Properties

Label 1000.2.d.c.501.29
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.29
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.800179 - 1.16607i) q^{2} +2.62662i q^{3} +(-0.719426 - 1.86613i) q^{4} +(3.06282 + 2.10177i) q^{6} +0.269237 q^{7} +(-2.75170 - 0.654336i) q^{8} -3.89913 q^{9} +4.58163i q^{11} +(4.90160 - 1.88966i) q^{12} -1.55366i q^{13} +(0.215438 - 0.313948i) q^{14} +(-2.96485 + 2.68508i) q^{16} +0.609109 q^{17} +(-3.12001 + 4.54665i) q^{18} +6.69309i q^{19} +0.707183i q^{21} +(5.34249 + 3.66612i) q^{22} +3.52675 q^{23} +(1.71869 - 7.22767i) q^{24} +(-1.81167 - 1.24321i) q^{26} -2.36168i q^{27} +(-0.193696 - 0.502430i) q^{28} +7.73304i q^{29} -3.34096 q^{31} +(0.758569 + 5.60576i) q^{32} -12.0342 q^{33} +(0.487396 - 0.710262i) q^{34} +(2.80514 + 7.27627i) q^{36} -5.32768i q^{37} +(7.80459 + 5.35567i) q^{38} +4.08087 q^{39} +4.38291 q^{41} +(0.824623 + 0.565873i) q^{42} +12.2644i q^{43} +(8.54989 - 3.29614i) q^{44} +(2.82203 - 4.11243i) q^{46} -9.54651 q^{47} +(-7.05268 - 7.78754i) q^{48} -6.92751 q^{49} +1.59990i q^{51} +(-2.89932 + 1.11774i) q^{52} -10.6574i q^{53} +(-2.75388 - 1.88977i) q^{54} +(-0.740859 - 0.176171i) q^{56} -17.5802 q^{57} +(9.01725 + 6.18782i) q^{58} -10.2256i q^{59} +13.2628i q^{61} +(-2.67337 + 3.89579i) q^{62} -1.04979 q^{63} +(7.14369 + 3.60107i) q^{64} +(-9.62951 + 14.0327i) q^{66} -3.93398i q^{67} +(-0.438209 - 1.13667i) q^{68} +9.26343i q^{69} +6.95638 q^{71} +(10.7292 + 2.55134i) q^{72} +5.93156 q^{73} +(-6.21243 - 4.26310i) q^{74} +(12.4901 - 4.81518i) q^{76} +1.23354i q^{77} +(3.26543 - 4.75857i) q^{78} +10.1382 q^{79} -5.49416 q^{81} +(3.50712 - 5.11077i) q^{82} -6.52313i q^{83} +(1.31969 - 0.508766i) q^{84} +(14.3012 + 9.81376i) q^{86} -20.3118 q^{87} +(2.99793 - 12.6073i) q^{88} +6.69564 q^{89} -0.418302i q^{91} +(-2.53724 - 6.58136i) q^{92} -8.77544i q^{93} +(-7.63892 + 11.1319i) q^{94} +(-14.7242 + 1.99247i) q^{96} -3.99182 q^{97} +(-5.54325 + 8.07794i) q^{98} -17.8644i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64}+ \cdots + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.800179 1.16607i 0.565812 0.824534i
\(3\) 2.62662i 1.51648i 0.651976 + 0.758240i \(0.273940\pi\)
−0.651976 + 0.758240i \(0.726060\pi\)
\(4\) −0.719426 1.86613i −0.359713 0.933063i
\(5\) 0 0
\(6\) 3.06282 + 2.10177i 1.25039 + 0.858043i
\(7\) 0.269237 0.101762 0.0508810 0.998705i \(-0.483797\pi\)
0.0508810 + 0.998705i \(0.483797\pi\)
\(8\) −2.75170 0.654336i −0.972872 0.231343i
\(9\) −3.89913 −1.29971
\(10\) 0 0
\(11\) 4.58163i 1.38141i 0.723135 + 0.690706i \(0.242700\pi\)
−0.723135 + 0.690706i \(0.757300\pi\)
\(12\) 4.90160 1.88966i 1.41497 0.545497i
\(13\) 1.55366i 0.430908i −0.976514 0.215454i \(-0.930877\pi\)
0.976514 0.215454i \(-0.0691231\pi\)
\(14\) 0.215438 0.313948i 0.0575782 0.0839062i
\(15\) 0 0
\(16\) −2.96485 + 2.68508i −0.741213 + 0.671270i
\(17\) 0.609109 0.147731 0.0738653 0.997268i \(-0.476467\pi\)
0.0738653 + 0.997268i \(0.476467\pi\)
\(18\) −3.12001 + 4.54665i −0.735392 + 1.07166i
\(19\) 6.69309i 1.53550i 0.640749 + 0.767750i \(0.278624\pi\)
−0.640749 + 0.767750i \(0.721376\pi\)
\(20\) 0 0
\(21\) 0.707183i 0.154320i
\(22\) 5.34249 + 3.66612i 1.13902 + 0.781620i
\(23\) 3.52675 0.735378 0.367689 0.929949i \(-0.380149\pi\)
0.367689 + 0.929949i \(0.380149\pi\)
\(24\) 1.71869 7.22767i 0.350827 1.47534i
\(25\) 0 0
\(26\) −1.81167 1.24321i −0.355298 0.243813i
\(27\) 2.36168i 0.454506i
\(28\) −0.193696 0.502430i −0.0366051 0.0949503i
\(29\) 7.73304i 1.43599i 0.696048 + 0.717995i \(0.254940\pi\)
−0.696048 + 0.717995i \(0.745060\pi\)
\(30\) 0 0
\(31\) −3.34096 −0.600054 −0.300027 0.953931i \(-0.596996\pi\)
−0.300027 + 0.953931i \(0.596996\pi\)
\(32\) 0.758569 + 5.60576i 0.134097 + 0.990968i
\(33\) −12.0342 −2.09488
\(34\) 0.487396 0.710262i 0.0835878 0.121809i
\(35\) 0 0
\(36\) 2.80514 + 7.27627i 0.467523 + 1.21271i
\(37\) 5.32768i 0.875865i −0.899008 0.437933i \(-0.855711\pi\)
0.899008 0.437933i \(-0.144289\pi\)
\(38\) 7.80459 + 5.35567i 1.26607 + 0.868805i
\(39\) 4.08087 0.653463
\(40\) 0 0
\(41\) 4.38291 0.684496 0.342248 0.939610i \(-0.388812\pi\)
0.342248 + 0.939610i \(0.388812\pi\)
\(42\) 0.824623 + 0.565873i 0.127242 + 0.0873161i
\(43\) 12.2644i 1.87031i 0.354238 + 0.935155i \(0.384740\pi\)
−0.354238 + 0.935155i \(0.615260\pi\)
\(44\) 8.54989 3.29614i 1.28894 0.496912i
\(45\) 0 0
\(46\) 2.82203 4.11243i 0.416086 0.606345i
\(47\) −9.54651 −1.39250 −0.696251 0.717798i \(-0.745150\pi\)
−0.696251 + 0.717798i \(0.745150\pi\)
\(48\) −7.05268 7.78754i −1.01797 1.12403i
\(49\) −6.92751 −0.989645
\(50\) 0 0
\(51\) 1.59990i 0.224030i
\(52\) −2.89932 + 1.11774i −0.402064 + 0.155003i
\(53\) 10.6574i 1.46391i −0.681353 0.731955i \(-0.738608\pi\)
0.681353 0.731955i \(-0.261392\pi\)
\(54\) −2.75388 1.88977i −0.374755 0.257165i
\(55\) 0 0
\(56\) −0.740859 0.176171i −0.0990014 0.0235419i
\(57\) −17.5802 −2.32855
\(58\) 9.01725 + 6.18782i 1.18402 + 0.812501i
\(59\) 10.2256i 1.33126i −0.746283 0.665629i \(-0.768163\pi\)
0.746283 0.665629i \(-0.231837\pi\)
\(60\) 0 0
\(61\) 13.2628i 1.69812i 0.528294 + 0.849062i \(0.322832\pi\)
−0.528294 + 0.849062i \(0.677168\pi\)
\(62\) −2.67337 + 3.89579i −0.339518 + 0.494765i
\(63\) −1.04979 −0.132261
\(64\) 7.14369 + 3.60107i 0.892961 + 0.450134i
\(65\) 0 0
\(66\) −9.62951 + 14.0327i −1.18531 + 1.72730i
\(67\) 3.93398i 0.480613i −0.970697 0.240306i \(-0.922752\pi\)
0.970697 0.240306i \(-0.0772479\pi\)
\(68\) −0.438209 1.13667i −0.0531406 0.137842i
\(69\) 9.26343i 1.11519i
\(70\) 0 0
\(71\) 6.95638 0.825571 0.412785 0.910828i \(-0.364556\pi\)
0.412785 + 0.910828i \(0.364556\pi\)
\(72\) 10.7292 + 2.55134i 1.26445 + 0.300679i
\(73\) 5.93156 0.694236 0.347118 0.937821i \(-0.387160\pi\)
0.347118 + 0.937821i \(0.387160\pi\)
\(74\) −6.21243 4.26310i −0.722181 0.495575i
\(75\) 0 0
\(76\) 12.4901 4.81518i 1.43272 0.552339i
\(77\) 1.23354i 0.140575i
\(78\) 3.26543 4.75857i 0.369737 0.538802i
