Properties

Label 1000.2.m.b.801.2
Level $1000$
Weight $2$
Character 1000.801
Analytic conductor $7.985$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(201,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.58140625.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 4x^{6} - 7x^{5} + 11x^{4} + 5x^{3} - 10x^{2} - 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 801.2
Root \(1.17421 + 0.0566033i\) of defining polynomial
Character \(\chi\) \(=\) 1000.801
Dual form 1000.2.m.b.201.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.190983 - 0.587785i) q^{3} +0.833366 q^{7} +(2.11803 + 1.53884i) q^{9} +(1.45608 - 1.05790i) q^{11} +(-0.892334 - 0.648319i) q^{13} +(0.642383 + 1.97705i) q^{17} +(1.28187 + 3.94520i) q^{19} +(0.159159 - 0.489840i) q^{21} +(2.07411 - 1.50693i) q^{23} +(2.80902 - 2.04087i) q^{27} +(-0.740748 + 2.27979i) q^{29} +(-2.74075 - 8.43516i) q^{31} +(-0.343734 - 1.05790i) q^{33} +(8.69331 + 6.31606i) q^{37} +(-0.551493 + 0.400683i) q^{39} +(-1.51037 - 1.09735i) q^{41} +11.0324 q^{43} +(-0.628402 + 1.93402i) q^{47} -6.30550 q^{49} +1.28477 q^{51} +(2.08052 - 6.40319i) q^{53} +2.56375 q^{57} +(10.8178 + 7.85956i) q^{59} +(-0.601258 + 0.436839i) q^{61} +(1.76510 + 1.28242i) q^{63} +(-1.37160 - 4.22134i) q^{67} +(-0.489632 - 1.50693i) q^{69} +(3.32523 - 10.2340i) q^{71} +(3.01794 - 2.19266i) q^{73} +(1.21345 - 0.881621i) q^{77} +(3.96818 - 12.2128i) q^{79} +(1.76393 + 5.42882i) q^{81} +(-2.49532 - 7.67980i) q^{83} +(1.19856 + 0.870802i) q^{87} +(-8.54813 + 6.21058i) q^{89} +(-0.743641 - 0.540287i) q^{91} -5.48150 q^{93} +(-3.03299 + 9.33458i) q^{97} +4.71197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} - 4 q^{7} + 8 q^{9} - 2 q^{11} - 8 q^{13} - 10 q^{17} + 3 q^{19} - 3 q^{21} - 6 q^{23} + 18 q^{27} + 6 q^{29} - 10 q^{31} + 16 q^{33} + 2 q^{37} - q^{39} - 4 q^{41} + 12 q^{43} + 12 q^{47}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.190983 0.587785i 0.110264 0.339358i −0.880666 0.473738i \(-0.842904\pi\)
0.990930 + 0.134380i \(0.0429043\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.833366 0.314983 0.157491 0.987520i \(-0.449659\pi\)
0.157491 + 0.987520i \(0.449659\pi\)
\(8\) 0 0
\(9\) 2.11803 + 1.53884i 0.706011 + 0.512947i
\(10\) 0 0
\(11\) 1.45608 1.05790i 0.439025 0.318970i −0.346223 0.938152i \(-0.612536\pi\)
0.785247 + 0.619182i \(0.212536\pi\)
\(12\) 0 0
\(13\) −0.892334 0.648319i −0.247489 0.179811i 0.457124 0.889403i \(-0.348879\pi\)
−0.704613 + 0.709592i \(0.748879\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.642383 + 1.97705i 0.155801 + 0.479505i 0.998241 0.0592843i \(-0.0188818\pi\)
−0.842440 + 0.538789i \(0.818882\pi\)
\(18\) 0 0
\(19\) 1.28187 + 3.94520i 0.294082 + 0.905091i 0.983528 + 0.180754i \(0.0578538\pi\)
−0.689447 + 0.724337i \(0.742146\pi\)
\(20\) 0 0
\(21\) 0.159159 0.489840i 0.0347313 0.106892i
\(22\) 0 0
\(23\) 2.07411 1.50693i 0.432483 0.314217i −0.350158 0.936691i \(-0.613872\pi\)
