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000 | 0.0638551 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 18.0000i | − 0.574111i | −0.957914 | − | 0.287055i | \(-0.907324\pi\) | ||||
0.957914 | − | 0.287055i | \(-0.0926764\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | − 24.0000i | − 0.763928i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 60.0000 | 1.90789 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −4.00000 | −0.127064 | −0.0635321 | − | 0.997980i | \(-0.520237\pi\) | ||||
−0.0635321 | + | 0.997980i | \(0.520237\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 16.0000i | − 0.507745i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 26.0000i | − 0.823428i | −0.911313 | − | 0.411714i | \(-0.864930\pi\) | ||||
0.911313 | − | 0.411714i | \(-0.135070\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −8.00000 | −0.253109 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))