\(79\) 10.1382 1.14064 0.570321 0.821422i \(-0.306819\pi\)
0.570321 + 0.821422i \(0.306819\pi\)
\(80\) 0 0
\(81\) −5.49416 −0.610462
\(82\) 3.50712 5.11077i 0.387296 0.564390i
\(83\) 6.52313i 0.716007i −0.933720 0.358003i \(-0.883458\pi\)
0.933720 0.358003i \(-0.116542\pi\)
\(84\) 1.31969 0.508766i 0.143990 0.0555109i
\(85\) 0 0
\(86\) 14.3012 + 9.81376i 1.54213 + 1.05824i
\(87\) −20.3118 −2.17765
\(88\) 2.99793 12.6073i 0.319580 1.34394i
\(89\) 6.69564 0.709736 0.354868 0.934916i \(-0.384526\pi\)
0.354868 + 0.934916i \(0.384526\pi\)
\(90\) 0 0
\(91\) 0.418302i 0.0438500i
\(92\) −2.53724 6.58136i −0.264525 0.686154i
\(93\) 8.77544i 0.909970i
\(94\) −7.63892 + 11.1319i −0.787895 + 1.14817i
\(95\) 0 0
\(96\) −14.7242 + 1.99247i −1.50278 + 0.203356i
\(97\) −3.99182 −0.405307 −0.202654 0.979250i \(-0.564957\pi\)
−0.202654 + 0.979250i \(0.564957\pi\)
\(98\) −5.54325 + 8.07794i −0.559953 + 0.815996i
\(99\) 17.8644i 1.79544i
\(100\) 0 0
\(101\) 0.361133i 0.0359340i 0.999839 + 0.0179670i \(0.00571939\pi\)
−0.999839 + 0.0179670i \(0.994281\pi\)
\(102\) 1.86559 + 1.28020i 0.184721 + 0.126759i
\(103\) 19.0514 1.87719 0.938596 0.345019i \(-0.112128\pi\)
0.938596 + 0.345019i \(0.112128\pi\)
\(104\) −1.01662 + 4.27520i −0.0996874 + 0.419218i
\(105\) 0 0
\(106\) −12.4273 8.52785i −1.20704 0.828298i
\(107\) 7.68019i 0.742472i 0.928539 + 0.371236i \(0.121066\pi\)
−0.928539 + 0.371236i \(0.878934\pi\)
\(108\) −4.40719 + 1.69905i −0.424082 + 0.163492i
\(109\) 1.81184i 0.173543i 0.996228 + 0.0867716i \(0.0276550\pi\)
−0.996228 + 0.0867716i \(0.972345\pi\)
\(110\) 0 0
\(111\) 13.9938 1.32823
\(112\) −0.798248 + 0.722922i −0.0754273 + 0.0683097i
\(113\) 1.11278 0.104681 0.0523406 0.998629i \(-0.483332\pi\)
0.0523406 + 0.998629i \(0.483332\pi\)
\(114\) −14.0673 + 20.4997i −1.31752 + 1.91997i
\(115\) 0 0
\(116\) 14.4308 5.56335i 1.33987 0.516544i
\(117\) 6.05792i 0.560055i
\(118\) −11.9237 8.18230i −1.09767 0.753242i
\(119\) 0.163994 0.0150333
\(120\) 0 0
\(121\) −9.99130 −0.908300
\(122\) 15.4653 + 10.6126i 1.40016 + 0.960819i
\(123\) 11.5122i 1.03802i
\(124\) 2.40357 + 6.23465i 0.215847 + 0.559889i
\(125\) 0 0
\(126\) −0.840020 + 1.22413i −0.0748350 + 0.109054i
\(127\) 9.81903 0.871298 0.435649 0.900117i \(-0.356519\pi\)
0.435649 + 0.900117i \(0.356519\pi\)
\(128\) 9.91533 5.44852i 0.876399 0.481585i
\(129\) −32.2140 −2.83629
\(130\) 0 0
\(131\) 5.00551i 0.437333i 0.975800 + 0.218667i \(0.0701708\pi\)
−0.975800 + 0.218667i \(0.929829\pi\)
\(132\) 8.65771 + 22.4573i 0.753557 + 1.95466i
\(133\) 1.80203i 0.156255i
\(134\) −4.58729 3.14789i −0.396281 0.271936i
\(135\) 0 0
\(136\) −1.67608 0.398562i −0.143723 0.0341764i
\(137\) −12.1561 −1.03856 −0.519282 0.854603i \(-0.673800\pi\)
−0.519282 + 0.854603i \(0.673800\pi\)
\(138\) 10.8018 + 7.41241i 0.919509 + 0.630986i
\(139\) 7.81838i 0.663147i −0.943429 0.331573i \(-0.892421\pi\)
0.943429 0.331573i \(-0.107579\pi\)
\(140\) 0 0
\(141\) 25.0751i 2.11170i
\(142\) 5.56636 8.11161i 0.467118 0.680711i
\(143\) 7.11829 0.595261
\(144\) 11.5604 10.4695i 0.963363 0.872457i
\(145\) 0 0
\(146\) 4.74631 6.91659i 0.392807 0.572421i
\(147\) 18.1959i 1.50078i
\(148\) −9.94212 + 3.83287i −0.817237 + 0.315060i
\(149\) 17.0047i 1.39308i −0.717520 0.696538i \(-0.754723\pi\)
0.717520 0.696538i \(-0.245277\pi\)
\(150\) 0 0
\(151\) −13.2804 −1.08075 −0.540373 0.841425i \(-0.681717\pi\)
−0.540373 + 0.841425i \(0.681717\pi\)
\(152\) 4.37953 18.4174i 0.355227 1.49385i
\(153\) −2.37500 −0.192007
\(154\) 1.43839 + 0.987055i 0.115909 + 0.0795392i
\(155\) 0 0
\(156\) −2.93589 7.61542i −0.235059 0.609722i
\(157\) 19.0554i 1.52078i −0.649465 0.760391i \(-0.725007\pi\)
0.649465 0.760391i \(-0.274993\pi\)
\(158\) 8.11241 11.8219i 0.645389 0.940498i
\(159\) 27.9930 2.21999
\(160\) 0 0
\(161\) 0.949531 0.0748335
\(162\) −4.39632 + 6.40656i −0.345407 + 0.503347i
\(163\) 16.7152i 1.30923i −0.755961 0.654617i \(-0.772830\pi\)
0.755961 0.654617i \(-0.227170\pi\)
\(164\) −3.15318 8.17907i −0.246222 0.638678i
\(165\) 0 0
\(166\) −7.60641 5.21968i −0.590372 0.405125i
\(167\) 12.2045 0.944409 0.472204 0.881489i \(-0.343458\pi\)
0.472204 + 0.881489i \(0.343458\pi\)
\(168\) 0.462736 1.94595i 0.0357008 0.150134i
\(169\) 10.5861 0.814319
\(170\) 0 0
\(171\) 26.0972i 1.99571i
\(172\) 22.8870 8.82336i 1.74512 0.672775i
\(173\) 2.55690i 0.194397i 0.995265 + 0.0971986i \(0.0309882\pi\)
−0.995265 + 0.0971986i \(0.969012\pi\)
\(174\) −16.2531 + 23.6849i −1.23214 + 1.79555i
\(175\) 0 0
\(176\) −12.3020 13.5838i −0.927300 1.02392i
\(177\) 26.8587 2.01883
\(178\) 5.35771 7.80756i 0.401577 0.585202i
\(179\) 18.3566i 1.37204i −0.727584 0.686019i \(-0.759357\pi\)
0.727584 0.686019i \(-0.240643\pi\)
\(180\) 0 0
\(181\) 8.74009i 0.649646i 0.945775 + 0.324823i \(0.105305\pi\)
−0.945775 + 0.324823i \(0.894695\pi\)
\(182\) −0.487769 0.334717i −0.0361558 0.0248109i
\(183\) −34.8362 −2.57517
\(184\) −9.70455 2.30768i −0.715429 0.170125i
\(185\) 0 0
\(186\) −10.2327 7.02192i −0.750302 0.514872i
\(187\) 2.79071i 0.204077i
\(188\) 6.86801 + 17.8150i 0.500901 + 1.29929i
\(189\) 0.635851i 0.0462514i
\(190\) 0 0
\(191\) −21.5766 −1.56123 −0.780614 0.625013i \(-0.785094\pi\)
−0.780614 + 0.625013i \(0.785094\pi\)
\(192\) −9.45865 + 18.7638i −0.682619 + 1.35416i
\(193\) 9.90462 0.712950 0.356475 0.934305i \(-0.383978\pi\)
0.356475 + 0.934305i \(0.383978\pi\)
\(194\) −3.19417 + 4.65473i −0.229328 + 0.334190i
\(195\) 0 0
\(196\) 4.98383 + 12.9276i 0.355988 + 0.923401i
\(197\) 9.37856i 0.668195i −0.942539 0.334097i \(-0.891569\pi\)
0.942539 0.334097i \(-0.108431\pi\)
\(198\) −20.8311 14.2947i −1.48040 1.01588i
\(199\) 16.8855 1.19698 0.598491 0.801130i \(-0.295767\pi\)
0.598491 + 0.801130i \(0.295767\pi\)
\(200\) 0 0
\(201\) 10.3331 0.728839
\(202\) 0.421105 + 0.288971i 0.0296288 + 0.0203319i
\(203\) 2.08202i 0.146129i
\(204\) 2.98561 1.15101i 0.209034 0.0805866i
\(205\) 0 0
\(206\) 15.2445 22.2152i 1.06214 1.54781i
\(207\) −13.7513 −0.955779