0.782641 + 0.622474i \(0.213872\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.80902 2.04087i 0.540596 0.392766i
\(28\) 0 0
\(29\) −0.740748 + 2.27979i −0.137553 + 0.423346i −0.995978 0.0895931i \(-0.971443\pi\)
0.858425 + 0.512939i \(0.171443\pi\)
\(30\) 0 0
\(31\) −2.74075 8.43516i −0.492253 1.51500i −0.821195 0.570648i \(-0.806692\pi\)
0.328942 0.944350i \(-0.393308\pi\)
\(32\) 0 0
\(33\) −0.343734 1.05790i −0.0598364 0.184157i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.69331 + 6.31606i 1.42917 + 1.03835i 0.990170 + 0.139868i \(0.0446678\pi\)
0.439002 + 0.898486i \(0.355332\pi\)
\(38\) 0 0
\(39\) −0.551493 + 0.400683i −0.0883095 + 0.0641606i
\(40\) 0 0
\(41\) −1.51037 1.09735i −0.235880 0.171377i 0.463566 0.886062i \(-0.346570\pi\)
−0.699446 + 0.714686i \(0.746570\pi\)
\(42\) 0 0
\(43\) 11.0324 1.68243 0.841215 0.540701i \(-0.181841\pi\)
0.841215 + 0.540701i \(0.181841\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.628402 + 1.93402i −0.0916619 + 0.282106i −0.986369 0.164546i \(-0.947384\pi\)
0.894707 + 0.446653i \(0.147384\pi\)
\(48\) 0 0
\(49\) −6.30550 −0.900786
\(50\) 0 0
\(51\) 1.28477 0.179903
\(52\) 0 0
\(53\) 2.08052 6.40319i 0.285782 0.879545i −0.700382 0.713769i \(-0.746987\pi\)
0.986163 0.165777i \(-0.0530132\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.56375 0.339576
\(58\) 0 0
\(59\) 10.8178 + 7.85956i 1.40835 + 1.02323i 0.993560 + 0.113311i \(0.0361457\pi\)
0.414792 + 0.909916i \(0.363854\pi\)
\(60\) 0 0
\(61\) −0.601258 + 0.436839i −0.0769832 + 0.0559316i −0.625611 0.780135i \(-0.715150\pi\)
0.548628 + 0.836067i \(0.315150\pi\)
\(62\) 0 0
\(63\) 1.76510 + 1.28242i 0.222381 + 0.161569i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.37160 4.22134i −0.167567 0.515719i 0.831649 0.555302i \(-0.187397\pi\)
−0.999216 + 0.0395825i \(0.987397\pi\)
\(68\) 0 0
\(69\) −0.489632 1.50693i −0.0589447 0.181413i
\(70\) 0 0
\(71\) 3.32523 10.2340i 0.394632 1.21455i −0.534615 0.845095i \(-0.679544\pi\)
0.929248 0.369458i \(-0.120456\pi\)
\(72\) 0 0
\(73\) 3.01794 2.19266i 0.353223 0.256632i −0.396997 0.917820i \(-0.629948\pi\)
0.750220 + 0.661188i \(0.229948\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.21345 0.881621i 0.138285 0.100470i
\(78\) 0 0
\(79\) 3.96818 12.2128i 0.446455 1.37405i −0.434426 0.900708i \(-0.643049\pi\)
0.880881 0.473339i \(-0.156951\pi\)
\(80\) 0 0
\(81\) 1.76393 + 5.42882i 0.195992 + 0.603203i
\(82\) 0 0
\(83\) −2.49532 7.67980i −0.273897 0.842968i −0.989509 0.144470i \(-0.953852\pi\)
0.715612 0.698498i \(-0.246148\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.19856 + 0.870802i 0.128499 + 0.0933597i
\(88\) 0 0
\(89\) −8.54813 + 6.21058i −0.906100 + 0.658321i −0.940026 0.341104i \(-0.889199\pi\)
0.0339252 + 0.999424i \(0.489199\pi\)
\(90\) 0 0
\(91\) −0.743641 0.540287i −0.0779547 0.0566374i
\(92\) 0 0
\(93\) −5.48150 −0.568405