\(208\) 4.17170 + 4.60637i 0.289255 + 0.319394i
\(209\) −30.6652 −2.12116
\(210\) 0 0
\(211\) 14.0265i 0.965623i −0.875724 0.482811i \(-0.839616\pi\)
0.875724 0.482811i \(-0.160384\pi\)
\(212\) −19.8881 + 7.66723i −1.36592 + 0.526587i
\(213\) 18.2718i 1.25196i
\(214\) 8.95561 + 6.14553i 0.612193 + 0.420100i
\(215\) 0 0
\(216\) −1.54533 + 6.49863i −0.105147 + 0.442176i
\(217\) −0.899510 −0.0610627
\(218\) 2.11273 + 1.44980i 0.143092 + 0.0981928i
\(219\) 15.5799i 1.05280i
\(220\) 0 0
\(221\) 0.946347i 0.0636582i
\(222\) 11.1975 16.3177i 0.751530 1.09517i
\(223\) −2.06137 −0.138039 −0.0690197 0.997615i \(-0.521987\pi\)
−0.0690197 + 0.997615i \(0.521987\pi\)
\(224\) 0.204235 + 1.50928i 0.0136460 + 0.100843i
\(225\) 0 0
\(226\) 0.890421 1.29757i 0.0592299 0.0863133i
\(227\) 3.13275i 0.207928i −0.994581 0.103964i \(-0.966847\pi\)
0.994581 0.103964i \(-0.0331526\pi\)
\(228\) 12.6477 + 32.8069i 0.837611 + 2.17269i
\(229\) 17.0738i 1.12827i 0.825682 + 0.564136i \(0.190791\pi\)
−0.825682 + 0.564136i \(0.809209\pi\)
\(230\) 0 0
\(231\) −3.24005 −0.213179
\(232\) 5.06001 21.2790i 0.332206 1.39704i
\(233\) −7.63474 −0.500169 −0.250084 0.968224i \(-0.580458\pi\)
−0.250084 + 0.968224i \(0.580458\pi\)
\(234\) 7.06395 + 4.84743i 0.461785 + 0.316886i
\(235\) 0 0
\(236\) −19.0822 + 7.35655i −1.24215 + 0.478871i
\(237\) 26.6293i 1.72976i
\(238\) 0.131225 0.191229i 0.00850605 0.0123955i
\(239\) 4.92104 0.318315 0.159158 0.987253i \(-0.449122\pi\)
0.159158 + 0.987253i \(0.449122\pi\)
\(240\) 0 0
\(241\) 19.1214 1.23172 0.615860 0.787855i \(-0.288809\pi\)
0.615860 + 0.787855i \(0.288809\pi\)
\(242\) −7.99484 + 11.6505i −0.513927 + 0.748925i
\(243\) 21.5161i 1.38026i
\(244\) 24.7500 9.54158i 1.58446 0.610837i
\(245\) 0 0
\(246\) 13.4241 + 9.21186i 0.855887 + 0.587327i
\(247\) 10.3988 0.661659
\(248\) 9.19332 + 2.18611i 0.583776 + 0.138818i
\(249\) 17.1338 1.08581
\(250\) 0 0
\(251\) 29.7004i 1.87467i 0.348423 + 0.937337i \(0.386717\pi\)
−0.348423 + 0.937337i \(0.613283\pi\)
\(252\) 0.755246 + 1.95904i 0.0475760 + 0.123408i
\(253\) 16.1583i 1.01586i
\(254\) 7.85699 11.4497i 0.492991 0.718415i
\(255\) 0 0
\(256\) 1.58070 15.9217i 0.0987939 0.995108i
\(257\) −13.1697 −0.821501 −0.410750 0.911748i \(-0.634733\pi\)
−0.410750 + 0.911748i \(0.634733\pi\)
\(258\) −25.7770 + 37.5637i −1.60481 + 2.33862i
\(259\) 1.43441i 0.0891297i
\(260\) 0 0
\(261\) 30.1522i 1.86637i
\(262\) 5.83676 + 4.00531i 0.360596 + 0.247449i
\(263\) −17.7204 −1.09269 −0.546345 0.837560i \(-0.683981\pi\)
−0.546345 + 0.837560i \(0.683981\pi\)
\(264\) 33.1145 + 7.87441i 2.03805 + 0.484636i
\(265\) 0 0
\(266\) 2.10128 + 1.44194i 0.128838 + 0.0884113i
\(267\) 17.5869i 1.07630i
\(268\) −7.34131 + 2.83021i −0.448442 + 0.172883i
\(269\) 1.52445i 0.0929474i −0.998920 0.0464737i \(-0.985202\pi\)
0.998920 0.0464737i \(-0.0147984\pi\)
\(270\) 0 0
\(271\) 16.1497 0.981024 0.490512 0.871435i \(-0.336810\pi\)
0.490512 + 0.871435i \(0.336810\pi\)
\(272\) −1.80592 + 1.63550i −0.109500 + 0.0991670i
\(273\) 1.09872 0.0664976
\(274\) −9.72704 + 14.1748i −0.587632 + 0.856331i
\(275\) 0 0
\(276\) 17.2867 6.66436i 1.04054 0.401147i
\(277\) 12.3707i 0.743283i 0.928376 + 0.371642i \(0.121205\pi\)
−0.928376 + 0.371642i \(0.878795\pi\)
\(278\) −9.11676 6.25611i −0.546787 0.375217i
\(279\) 13.0269 0.779897
\(280\) 0 0
\(281\) −4.03820 −0.240899 −0.120450 0.992719i \(-0.538434\pi\)
−0.120450 + 0.992719i \(0.538434\pi\)
\(282\) −29.2392 20.0645i −1.74117 1.19483i
\(283\) 4.13989i 0.246091i −0.992401 0.123046i \(-0.960734\pi\)
0.992401 0.123046i \(-0.0392661\pi\)
\(284\) −5.00460 12.9815i −0.296969 0.770310i
\(285\) 0 0
\(286\) 5.69591 8.30040i 0.336806 0.490813i
\(287\) 1.18004 0.0696557
\(288\) −2.95776 21.8576i −0.174288 1.28797i
\(289\) −16.6290 −0.978176
\(290\) 0 0
\(291\) 10.4850i 0.614641i
\(292\) −4.26732 11.0690i −0.249726 0.647766i
\(293\) 25.2638i 1.47593i 0.674840 + 0.737964i \(0.264213\pi\)
−0.674840 + 0.737964i \(0.735787\pi\)
\(294\) −21.2177 14.5600i −1.23744 0.849157i
\(295\) 0 0
\(296\) −3.48609 + 14.6602i −0.202625 + 0.852105i
\(297\) 10.8203 0.627860
\(298\) −19.8286 13.6068i −1.14864 0.788219i
\(299\) 5.47937i 0.316880i
\(300\) 0 0
\(301\) 3.30204i 0.190326i
\(302\) −10.6267 + 15.4859i −0.611500 + 0.891112i
\(303\) −0.948558 −0.0544933
\(304\) −17.9715 19.8440i −1.03073 1.13813i
\(305\) 0 0
\(306\) −1.90042 + 2.76940i −0.108640 + 0.158316i
\(307\) 10.6692i 0.608922i 0.952525 + 0.304461i \(0.0984764\pi\)
−0.952525 + 0.304461i \(0.901524\pi\)
\(308\) 2.30195 0.887443i 0.131166 0.0505667i
\(309\) 50.0408i 2.84672i
\(310\) 0 0
\(311\) 1.78111 0.100998 0.0504988 0.998724i \(-0.483919\pi\)
0.0504988 + 0.998724i \(0.483919\pi\)
\(312\) −11.2293 2.67026i −0.635736 0.151174i
\(313\) 26.6250 1.50494 0.752468 0.658629i \(-0.228863\pi\)
0.752468 + 0.658629i \(0.228863\pi\)
\(314\) −22.2198 15.2477i −1.25394 0.860478i
\(315\) 0 0
\(316\) −7.29371 18.9192i −0.410303 1.06429i
\(317\) 9.16369i 0.514684i −0.966320 0.257342i \(-0.917153\pi\)
0.966320 0.257342i \(-0.0828467\pi\)
\(318\) 22.3994 32.6417i 1.25610 1.83046i
\(319\) −35.4299 −1.98369
\(320\) 0 0
\(321\) −20.1729 −1.12594
\(322\) 0.759795 1.10722i 0.0423417 0.0617028i
\(323\) 4.07682i 0.226840i
\(324\) 3.95264 + 10.2528i 0.219591 + 0.569600i
\(325\) 0 0
\(326\) −19.4910 13.3751i −1.07951 0.740781i
\(327\) −4.75903 −0.263175
\(328\) −12.0605 2.86790i −0.665927 0.158353i
\(329\) −2.57027 −0.141704
\(330\) 0 0
\(331\) 7.83419i 0.430606i 0.976547 + 0.215303i \(0.0690739\pi\)
−0.976547 + 0.215303i \(0.930926\pi\)
\(332\) −12.1730 + 4.69291i −0.668079 + 0.257557i
\(333\) 20.7733i 1.13837i
\(334\) 9.76575 14.2312i 0.534358 0.778697i
\(335\) 0 0
\(336\) −1.89884 2.09669i −0.103590 0.114384i
\(337\) −0.636306 −0.0346618 −0.0173309 0.999850i \(-0.505517\pi\)
−0.0173309 + 0.999850i \(0.505517\pi\)
\(338\) 8.47081 12.3442i 0.460752 0.671434i
\(339\) 2.92284i 0.158747i
\(340\) 0 0
\(341\) 15.3070i 0.828923i
\(342\) −30.4311 20.8825i −1.64553 1.12920i