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −3.03299 + 9.33458i −0.307953 + 0.947783i 0.670605 + 0.741814i \(0.266034\pi\)
−0.978559 + 0.205969i \(0.933966\pi\)
\(98\) 0 0
\(99\) 4.71197 0.473571
\(100\) 0 0
\(101\) −4.87628 −0.485208 −0.242604 0.970125i \(-0.578002\pi\)
−0.242604 + 0.970125i \(0.578002\pi\)
\(102\) 0 0
\(103\) −3.87845 + 11.9366i −0.382155 + 1.17615i 0.556368 + 0.830936i \(0.312194\pi\)
−0.938523 + 0.345216i \(0.887806\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.1540 −1.46499 −0.732497 0.680770i \(-0.761645\pi\)
−0.732497 + 0.680770i \(0.761645\pi\)
\(108\) 0 0
\(109\) 10.6005 + 7.70174i 1.01535 + 0.737693i 0.965324 0.261055i \(-0.0840704\pi\)
0.0500235 + 0.998748i \(0.484070\pi\)
\(110\) 0 0
\(111\) 5.37276 3.90354i 0.509960 0.370508i
\(112\) 0 0
\(113\) −7.25589 5.27172i −0.682577 0.495921i 0.191635 0.981466i \(-0.438621\pi\)
−0.874212 + 0.485545i \(0.838621\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.892334 2.74632i −0.0824963 0.253898i
\(118\) 0 0
\(119\) 0.535340 + 1.64761i 0.0490745 + 0.151036i
\(120\) 0 0
\(121\) −2.39818 + 7.38084i −0.218016 + 0.670985i
\(122\) 0 0
\(123\) −0.933459 + 0.678198i −0.0841671 + 0.0611510i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.2785 7.46778i 0.912071 0.662658i −0.0294670 0.999566i \(-0.509381\pi\)
0.941538 + 0.336908i \(0.109381\pi\)
\(128\) 0 0
\(129\) 2.10701 6.48470i 0.185512 0.570946i
\(130\) 0 0
\(131\) 2.04046 + 6.27990i 0.178276 + 0.548678i 0.999768 0.0215426i \(-0.00685777\pi\)
−0.821492 + 0.570220i \(0.806858\pi\)
\(132\) 0 0
\(133\) 1.06827 + 3.28779i 0.0926307 + 0.285088i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.548854 0.398766i −0.0468918 0.0340689i 0.564092 0.825712i \(-0.309226\pi\)
−0.610984 + 0.791643i \(0.709226\pi\)
\(138\) 0 0
\(139\) −1.85573 + 1.34827i −0.157401 + 0.114359i −0.663698 0.748001i \(-0.731014\pi\)
0.506297 + 0.862359i \(0.331014\pi\)
\(140\) 0 0
\(141\) 1.01678 + 0.738731i 0.0856280 + 0.0622124i
\(142\) 0 0
\(143\) −1.98517 −0.166008
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.20424 + 3.70628i −0.0993243 + 0.305689i
\(148\) 0 0
\(149\) −23.5046 −1.92557 −0.962784 0.270271i \(-0.912887\pi\)
−0.962784 + 0.270271i \(0.912887\pi\)
\(150\) 0 0
\(151\) −0.497767 −0.0405077 −0.0202539 0.999795i \(-0.506447\pi\)
−0.0202539 + 0.999795i \(0.506447\pi\)
\(152\) 0 0
\(153\) −1.68178 + 5.17599i −0.135964 + 0.418454i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.32045 −0.584236 −0.292118 0.956382i \(-0.594360\pi\)
−0.292118 + 0.956382i \(0.594360\pi\)
\(158\) 0 0
\(159\) −3.36635 2.44580i −0.266969 0.193965i
\(160\) 0 0
\(161\) 1.72850 1.25583i 0.136225 0.0989729i
\(162\) 0 0
\(163\) 14.2778 + 10.3734i 1.11832 + 0.812509i 0.983954 0.178422i \(-0.0570992\pi\)
0.134369 + 0.990931i \(0.457099\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.11524 18.8208i −0.473211 1.45639i −0.848355 0.529428i \(-0.822407\pi\)
0.375143 0.926967i \(-0.377593\pi\)
\(168\) 0 0
\(169\) −3.64128 11.2067i −0.280098 0.862054i
\(170\) 0 0
\(171\) −3.35599 + 10.3287i −0.256639 + 0.789853i
\(172\) 0 0
\(173\) −2.58169 + 1.87571i −0.196282 + 0.142607i −0.681585 0.731739i \(-0.738709\pi\)
0.485303 + 0.874346i \(0.338709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.68574 4.85747i 0.502531 0.365110i
\(178\) 0 0
\(179\) 5.10054 15.6978i 0.381232 1.17331i −0.557945 0.829878i \(-0.688410\pi\)
0.939177 0.343434i \(-0.111590\pi\)
\(180\) 0 0
\(181\) 3.29585 + 10.1436i 0.244979 + 0.753967i 0.995640 + 0.0932799i \(0.0297351\pi\)
−0.750661 + 0.660687i \(0.770265\pi\)
\(182\) 0 0
\(183\) 0.141938 + 0.436839i 0.0104923 + 0.0322921i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.02689 + 2.19916i 0.221348 + 0.160819i
\(188\) 0 0
\(189\) 2.34094 1.70079i 0.170278 0.123714i
\(190\) 0 0
\(191\) −0.398022 0.289180i −0.0287999 0.0209243i 0.573292 0.819351i \(-0.305666\pi\)
−0.602092 + 0.798427i \(0.705666\pi\)
\(192\) 0 0
\(193\) −16.6968 −1.20186 −0.600932 0.799300i \(-0.705204\pi\)
−0.600932 + 0.799300i \(0.705204\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.32005 + 10.2180i −0.236543 + 0.728006i 0.760370 + 0.649491i \(0.225018\pi\)
−0.996913 + 0.0785151i \(0.974982\pi\)
\(198\) 0 0
\(199\) −12.8786 −0.912940 −0.456470 0.889739i \(-0.650886\pi\)
−0.456470 + 0.889739i \(0.650886\pi\)
\(200\) 0 0
\(201\) −2.74320 −0.193490
\(202\) 0 0
\(203\) −0.617314 + 1.89990i −0.0433270 + 0.133347i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.71197 0.466514
\(208\) 0 0
\(209\) 6.04015 + 4.38843i 0.417806 + 0.303554i
\(210\) 0 0
\(211\) −21.4185 + 15.5615i −1.47451 + 1.07130i −0.495240 + 0.868756i \(0.664920\pi\)
−0.979274 + 0.202540i \(0.935080\pi\)
\(212\) 0 0
\(213\) −5.38034 3.90904i −0.368655 0.267843i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.28405 7.02957i −0.155051 0.477198i
\(218\) 0 0
\(219\) −0.712439 2.19266i −0.0481422 0.148166i
\(220\) 0 0
\(221\) 0.708539 2.18066i 0.0476615 0.146687i
\(222\) 0 0
\(223\) −16.4494 + 11.9512i −1.10153 + 0.800309i −0.981309 0.192438i \(-0.938361\pi\)
−0.120222 + 0.992747i \(0.538361\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.5859 + 9.14419i −0.835356 + 0.606921i −0.921069 0.389398i \(-0.872683\pi\)
0.0857138 + 0.996320i \(0.472683\pi\)
\(228\) 0 0
\(229\) 6.37276 19.6133i 0.421124 1.29609i −0.485533 0.874218i \(-0.661374\pi\)
0.906657 0.421868i \(-0.138626\pi\)
\(230\) 0 0
\(231\) −0.286456 0.881621i −0.0188474 0.0580064i
\(232\) 0 0
\(233\) 6.73211 + 20.7193i 0.441035 + 1.35737i 0.886774 + 0.462203i \(0.152941\pi\)
−0.445739 + 0.895163i \(0.647059\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6.42064 4.66487i −0.417066 0.303016i
\(238\) 0 0
\(239\) −19.2533 + 13.9883i −1.24539 + 0.904830i −0.997945 0.0640715i \(-0.979591\pi\)
−0.247446 + 0.968902i \(0.579591\pi\)
\(240\) 0 0