\(343\) −3.74980 −0.202470
\(344\) 8.02508 33.7481i 0.432683 1.81957i
\(345\) 0 0
\(346\) 2.98151 + 2.04598i 0.160287 + 0.109992i
\(347\) 23.5999i 1.26691i 0.773780 + 0.633455i \(0.218364\pi\)
−0.773780 + 0.633455i \(0.781636\pi\)
\(348\) 14.6128 + 37.9043i 0.783329 + 2.03188i
\(349\) 19.1542i 1.02530i 0.858597 + 0.512651i \(0.171336\pi\)
−0.858597 + 0.512651i \(0.828664\pi\)
\(350\) 0 0
\(351\) −3.66925 −0.195850
\(352\) −25.6835 + 3.47548i −1.36894 + 0.185244i
\(353\) 21.9765 1.16969 0.584845 0.811145i \(-0.301155\pi\)
0.584845 + 0.811145i \(0.301155\pi\)
\(354\) 21.4918 31.3191i 1.14228 1.66459i
\(355\) 0 0
\(356\) −4.81702 12.4949i −0.255301 0.662229i
\(357\) 0.430751i 0.0227978i
\(358\) −21.4050 14.6886i −1.13129 0.776316i
\(359\) −5.63031 −0.297156 −0.148578 0.988901i \(-0.547470\pi\)
−0.148578 + 0.988901i \(0.547470\pi\)
\(360\) 0 0
\(361\) −25.7974 −1.35776
\(362\) 10.1915 + 6.99364i 0.535655 + 0.367578i
\(363\) 26.2434i 1.37742i
\(364\) −0.780605 + 0.300938i −0.0409148 + 0.0157734i
\(365\) 0 0
\(366\) −27.8752 + 40.6214i −1.45706 + 2.12332i
\(367\) 5.21463 0.272201 0.136101 0.990695i \(-0.456543\pi\)
0.136101 + 0.990695i \(0.456543\pi\)
\(368\) −10.4563 + 9.46960i −0.545072 + 0.493637i
\(369\) −17.0896 −0.889647
\(370\) 0 0
\(371\) 2.86937i 0.148970i
\(372\) −16.3761 + 6.31328i −0.849060 + 0.327328i
\(373\) 12.6000i 0.652405i −0.945300 0.326202i \(-0.894231\pi\)
0.945300 0.326202i \(-0.105769\pi\)
\(374\) 3.25415 + 2.23307i 0.168268 + 0.115469i
\(375\) 0 0
\(376\) 26.2691 + 6.24663i 1.35473 + 0.322145i
\(377\) 12.0145 0.618779
\(378\) −0.741445 0.508795i −0.0381358 0.0261696i
\(379\) 1.28403i 0.0659562i 0.999456 + 0.0329781i \(0.0104992\pi\)
−0.999456 + 0.0329781i \(0.989501\pi\)
\(380\) 0 0
\(381\) 25.7909i 1.32131i
\(382\) −17.2652 + 25.1598i −0.883362 + 1.28729i
\(383\) −18.3642 −0.938369 −0.469185 0.883100i \(-0.655452\pi\)
−0.469185 + 0.883100i \(0.655452\pi\)
\(384\) 14.3112 + 26.0438i 0.730314 + 1.32904i
\(385\) 0 0
\(386\) 7.92547 11.5495i 0.403396 0.587852i
\(387\) 47.8207i 2.43086i
\(388\) 2.87182 + 7.44923i 0.145794 + 0.378177i
\(389\) 20.5311i 1.04097i −0.853871 0.520485i \(-0.825751\pi\)
0.853871 0.520485i \(-0.174249\pi\)
\(390\) 0 0
\(391\) 2.14817 0.108638
\(392\) 19.0624 + 4.53292i 0.962798 + 0.228947i
\(393\) −13.1476 −0.663207
\(394\) −10.9360 7.50453i −0.550949 0.378073i
\(395\) 0 0
\(396\) −33.3372 + 12.8521i −1.67526 + 0.645842i
\(397\) 17.0191i 0.854164i −0.904213 0.427082i \(-0.859542\pi\)
0.904213 0.427082i \(-0.140458\pi\)
\(398\) 13.5114 19.6896i 0.677267 0.986952i
\(399\) −4.73324 −0.236958
\(400\) 0 0
\(401\) 7.62575 0.380812 0.190406 0.981705i \(-0.439020\pi\)
0.190406 + 0.981705i \(0.439020\pi\)
\(402\) 8.26832 12.0491i 0.412386 0.600953i
\(403\) 5.19072i 0.258568i
\(404\) 0.673919 0.259808i 0.0335287 0.0129259i
\(405\) 0 0
\(406\) 2.42778 + 1.66599i 0.120488 + 0.0826817i
\(407\) 24.4094 1.20993
\(408\) 1.04687 4.40243i 0.0518278 0.217953i
\(409\) 7.37530 0.364685 0.182342 0.983235i \(-0.441632\pi\)
0.182342 + 0.983235i \(0.441632\pi\)
\(410\) 0 0
\(411\) 31.9294i 1.57496i
\(412\) −13.7061 35.5523i −0.675250 1.75154i
\(413\) 2.75310i 0.135471i
\(414\) −11.0035 + 16.0349i −0.540792 + 0.788073i
\(415\) 0 0
\(416\) 8.70944 1.17856i 0.427016 0.0577835i
\(417\) 20.5359 1.00565
\(418\) −24.5377 + 35.7577i −1.20018 + 1.74897i
\(419\) 22.0835i 1.07885i 0.842034 + 0.539425i \(0.181358\pi\)
−0.842034 + 0.539425i \(0.818642\pi\)
\(420\) 0 0
\(421\) 29.2485i 1.42549i 0.701425 + 0.712743i \(0.252547\pi\)
−0.701425 + 0.712743i \(0.747453\pi\)
\(422\) −16.3558 11.2237i −0.796189 0.546361i
\(423\) 37.2231 1.80985
\(424\) −6.97354 + 29.3260i −0.338665 + 1.42420i
\(425\) 0 0
\(426\) 21.3061 + 14.6207i 1.03229 + 0.708375i
\(427\) 3.57083i 0.172804i
\(428\) 14.3322 5.52532i 0.692773 0.267077i
\(429\) 18.6970i 0.902701i
\(430\) 0 0
\(431\) −6.99018 −0.336705 −0.168353 0.985727i \(-0.553845\pi\)
−0.168353 + 0.985727i \(0.553845\pi\)
\(432\) 6.34130 + 7.00203i 0.305096 + 0.336885i
\(433\) 19.1288 0.919271 0.459636 0.888108i \(-0.347980\pi\)
0.459636 + 0.888108i \(0.347980\pi\)
\(434\) −0.719769 + 1.04889i −0.0345500 + 0.0503483i
\(435\) 0 0
\(436\) 3.38113 1.30349i 0.161927 0.0624257i
\(437\) 23.6049i 1.12917i
\(438\) 18.1673 + 12.4667i 0.868065 + 0.595684i
\(439\) −2.78856 −0.133091 −0.0665453 0.997783i \(-0.521198\pi\)
−0.0665453 + 0.997783i \(0.521198\pi\)
\(440\) 0 0
\(441\) 27.0113 1.28625
\(442\) −1.10350 0.757248i −0.0524884 0.0360186i
\(443\) 16.8836i 0.802164i −0.916042 0.401082i \(-0.868634\pi\)
0.916042 0.401082i \(-0.131366\pi\)
\(444\) −10.0675 26.1142i −0.477782 1.23932i
\(445\) 0 0
\(446\) −1.64946 + 2.40369i −0.0781043 + 0.113818i
\(447\) 44.6648 2.11257
\(448\) 1.92334 + 0.969542i 0.0908695 + 0.0458065i
\(449\) −13.1404 −0.620135 −0.310068 0.950714i \(-0.600352\pi\)
−0.310068 + 0.950714i \(0.600352\pi\)
\(450\) 0 0
\(451\) 20.0809i 0.945571i
\(452\) −0.800561 2.07658i −0.0376552 0.0976742i
\(453\) 34.8827i 1.63893i
\(454\) −3.65299 2.50676i −0.171443 0.117648i
\(455\) 0 0
\(456\) 48.3754 + 11.5034i 2.26539 + 0.538695i
\(457\) 33.4760 1.56594 0.782971 0.622058i \(-0.213703\pi\)
0.782971 + 0.622058i \(0.213703\pi\)
\(458\) 19.9093 + 13.6621i 0.930298 + 0.638390i
\(459\) 1.43852i 0.0671444i
\(460\) 0 0
\(461\) 27.6037i 1.28563i 0.766021 + 0.642816i \(0.222234\pi\)
−0.766021 + 0.642816i \(0.777766\pi\)
\(462\) −2.59262 + 3.77811i −0.120620 + 0.175774i
\(463\) 14.9227 0.693517 0.346758 0.937955i \(-0.387282\pi\)
0.346758 + 0.937955i \(0.387282\pi\)
\(464\) −20.7638 22.9273i −0.963937 1.06437i
\(465\) 0 0
\(466\) −6.10916 + 8.90262i −0.283002 + 0.412406i
\(467\) 11.8685i 0.549210i 0.961557 + 0.274605i \(0.0885472\pi\)
−0.961557 + 0.274605i \(0.911453\pi\)
\(468\) 11.3048 4.35823i 0.522567 0.201459i
\(469\) 1.05917i 0.0489081i
\(470\) 0 0
\(471\) 50.0512 2.30624
\(472\) −6.69097 + 28.1377i −0.307977 + 1.29514i
\(473\) −56.1911 −2.58367