\(241\) 9.80377 + 7.12286i 0.631517 + 0.458824i 0.856925 0.515441i \(-0.172372\pi\)
−0.225409 + 0.974264i \(0.572372\pi\)
\(242\) 0 0
\(243\) 13.9443 0.894525
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.41389 4.35150i 0.0899635 0.276879i
\(248\) 0 0
\(249\) −4.99064 −0.316269
\(250\) 0 0
\(251\) 7.11071 0.448824 0.224412 0.974494i \(-0.427954\pi\)
0.224412 + 0.974494i \(0.427954\pi\)
\(252\) 0 0
\(253\) 1.42589 4.38843i 0.0896447 0.275898i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −25.6564 −1.60040 −0.800202 0.599730i \(-0.795275\pi\)
−0.800202 + 0.599730i \(0.795275\pi\)
\(258\) 0 0
\(259\) 7.24471 + 5.26359i 0.450164 + 0.327063i
\(260\) 0 0
\(261\) −5.07716 + 3.68878i −0.314269 + 0.228329i
\(262\) 0 0
\(263\) −20.1357 14.6294i −1.24162 0.902089i −0.243913 0.969797i \(-0.578431\pi\)
−0.997705 + 0.0677085i \(0.978431\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.01794 + 6.21058i 0.123496 + 0.380082i
\(268\) 0 0
\(269\) 0.748944 + 2.30501i 0.0456639 + 0.140539i 0.971289 0.237903i \(-0.0764600\pi\)
−0.925625 + 0.378442i \(0.876460\pi\)
\(270\) 0 0
\(271\) −2.44851 + 7.53573i −0.148736 + 0.457763i −0.997473 0.0710533i \(-0.977364\pi\)
0.848736 + 0.528816i \(0.177364\pi\)
\(272\) 0 0
\(273\) −0.459595 + 0.333915i −0.0278160 + 0.0202095i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.36259 4.62269i 0.382291 0.277750i −0.379998 0.924987i \(-0.624075\pi\)
0.762289 + 0.647237i \(0.224075\pi\)
\(278\) 0 0
\(279\) 7.17537 22.0835i 0.429578 1.32211i
\(280\) 0 0
\(281\) −3.84952 11.8476i −0.229643 0.706769i −0.997787 0.0664914i \(-0.978819\pi\)
0.768144 0.640277i \(-0.221181\pi\)
\(282\) 0 0
\(283\) −4.28071 13.1747i −0.254462 0.783153i −0.993935 0.109967i \(-0.964926\pi\)
0.739474 0.673186i \(-0.235074\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.25869 0.914491i −0.0742981 0.0539807i
\(288\) 0 0
\(289\) 10.2572 7.45230i 0.603366 0.438371i
\(290\) 0 0
\(291\) 4.90748 + 3.56549i 0.287682 + 0.209013i
\(292\) 0 0
\(293\) −9.26026 −0.540990 −0.270495 0.962721i \(-0.587187\pi\)
−0.270495 + 0.962721i \(0.587187\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.93111 5.94334i 0.112054 0.344868i
\(298\) 0 0
\(299\) −2.82777 −0.163534
\(300\) 0 0
\(301\) 9.19405 0.529936
\(302\) 0 0
\(303\) −0.931286 + 2.86620i −0.0535010 + 0.164659i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −22.6968 −1.29538 −0.647688 0.761906i \(-0.724264\pi\)
−0.647688 + 0.761906i \(0.724264\pi\)
\(308\) 0 0
\(309\) 6.27546 + 4.55939i 0.356999 + 0.259375i
\(310\) 0 0
\(311\) 8.39548 6.09967i 0.476064 0.345881i −0.323736 0.946148i \(-0.604939\pi\)
0.799800 + 0.600267i \(0.204939\pi\)
\(312\) 0 0
\(313\) 13.7311 + 9.97621i 0.776126 + 0.563889i 0.903814 0.427926i \(-0.140755\pi\)
−0.127688 + 0.991814i \(0.540755\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.99658 18.4556i −0.336802 1.03657i −0.965828 0.259185i \(-0.916546\pi\)
0.629026 0.777384i \(-0.283454\pi\)