\(474\) 31.0516 + 21.3082i 1.42625 + 0.978719i
\(475\) 0 0
\(476\) −0.117982 0.306034i −0.00540769 0.0140271i
\(477\) 41.5547i 1.90266i
\(478\) 3.93771 5.73826i 0.180107 0.262462i
\(479\) 15.4425 0.705586 0.352793 0.935701i \(-0.385232\pi\)
0.352793 + 0.935701i \(0.385232\pi\)
\(480\) 0 0
\(481\) −8.27740 −0.377417
\(482\) 15.3006 22.2969i 0.696923 1.01560i
\(483\) 2.49406i 0.113484i
\(484\) 7.18800 + 18.6450i 0.326727 + 0.847501i
\(485\) 0 0
\(486\) −25.0892 17.2168i −1.13807 0.780968i
\(487\) 7.58171 0.343560 0.171780 0.985135i \(-0.445048\pi\)
0.171780 + 0.985135i \(0.445048\pi\)
\(488\) 8.67831 36.4951i 0.392849 1.65206i
\(489\) 43.9044 1.98543
\(490\) 0 0
\(491\) 5.55509i 0.250698i 0.992113 + 0.125349i \(0.0400050\pi\)
−0.992113 + 0.125349i \(0.959995\pi\)
\(492\) 21.4833 8.28221i 0.968542 0.373391i
\(493\) 4.71026i 0.212140i
\(494\) 8.32089 12.1257i 0.374375 0.545560i
\(495\) 0 0
\(496\) 9.90546 8.97074i 0.444768 0.402798i
\(497\) 1.87291 0.0840117
\(498\) 13.7101 19.9792i 0.614364 0.895287i
\(499\) 14.1201i 0.632102i 0.948742 + 0.316051i \(0.102357\pi\)
−0.948742 + 0.316051i \(0.897643\pi\)
\(500\) 0 0
\(501\) 32.0565i 1.43218i
\(502\) 34.6327 + 23.7657i 1.54573 + 1.06071i
\(503\) −14.3503 −0.639847 −0.319924 0.947443i \(-0.603657\pi\)
−0.319924 + 0.947443i \(0.603657\pi\)
\(504\) 2.88871 + 0.686916i 0.128673 + 0.0305977i
\(505\) 0 0
\(506\) 18.8416 + 12.9295i 0.837612 + 0.574787i
\(507\) 27.8058i 1.23490i
\(508\) −7.06407 18.3236i −0.313417 0.812976i
\(509\) 42.9057i 1.90176i −0.309557 0.950881i \(-0.600181\pi\)
0.309557 0.950881i \(-0.399819\pi\)
\(510\) 0 0
\(511\) 1.59699 0.0706468
\(512\) −17.3010 14.5834i −0.764602 0.644503i
\(513\) 15.8069 0.697893
\(514\) −10.5381 + 15.3567i −0.464815 + 0.677356i
\(515\) 0 0
\(516\) 23.1756 + 60.1155i 1.02025 + 2.64644i
\(517\) 43.7386i 1.92362i
\(518\) −1.67262 1.14778i −0.0734905 0.0504307i
\(519\) −6.71600 −0.294800
\(520\) 0 0
\(521\) 11.4542 0.501817 0.250909 0.968011i \(-0.419271\pi\)
0.250909 + 0.968011i \(0.419271\pi\)
\(522\) −35.1595 24.1271i −1.53889 1.05602i
\(523\) 21.7522i 0.951156i 0.879674 + 0.475578i \(0.157761\pi\)
−0.879674 + 0.475578i \(0.842239\pi\)
\(524\) 9.34091 3.60109i 0.408060 0.157315i
\(525\) 0 0
\(526\) −14.1795 + 20.6632i −0.618257 + 0.900960i
\(527\) −2.03501 −0.0886464
\(528\) 35.6796 32.3128i 1.55276 1.40623i
\(529\) −10.5620 −0.459219
\(530\) 0 0
\(531\) 39.8709i 1.73025i
\(532\) 3.36281 1.29642i 0.145796 0.0562071i
\(533\) 6.80955i 0.294955i
\(534\) 20.5075 + 14.0727i 0.887446 + 0.608984i
\(535\) 0 0
\(536\) −2.57415 + 10.8251i −0.111186 + 0.467575i
\(537\) 48.2158 2.08067
\(538\) −1.77761 1.21983i −0.0766383 0.0525908i
\(539\) 31.7393i 1.36711i
\(540\) 0 0
\(541\) 36.5960i 1.57339i −0.617344 0.786693i \(-0.711791\pi\)
0.617344 0.786693i \(-0.288209\pi\)
\(542\) 12.9226 18.8316i 0.555075 0.808887i
\(543\) −22.9569 −0.985175
\(544\) 0.462051 + 3.41452i 0.0198103 + 0.146396i
\(545\) 0 0
\(546\) 0.879174 1.28118i 0.0376252 0.0548296i
\(547\) 15.8078i 0.675893i 0.941165 + 0.337946i \(0.109732\pi\)
−0.941165 + 0.337946i \(0.890268\pi\)
\(548\) 8.74539 + 22.6848i 0.373585 + 0.969045i
\(549\) 51.7133i 2.20707i
\(550\) 0 0
\(551\) −51.7580 −2.20496
\(552\) 6.06140 25.4902i 0.257990 1.08493i
\(553\) 2.72959 0.116074
\(554\) 14.4251 + 9.89878i 0.612863 + 0.420559i
\(555\) 0 0
\(556\) −14.5901 + 5.62475i −0.618758 + 0.238542i
\(557\) 12.7121i 0.538629i −0.963052 0.269315i \(-0.913203\pi\)
0.963052 0.269315i \(-0.0867971\pi\)
\(558\) 10.4238 15.1902i 0.441275 0.643052i
\(559\) 19.0548 0.805931
\(560\) 0 0
\(561\) −7.33013 −0.309478
\(562\) −3.23129 + 4.70882i −0.136304 + 0.198630i
\(563\) 14.3700i 0.605624i 0.953050 + 0.302812i \(0.0979255\pi\)
−0.953050 + 0.302812i \(0.902075\pi\)
\(564\) −46.7932 + 18.0396i −1.97035 + 0.759606i
\(565\) 0 0
\(566\) −4.82740 3.31266i −0.202911 0.139241i
\(567\) −1.47923 −0.0621219
\(568\) −19.1419 4.55182i −0.803175 0.190990i
\(569\) 32.5495 1.36455 0.682274 0.731097i \(-0.260991\pi\)
0.682274 + 0.731097i \(0.260991\pi\)
\(570\) 0 0
\(571\) 16.2274i 0.679097i 0.940589 + 0.339548i \(0.110274\pi\)
−0.940589 + 0.339548i \(0.889726\pi\)
\(572\) −5.12108 13.2836i −0.214123 0.555416i
\(573\) 56.6736i 2.36757i
\(574\) 0.944245 1.37601i 0.0394120 0.0574335i
\(575\) 0 0
\(576\) −27.8542 14.0411i −1.16059 0.585044i
\(577\) −30.1137 −1.25365 −0.626825 0.779160i \(-0.715646\pi\)
−0.626825 + 0.779160i \(0.715646\pi\)
\(578\) −13.3062 + 19.3905i −0.553464 + 0.806539i
\(579\) 26.0157i 1.08117i
\(580\) 0 0
\(581\) 1.75627i 0.0728622i
\(582\) −12.2262 8.38987i −0.506792 0.347771i
\(583\) 48.8283 2.02226
\(584\) −16.3219 3.88123i −0.675403 0.160607i
\(585\) 0 0
\(586\) 29.4593 + 20.2156i 1.21695 + 0.835098i
\(587\) 14.1963i 0.585943i 0.956121 + 0.292971i \(0.0946440\pi\)
−0.956121 + 0.292971i \(0.905356\pi\)
\(588\) −33.9559 + 13.0906i −1.40032 + 0.539849i
\(589\) 22.3614i 0.921384i
\(590\) 0 0
\(591\) 24.6339 1.01330
\(592\) 14.3052 + 15.7958i 0.587942 + 0.649203i
\(593\) −12.2025 −0.501098 −0.250549 0.968104i \(-0.580611\pi\)
−0.250549 + 0.968104i \(0.580611\pi\)
\(594\) 8.65821 12.6172i 0.355251 0.517692i
\(595\) 0 0
\(596\) −31.7328 + 12.2336i −1.29983 + 0.501107i
\(597\) 44.3518i 1.81520i
\(598\) −6.38931 4.38448i −0.261278 0.179295i
\(599\) −2.44106 −0.0997391 −0.0498695 0.998756i \(-0.515881\pi\)
−0.0498695 + 0.998756i \(0.515881\pi\)
\(600\) 0 0
\(601\) −13.7234 −0.559789 −0.279895 0.960031i \(-0.590300\pi\)
−0.279895 + 0.960031i \(0.590300\pi\)
\(602\) 3.85040 + 2.64223i 0.156931 + 0.107689i
\(603\) 15.3391i 0.624657i
\(604\) 9.55429 + 24.7830i 0.388759 + 1.00840i
\(605\) 0 0
\(606\) −0.759017 + 1.10608i −0.0308330 + 0.0449315i
\(607\) 25.0502 1.01676 0.508378 0.861134i \(-0.330245\pi\)
0.508378 + 0.861134i \(0.330245\pi\)
\(608\) −37.5199 + 5.07717i −1.52163 + 0.205906i
\(609\) −5.46868 −0.221602
\(610\) 0 0
\(611\) 14.8320i 0.600040i
\(612\) 1.70863 + 4.43204i 0.0690674 + 0.179155i