\(318\) 0 0
\(319\) 1.33321 + 4.10319i 0.0746454 + 0.229735i
\(320\) 0 0
\(321\) −2.89416 + 8.90731i −0.161536 + 0.497157i
\(322\) 0 0
\(323\) −6.97641 + 5.06865i −0.388178 + 0.282028i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6.55149 4.75994i 0.362298 0.263225i
\(328\) 0 0
\(329\) −0.523689 + 1.61175i −0.0288719 + 0.0888586i
\(330\) 0 0
\(331\) 2.56085 + 7.88150i 0.140757 + 0.433206i 0.996441 0.0842928i \(-0.0268631\pi\)
−0.855684 + 0.517499i \(0.826863\pi\)
\(332\) 0 0
\(333\) 8.69331 + 26.7553i 0.476391 + 1.46618i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.66048 + 4.83912i 0.362819 + 0.263604i 0.754227 0.656614i \(-0.228012\pi\)
−0.391408 + 0.920217i \(0.628012\pi\)
\(338\) 0 0
\(339\) −4.48439 + 3.25810i −0.243559 + 0.176956i
\(340\) 0 0
\(341\) −12.9143 9.38281i −0.699350 0.508108i
\(342\) 0 0
\(343\) −11.0883 −0.598715
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.16394 + 18.9706i −0.330897 + 1.01840i 0.637810 + 0.770193i \(0.279840\pi\)
−0.968708 + 0.248204i \(0.920160\pi\)
\(348\) 0 0
\(349\) 4.67641 0.250322 0.125161 0.992136i \(-0.460055\pi\)
0.125161 + 0.992136i \(0.460055\pi\)
\(350\) 0 0
\(351\) −3.82972 −0.204415
\(352\) 0 0
\(353\) 7.67782 23.6299i 0.408649 1.25769i −0.509160 0.860672i \(-0.670044\pi\)
0.917810 0.397021i \(-0.129956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.07068 0.0566664
\(358\) 0 0
\(359\) −15.2461 11.0770i −0.804660 0.584620i 0.107618 0.994192i \(-0.465678\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(360\) 0 0
\(361\) 1.44993 1.05343i 0.0763119 0.0554438i
\(362\) 0 0
\(363\) 3.88034 + 2.81923i 0.203665 + 0.147971i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.00893 9.26053i −0.157065 0.483396i 0.841299 0.540569i \(-0.181791\pi\)
−0.998364 + 0.0571736i \(0.981791\pi\)
\(368\) 0 0
\(369\) −1.51037 4.64844i −0.0786266 0.241988i
\(370\) 0 0
\(371\) 1.73384 5.33620i 0.0900162 0.277042i
\(372\) 0 0
\(373\) 23.5821 17.1334i 1.22104 0.887135i 0.224851 0.974393i \(-0.427811\pi\)
0.996186 + 0.0872583i \(0.0278105\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.13902 1.55409i 0.110165 0.0800398i
\(378\) 0 0
\(379\) 1.87942 5.78426i 0.0965394 0.297118i −0.891112 0.453783i \(-0.850074\pi\)
0.987652 + 0.156665i \(0.0500743\pi\)
\(380\) 0 0
\(381\) −2.42643 7.46778i −0.124310 0.382586i
\(382\) 0 0
\(383\) −9.76498 30.0535i −0.498967 1.53566i −0.810682 0.585487i \(-0.800903\pi\)
0.311715 0.950176i \(-0.399097\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 23.3671 + 16.9772i 1.18781 + 0.862997i
\(388\) 0 0
\(389\) −4.83362 + 3.51183i −0.245074 + 0.178057i −0.703541 0.710655i \(-0.748399\pi\)
0.458467 + 0.888712i \(0.348399\pi\)
\(390\) 0 0
\(391\) 4.31166 + 3.13260i 0.218050 + 0.158422i
\(392\) 0 0
\(393\) 4.08093 0.205856
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.501105 1.54224i 0.0251497 0.0774029i −0.937694 0.347462i \(-0.887043\pi\)