\(613\) 26.4690i 1.06907i 0.845146 + 0.534536i \(0.179514\pi\)
−0.845146 + 0.534536i \(0.820486\pi\)
\(614\) 12.4410 + 8.53726i 0.502077 + 0.344536i
\(615\) 0 0
\(616\) 0.807152 3.39434i 0.0325211 0.136762i
\(617\) −20.2771 −0.816324 −0.408162 0.912909i \(-0.633830\pi\)
−0.408162 + 0.912909i \(0.633830\pi\)
\(618\) 58.3510 + 40.0416i 2.34722 + 1.61071i
\(619\) 13.1584i 0.528880i 0.964402 + 0.264440i \(0.0851871\pi\)
−0.964402 + 0.264440i \(0.914813\pi\)
\(620\) 0 0
\(621\) 8.32906i 0.334234i
\(622\) 1.42521 2.07690i 0.0571457 0.0832760i
\(623\) 1.80271 0.0722241
\(624\) −12.0992 + 10.9575i −0.484355 + 0.438650i
\(625\) 0 0
\(626\) 21.3048 31.0466i 0.851511 1.24087i
\(627\) 80.5459i 3.21669i
\(628\) −35.5597 + 13.7089i −1.41899 + 0.547045i
\(629\) 3.24514i 0.129392i
\(630\) 0 0
\(631\) 30.4366 1.21166 0.605830 0.795594i \(-0.292841\pi\)
0.605830 + 0.795594i \(0.292841\pi\)
\(632\) −27.8974 6.63382i −1.10970 0.263879i
\(633\) 36.8422 1.46435
\(634\) −10.6855 7.33260i −0.424375 0.291215i
\(635\) 0 0
\(636\) −20.1389 52.2385i −0.798559 2.07139i
\(637\) 10.7630i 0.426445i
\(638\) −28.3503 + 41.3137i −1.12240 + 1.63562i
\(639\) −27.1239 −1.07300
\(640\) 0 0
\(641\) 22.4237 0.885683 0.442841 0.896600i \(-0.353971\pi\)
0.442841 + 0.896600i \(0.353971\pi\)
\(642\) −16.1420 + 23.5230i −0.637072 + 0.928379i
\(643\) 36.0640i 1.42222i 0.703078 + 0.711112i \(0.251808\pi\)
−0.703078 + 0.711112i \(0.748192\pi\)
\(644\) −0.683117 1.77194i −0.0269186 0.0698244i
\(645\) 0 0
\(646\) 4.75385 + 3.26219i 0.187038 + 0.128349i
\(647\) 2.35270 0.0924942 0.0462471 0.998930i \(-0.485274\pi\)
0.0462471 + 0.998930i \(0.485274\pi\)
\(648\) 15.1183 + 3.59503i 0.593902 + 0.141226i
\(649\) 46.8498 1.83902
\(650\) 0 0
\(651\) 2.36267i 0.0926004i
\(652\) −31.1926 + 12.0253i −1.22160 + 0.470949i
\(653\) 13.9239i 0.544886i −0.962172 0.272443i \(-0.912168\pi\)
0.962172 0.272443i \(-0.0878317\pi\)
\(654\) −3.80807 + 5.54934i −0.148907 + 0.216997i
\(655\) 0 0
\(656\) −12.9947 + 11.7685i −0.507357 + 0.459481i
\(657\) −23.1279 −0.902306
\(658\) −2.05668 + 2.99711i −0.0801777 + 0.116840i
\(659\) 20.8197i 0.811022i −0.914090 0.405511i \(-0.867094\pi\)
0.914090 0.405511i \(-0.132906\pi\)
\(660\) 0 0
\(661\) 9.83003i 0.382344i −0.981557 0.191172i \(-0.938771\pi\)
0.981557 0.191172i \(-0.0612288\pi\)
\(662\) 9.13519 + 6.26876i 0.355049 + 0.243642i
\(663\) 2.48569 0.0965364
\(664\) −4.26832 + 17.9497i −0.165643 + 0.696583i
\(665\) 0 0
\(666\) 24.2231 + 16.6224i 0.938626 + 0.644105i
\(667\) 27.2725i 1.05600i
\(668\) −8.78020 22.7750i −0.339716 0.881193i
\(669\) 5.41443i 0.209334i
\(670\) 0 0
\(671\) −60.7650 −2.34581
\(672\) −3.96430 + 0.536447i −0.152926 + 0.0206939i
\(673\) −45.7820 −1.76476 −0.882382 0.470533i \(-0.844062\pi\)
−0.882382 + 0.470533i \(0.844062\pi\)
\(674\) −0.509159 + 0.741975i −0.0196121 + 0.0285798i
\(675\) 0 0
\(676\) −7.61595 19.7551i −0.292921 0.759811i
\(677\) 49.9162i 1.91844i −0.282669 0.959218i \(-0.591220\pi\)
0.282669 0.959218i \(-0.408780\pi\)
\(678\) 3.40823 + 2.33880i 0.130892 + 0.0898210i
\(679\) −1.07474 −0.0412449
\(680\) 0 0
\(681\) 8.22853 0.315318
\(682\) −17.8490 12.2484i −0.683475 0.469015i
\(683\) 14.4414i 0.552584i −0.961074 0.276292i \(-0.910894\pi\)
0.961074 0.276292i \(-0.0891056\pi\)
\(684\) −48.7007 + 18.7750i −1.86212 + 0.717881i
\(685\) 0 0
\(686\) −3.00051 + 4.37252i −0.114560 + 0.166944i
\(687\) −44.8465 −1.71100
\(688\) −32.9310 36.3623i −1.25548 1.38630i
\(689\) −16.5580 −0.630810
\(690\) 0 0
\(691\) 20.6371i 0.785072i −0.919737 0.392536i \(-0.871598\pi\)
0.919737 0.392536i \(-0.128402\pi\)
\(692\) 4.77149 1.83950i 0.181385 0.0699272i
\(693\) 4.80975i 0.182707i
\(694\) 27.5191 + 18.8842i 1.04461 + 0.716833i
\(695\) 0 0
\(696\) 55.8919 + 13.2907i 2.11858 + 0.503784i
\(697\) 2.66967 0.101121
\(698\) 22.3351 + 15.3268i 0.845396 + 0.580128i
\(699\) 20.0536i 0.758496i
\(700\) 0 0
\(701\) 30.0040i 1.13323i −0.823981 0.566617i \(-0.808252\pi\)
0.823981 0.566617i \(-0.191748\pi\)
\(702\) −2.93605 + 4.27859i −0.110814 + 0.161485i
\(703\) 35.6586 1.34489
\(704\) −16.4988 + 32.7297i −0.621821 + 1.23355i
\(705\) 0 0
\(706\) 17.5851 25.6261i 0.661825 0.964450i
\(707\) 0.0972302i 0.00365672i
\(708\) −19.3229 50.1218i −0.726198 1.88369i
\(709\) 8.10493i 0.304387i −0.988351 0.152194i \(-0.951366\pi\)
0.988351 0.152194i \(-0.0486337\pi\)
\(710\) 0 0
\(711\) −39.5303 −1.48250
\(712\) −18.4244 4.38120i −0.690483 0.164192i
\(713\) −11.7827 −0.441267
\(714\) 0.502285 + 0.344678i 0.0187975 + 0.0128993i
\(715\) 0 0
\(716\) −34.2557 + 13.2062i −1.28020 + 0.493540i
\(717\) 12.9257i 0.482719i
\(718\) −4.50526 + 6.56532i −0.168135 + 0.245015i
\(719\) −38.0224 −1.41800 −0.708998 0.705210i \(-0.750852\pi\)
−0.708998 + 0.705210i \(0.750852\pi\)
\(720\) 0 0
\(721\) 5.12934 0.191027
\(722\) −20.6426 + 30.0816i −0.768237 + 1.11952i
\(723\) 50.2248i 1.86788i
\(724\) 16.3101 6.28785i 0.606161 0.233686i
\(725\) 0 0
\(726\) −30.6015 20.9994i −1.13573 0.779361i
\(727\) −33.5323 −1.24364 −0.621821 0.783159i \(-0.713607\pi\)
−0.621821 + 0.783159i \(0.713607\pi\)
\(728\) −0.273710 + 1.15104i −0.0101444 + 0.0426604i
\(729\) 40.0322 1.48267
\(730\) 0 0
\(731\) 7.47038i 0.276302i
\(732\) 25.0621 + 65.0088i 0.926322 + 2.40280i
\(733\) 8.77824i 0.324232i 0.986772 + 0.162116i \(0.0518318\pi\)
−0.986772 + 0.162116i \(0.948168\pi\)
\(734\) 4.17264 6.08061i 0.154015 0.224439i
\(735\) 0 0
\(736\) 2.67528 + 19.7701i 0.0986123 + 0.728737i
\(737\) 18.0240 0.663924
\(738\) −13.6747 + 19.9276i −0.503373 + 0.733544i
\(739\) 10.4760i 0.385365i −0.981261 0.192683i \(-0.938281\pi\)
0.981261 0.192683i \(-0.0617187\pi\)
\(740\) 0 0
\(741\) 27.3136i 1.00339i
\(742\) −3.34588 2.29601i −0.122831 0.0842892i
\(743\) 4.29242 0.157474 0.0787368 0.996895i \(-0.474911\pi\)
0.0787368 + 0.996895i \(0.474911\pi\)
\(744\) −5.74209 + 24.1474i −0.210515 + 0.885285i
\(745\) 0 0
\(746\) −14.6925 10.0823i −0.537930 0.369139i
\(747\) 25.4346i 0.930602i
\(748\) 5.20781 2.00771i 0.190417 0.0734091i
\(749\) 2.06779i 0.0755554i
\(750\) 0 0
\(751\) 54.2895 1.98105 0.990526 0.137324i \(-0.0438500\pi\)
0.990526 + 0.137324i \(0.0438500\pi\)
\(752\) 28.3040 25.6331i 1.03214 0.934744i
\(753\) −78.0118 −2.84291
\(754\) 9.61377 14.0097i 0.350113 0.510204i
\(755\) 0 0
\(756\) −1.18658 + 0.457448i −0.0431554 + 0.0166372i
\(757\) 15.6468i 0.568691i 0.958722 + 0.284345i \(0.0917763\pi\)
−0.958722 + 0.284345i \(0.908224\pi\)
\(758\) 1.49727 + 1.02745i 0.0543832 + 0.0373188i
\(759\) −42.4416 −1.54053
\(760\) 0 0
\(761\) 33.5439 1.21597 0.607983 0.793950i \(-0.291979\pi\)
0.607983 + 0.793950i \(0.291979\pi\)
\(762\) 30.0739 + 20.6373i 1.08946 + 0.747611i
\(763\) 0.487815i 0.0176601i
\(764\) 15.5228 + 40.2647i 0.561594 + 1.45673i
\(765\) 0 0
\(766\) −14.6947 + 21.4139i −0.530941 + 0.773717i
\(767\) −15.8871 −0.573649
\(768\) 41.8203 + 4.15190i 1.50906 + 0.149819i
\(769\) −12.1137 −0.436832 −0.218416 0.975856i \(-0.570089\pi\)
−0.218416 + 0.975856i \(0.570089\pi\)
\(770\) 0 0
\(771\) 34.5917i 1.24579i
\(772\) −7.12564 18.4833i −0.256457 0.665227i
\(773\) 29.0451i 1.04468i −0.852737 0.522340i \(-0.825059\pi\)
0.852737 0.522340i \(-0.174941\pi\)
\(774\) −55.7622 38.2651i −2.00433 1.37541i
\(775\) 0 0
\(776\) 10.9843 + 2.61199i 0.394312 + 0.0937650i
\(777\) 3.76764 0.135163
\(778\) −23.9407 16.4286i −0.858315 0.588993i
\(779\) 29.3352i 1.05104i
\(780\) 0 0
\(781\) 31.8716i 1.14045i
\(782\) 1.71892 2.50492i 0.0614686 0.0895756i
\(783\) 18.2630 0.652665
\(784\) 20.5391 18.6009i 0.733538 0.664318i
\(785\) 0 0
\(786\) −10.5204 + 15.3310i −0.375251 + 0.546837i
\(787\) 29.0437i 1.03530i −0.855593 0.517649i \(-0.826807\pi\)
0.855593 0.517649i \(-0.173193\pi\)
\(788\) −17.5016 + 6.74718i −0.623468 + 0.240358i
\(789\) 46.5449i 1.65704i
\(790\) 0 0
\(791\) 0.299601 0.0106526
\(792\) −11.6893 + 49.1574i −0.415362 + 1.74673i
\(793\) 20.6058 0.731734
\(794\) −19.8454 13.6183i −0.704287 0.483296i
\(795\) 0 0
\(796\) −12.1479 31.5105i −0.430570 1.11686i
\(797\) 40.5313i 1.43569i −0.696201 0.717847i \(-0.745128\pi\)
0.696201 0.717847i \(-0.254872\pi\)
\(798\) −3.78744 + 5.51927i −0.134074 + 0.195380i
\(799\) −5.81486 −0.205715
\(800\) 0 0
\(801\) −26.1072 −0.922452
\(802\) 6.10197 8.89213i 0.215468 0.313992i
\(803\) 27.1762i 0.959026i
\(804\) −7.43389 19.2828i −0.262173 0.680053i
\(805\) 0 0
\(806\) 6.05272 + 4.15350i 0.213198 + 0.146301i
\(807\) 4.00415 0.140953
\(808\) 0.236302 0.993728i 0.00831309 0.0349592i
\(809\) 52.0674 1.83059 0.915297 0.402781i \(-0.131956\pi\)
0.915297 + 0.402781i \(0.131956\pi\)
\(810\) 0 0
\(811\) 27.5707i 0.968138i 0.875030 + 0.484069i \(0.160842\pi\)
−0.875030 + 0.484069i \(0.839158\pi\)
\(812\) 3.88531 1.49786i 0.136348 0.0525646i
\(813\) 42.4191i 1.48770i
\(814\) 19.5319 28.4630i 0.684594 0.997629i
\(815\) 0 0
\(816\) −4.29585 4.74346i −0.150385 0.166054i
\(817\) −82.0870 −2.87186
\(818\) 5.90156 8.60009i 0.206343 0.300695i
\(819\) 1.63102i 0.0569923i
\(820\) 0 0
\(821\) 51.8915i 1.81103i −0.424318 0.905513i \(-0.639486\pi\)
0.424318 0.905513i \(-0.360514\pi\)
\(822\) −37.2318 25.5492i −1.29861 0.891132i
\(823\) −42.8229 −1.49271 −0.746356 0.665547i \(-0.768198\pi\)
−0.746356 + 0.665547i \(0.768198\pi\)
\(824\) −52.4237 12.4660i −1.82627 0.434275i
\(825\) 0 0
\(826\) −3.21030 2.20298i −0.111701 0.0766514i
\(827\) 24.7187i 0.859554i 0.902935 + 0.429777i \(0.141408\pi\)
−0.902935 + 0.429777i \(0.858592\pi\)
\(828\) 9.89302 + 25.6616i 0.343806 + 0.891802i
\(829\) 9.70912i 0.337212i 0.985684 + 0.168606i \(0.0539265\pi\)
−0.985684 + 0.168606i \(0.946073\pi\)
\(830\) 0 0
\(831\) −32.4931 −1.12717
\(832\) 5.59484 11.0989i 0.193966 0.384784i
\(833\) −4.21961 −0.146201
\(834\) 16.4324 23.9463i 0.569008 0.829192i
\(835\) 0 0
\(836\) 22.0614 + 57.2252i 0.763008 + 1.97917i
\(837\) 7.89028i 0.272728i
\(838\) 25.7509 + 17.6708i 0.889549 + 0.610427i
\(839\) −15.1090 −0.521620 −0.260810 0.965390i \(-0.583990\pi\)
−0.260810 + 0.965390i \(0.583990\pi\)
\(840\) 0 0
\(841\) −30.8000 −1.06207
\(842\) 34.1057 + 23.4041i 1.17536 + 0.806557i
\(843\) 10.6068i 0.365319i
\(844\) −26.1752 + 10.0910i −0.900987 + 0.347347i
\(845\) 0 0
\(846\) 29.7852 43.4047i 1.02404 1.49228i
\(847\) −2.69003 −0.0924304
\(848\) 28.6160 + 31.5977i 0.982678 + 1.08507i
\(849\) 10.8739 0.373192
\(850\) 0 0
\(851\) 18.7894i 0.644092i
\(852\) 34.0974 13.1452i 1.16816 0.450347i
\(853\) 15.5755i 0.533295i −0.963794 0.266647i \(-0.914084\pi\)
0.963794 0.266647i \(-0.0859159\pi\)
\(854\) 4.16382 + 2.85730i 0.142483 + 0.0977748i
\(855\) 0 0
\(856\) 5.02543 21.1336i 0.171766 0.722330i
\(857\) −24.5547 −0.838773 −0.419386 0.907808i \(-0.637755\pi\)
−0.419386 + 0.907808i \(0.637755\pi\)
\(858\) 21.8020 + 14.9610i 0.744308 + 0.510759i
\(859\) 38.2985i 1.30673i 0.757044 + 0.653363i \(0.226643\pi\)
−0.757044 + 0.653363i \(0.773357\pi\)
\(860\) 0 0
\(861\) 3.09952i 0.105631i
\(862\) −5.59340 + 8.15102i −0.190512 + 0.277625i
\(863\) −45.7916 −1.55876 −0.779382 0.626549i \(-0.784467\pi\)
−0.779382 + 0.626549i \(0.784467\pi\)
\(864\) 13.2390 1.79150i 0.450401 0.0609480i
\(865\) 0 0
\(866\) 15.3065 22.3055i 0.520135 0.757970i
\(867\) 43.6780i 1.48338i
\(868\) 0.647131 + 1.67860i 0.0219650 + 0.0569754i
\(869\) 46.4496i 1.57570i
\(870\) 0 0
\(871\) −6.11207 −0.207100
\(872\) 1.18556 4.98565i 0.0401480 0.168835i
\(873\) 15.5646 0.526783
\(874\) 27.5249 + 18.8881i 0.931042 + 0.638900i
\(875\) 0 0
\(876\) 29.0741 11.2086i 0.982324 0.378704i
\(877\) 42.8419i 1.44667i 0.690499 + 0.723334i \(0.257391\pi\)
−0.690499 + 0.723334i \(0.742609\pi\)
\(878\) −2.23135 + 3.25165i −0.0753043 + 0.109738i
\(879\) −66.3585 −2.23822
\(880\) 0 0
\(881\) 26.0361 0.877180 0.438590 0.898687i \(-0.355478\pi\)
0.438590 + 0.898687i \(0.355478\pi\)
\(882\) 21.6139 31.4970i 0.727777 1.06056i
\(883\) 19.3468i 0.651072i 0.945530 + 0.325536i \(0.105545\pi\)
−0.945530 + 0.325536i \(0.894455\pi\)
\(884\) −1.76600 + 0.680827i −0.0593971 + 0.0228987i
\(885\) 0 0
\(886\) −19.6874 13.5099i −0.661411 0.453874i
\(887\) 26.1028 0.876445 0.438222 0.898867i \(-0.355608\pi\)
0.438222 + 0.898867i \(0.355608\pi\)
\(888\) −38.5067 9.15665i −1.29220 0.307277i
\(889\) 2.64365 0.0886650
\(890\) 0 0
\(891\) 25.1722i 0.843300i
\(892\) 1.48300 + 3.84677i 0.0496545 + 0.128799i
\(893\) 63.8957i 2.13819i
\(894\) 35.7398 52.0821i 1.19532 1.74189i
\(895\) 0 0
\(896\) 2.66957 1.46694i 0.0891841 0.0490071i
\(897\) 14.3922 0.480542
\(898\) −10.5147 + 15.3226i −0.350880 + 0.511323i
\(899\) 25.8358i 0.861672i
\(900\) 0 0
\(901\) 6.49153i 0.216264i
\(902\) 23.4156 + 16.0683i 0.779656 + 0.535016i
\(903\) −8.67321 −0.288626
\(904\) −3.06203 0.728130i −0.101841 0.0242173i
\(905\) 0 0
\(906\) −40.6755 27.9124i −1.35135 0.927327i
\(907\) 47.0568i 1.56249i 0.624222 + 0.781247i \(0.285416\pi\)
−0.624222 + 0.781247i \(0.714584\pi\)
\(908\) −5.84610 + 2.25378i −0.194010 + 0.0747943i
\(909\) 1.40810i 0.0467039i
\(910\) 0 0
\(911\) 57.6189 1.90900 0.954499 0.298214i \(-0.0963909\pi\)
0.954499 + 0.298214i \(0.0963909\pi\)
\(912\) 52.1227 47.2042i 1.72596 1.56309i
\(913\) 29.8866 0.989101
\(914\) 26.7868 39.0353i 0.886029 1.29117i
\(915\) 0 0
\(916\) 31.8620 12.2834i 1.05275 0.405854i
\(917\) 1.34767i 0.0445039i
\(918\) −1.67741 1.15107i −0.0553628 0.0379911i
\(919\) 22.6047 0.745661 0.372830 0.927900i \(-0.378387\pi\)
0.372830 + 0.927900i \(0.378387\pi\)
\(920\) 0 0
\(921\) −28.0239 −0.923418
\(922\) 32.1878 + 22.0879i 1.06005 + 0.727426i
\(923\) 10.8079i 0.355745i
\(924\) 2.33097 + 6.04634i 0.0766834 + 0.198910i
\(925\) 0 0
\(926\) 11.9408 17.4009i 0.392400 0.571828i
\(927\) −74.2840 −2.43981
\(928\) −43.3496 + 5.86605i −1.42302 + 0.192562i
\(929\) 22.2533 0.730108 0.365054 0.930986i \(-0.381050\pi\)
0.365054 + 0.930986i \(0.381050\pi\)
\(930\) 0 0
\(931\) 46.3665i 1.51960i
\(932\) 5.49263 + 14.2474i 0.179917 + 0.466689i
\(933\) 4.67831i 0.153161i
\(934\) 13.8395 + 9.49696i 0.452843 + 0.310750i
\(935\) 0 0
\(936\) 3.96392 16.6696i 0.129565 0.544862i
\(937\) 20.8873 0.682358 0.341179 0.939998i \(-0.389174\pi\)
0.341179 + 0.939998i \(0.389174\pi\)
\(938\) −1.23507 0.847529i −0.0403264 0.0276728i
\(939\) 69.9339i 2.28221i
\(940\) 0 0
\(941\) 13.7530i 0.448335i 0.974551 + 0.224168i \(0.0719664\pi\)
−0.974551 + 0.224168i \(0.928034\pi\)
\(942\) 40.0499 58.3630i 1.30490 1.90157i
\(943\) 15.4574 0.503364
\(944\) 27.4565 + 30.3174i 0.893633 + 0.986746i
\(945\) 0 0
\(946\) −44.9630 + 65.5226i −1.46187 + 2.13032i
\(947\) 31.2715i 1.01619i −0.861302 0.508094i \(-0.830350\pi\)
0.861302 0.508094i \(-0.169650\pi\)
\(948\) 49.6936 19.1578i 1.61397 0.622217i
\(949\) 9.21562i 0.299152i
\(950\) 0 0
\(951\) 24.0695 0.780508
\(952\) −0.451263 0.107308i −0.0146255 0.00347786i
\(953\) −26.2447 −0.850150 −0.425075 0.905158i \(-0.639752\pi\)
−0.425075 + 0.905158i \(0.639752\pi\)
\(954\) 48.4556 + 33.2512i 1.56881 + 1.07655i
\(955\) 0 0
\(956\) −3.54032 9.18327i −0.114502 0.297008i
\(957\) 93.0609i 3.00823i
\(958\) 12.3568 18.0070i 0.399229 0.581780i
\(959\) −3.27286 −0.105686
\(960\) 0 0
\(961\) −19.8380 −0.639935
\(962\) −6.62340 + 9.65200i −0.213547 + 0.311193i
\(963\) 29.9461i 0.964998i
\(964\) −13.7565 35.6830i −0.443066 1.14927i
\(965\) 0 0
\(966\) 2.90824 + 1.99569i 0.0935711 + 0.0642104i
\(967\) −18.5089 −0.595208 −0.297604 0.954689i \(-0.596187\pi\)
−0.297604 + 0.954689i \(0.596187\pi\)
\(968\) 27.4931 + 6.53767i 0.883660 + 0.210129i
\(969\) −10.7083 −0.343999
\(970\) 0 0
\(971\) 16.7762i 0.538373i −0.963088 0.269187i \(-0.913245\pi\)
0.963088 0.269187i \(-0.0867548\pi\)
\(972\) −40.1518 + 15.4793i −1.28787 + 0.496497i
\(973\) 2.10500i 0.0674831i
\(974\) 6.06673 8.84078i 0.194390 0.283277i
\(975\) 0 0
\(976\) −35.6116 39.3221i −1.13990 1.25867i
\(977\) 11.2815 0.360926 0.180463 0.983582i \(-0.442240\pi\)
0.180463 + 0.983582i \(0.442240\pi\)
\(978\) 35.1314 51.1955i 1.12338 1.63705i
\(979\) 30.6769i 0.980438i
\(980\) 0 0
\(981\) 7.06462i 0.225556i
\(982\) 6.47761 + 4.44507i 0.206709 + 0.141848i
\(983\) 28.6404 0.913488 0.456744 0.889598i \(-0.349016\pi\)
0.456744 + 0.889598i \(0.349016\pi\)
\(984\) 7.53288 31.6782i 0.240140 1.00987i
\(985\) 0 0
\(986\) 5.49248 + 3.76906i 0.174916 + 0.120031i
\(987\) 6.75113i 0.214891i
\(988\) −7.48115 19.4054i −0.238007 0.617369i
\(989\) 43.2537i 1.37539i
\(990\) 0 0
\(991\) −17.4805 −0.555287 −0.277643 0.960684i \(-0.589553\pi\)
−0.277643 + 0.960684i \(0.589553\pi\)
\(992\) −2.53435 18.7286i −0.0804657 0.594635i
\(993\) −20.5774 −0.653005
\(994\) 1.49867 2.18394i 0.0475349 0.0692705i
\(995\) 0 0
\(996\) −12.3265 31.9738i −0.390580 1.01313i
\(997\) 17.6990i 0.560533i 0.959922 + 0.280266i \(0.0904228\pi\)
−0.959922 + 0.280266i \(0.909577\pi\)
\(998\) 16.4650 + 11.2986i 0.521190 + 0.357651i
\(999\) −12.5823 −0.398086
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.29 yes 40
4.3 odd 2 4000.2.d.c.2001.13 40
5.2 odd 4 1000.2.f.d.749.16 20
5.3 odd 4 1000.2.f.c.749.5 20
5.4 even 2 inner 1000.2.d.c.501.12 yes 40
8.3 odd 2 4000.2.d.c.2001.14 40
8.5 even 2 inner 1000.2.d.c.501.30 yes 40
20.3 even 4 4000.2.f.c.3249.20 20
20.7 even 4 4000.2.f.d.3249.1 20
20.19 odd 2 4000.2.d.c.2001.28 40
40.3 even 4 4000.2.f.d.3249.2 20
40.13 odd 4 1000.2.f.d.749.15 20
40.19 odd 2 4000.2.d.c.2001.27 40
40.27 even 4 4000.2.f.c.3249.19 20
40.29 even 2 inner 1000.2.d.c.501.11 40
40.37 odd 4 1000.2.f.c.749.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.11 40 40.29 even 2 inner
1000.2.d.c.501.12 yes 40 5.4 even 2 inner
1000.2.d.c.501.29 yes 40 1.1 even 1 trivial
1000.2.d.c.501.30 yes 40 8.5 even 2 inner
1000.2.f.c.749.5 20 5.3 odd 4
1000.2.f.c.749.6 20 40.37 odd 4
1000.2.f.d.749.15 20 40.13 odd 4
1000.2.f.d.749.16 20 5.2 odd 4
4000.2.d.c.2001.13 40 4.3 odd 2
4000.2.d.c.2001.14 40 8.3 odd 2
4000.2.d.c.2001.27 40 40.19 odd 2
4000.2.d.c.2001.28 40 20.19 odd 2
4000.2.f.c.3249.19 20 40.27 even 4
4000.2.f.c.3249.20 20 20.3 even 4
4000.2.f.d.3249.1 20 20.7 even 4
4000.2.f.d.3249.2 20 40.3 even 4