0.962844 + 0.270060i \(0.0870434\pi\)
\(398\) 0 0
\(399\) 2.13654 0.106961
\(400\) 0 0
\(401\) −5.63644 −0.281470 −0.140735 0.990047i \(-0.544947\pi\)
−0.140735 + 0.990047i \(0.544947\pi\)
\(402\) 0 0
\(403\) −3.02301 + 9.30386i −0.150587 + 0.463458i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19.3399 0.958645
\(408\) 0 0
\(409\) 26.8187 + 19.4849i 1.32610 + 0.963468i 0.999835 + 0.0181896i \(0.00579024\pi\)
0.326265 + 0.945278i \(0.394210\pi\)
\(410\) 0 0
\(411\) −0.339211 + 0.246451i −0.0167320 + 0.0121565i
\(412\) 0 0
\(413\) 9.01515 + 6.54989i 0.443606 + 0.322299i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.438079 + 1.34827i 0.0214528 + 0.0660250i
\(418\) 0 0
\(419\) 7.32237 + 22.5360i 0.357721 + 1.10095i 0.954415 + 0.298484i \(0.0964809\pi\)
−0.596693 + 0.802469i \(0.703519\pi\)
\(420\) 0 0
\(421\) 3.01571 9.28140i 0.146977 0.452348i −0.850283 0.526325i \(-0.823569\pi\)
0.997260 + 0.0739778i \(0.0235694\pi\)
\(422\) 0 0
\(423\) −4.30713 + 3.12931i −0.209420 + 0.152152i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.501068 + 0.364047i −0.0242484 + 0.0176175i
\(428\) 0 0
\(429\) −0.379133 + 1.16685i −0.0183047 + 0.0563362i
\(430\) 0 0
\(431\) −4.37321 13.4593i −0.210650 0.648314i −0.999434 0.0336434i \(-0.989289\pi\)
0.788784 0.614671i \(-0.210711\pi\)
\(432\) 0 0
\(433\) 0.156266 + 0.480938i 0.00750967 + 0.0231124i 0.954741 0.297438i \(-0.0961322\pi\)
−0.947231 + 0.320550i \(0.896132\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.60390 + 6.25110i 0.411580 + 0.299031i
\(438\) 0 0
\(439\) −29.9702 + 21.7746i −1.43040 + 1.03925i −0.440457 + 0.897774i \(0.645184\pi\)
−0.989942 + 0.141472i \(0.954816\pi\)
\(440\) 0 0
\(441\) −13.3553 9.70317i −0.635965 0.462056i
\(442\) 0 0
\(443\) 20.7271 0.984775 0.492388 0.870376i \(-0.336124\pi\)
0.492388 + 0.870376i \(0.336124\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4.48897 + 13.8156i −0.212321 + 0.653457i
\(448\) 0 0
\(449\) −6.56029 −0.309599 −0.154800 0.987946i \(-0.549473\pi\)
−0.154800 + 0.987946i \(0.549473\pi\)
\(450\) 0 0
\(451\) −3.36010 −0.158221
\(452\) 0 0
\(453\) −0.0950651 + 0.292580i −0.00446655 + 0.0137466i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.9369 1.35361 0.676805 0.736163i \(-0.263364\pi\)
0.676805 + 0.736163i \(0.263364\pi\)
\(458\) 0 0
\(459\) 5.83937 + 4.24255i 0.272558 + 0.198025i
\(460\) 0 0
\(461\) 27.5079 19.9856i 1.28117 0.930824i 0.281581 0.959537i \(-0.409141\pi\)
0.999588 + 0.0287136i \(0.00914107\pi\)
\(462\) 0 0
\(463\) −2.13334 1.54996i −0.0991445 0.0720327i 0.537108 0.843513i \(-0.319517\pi\)
−0.636253 + 0.771480i \(0.719517\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.9619 + 36.8148i 0.553529 + 1.70359i 0.699796 + 0.714342i \(0.253274\pi\)
−0.146267 + 0.989245i \(0.546726\pi\)
\(468\) 0 0
\(469\) −1.14304 3.51792i −0.0527808 0.162443i
\(470\) 0 0
\(471\) −1.39808 + 4.30285i −0.0644202 + 0.198265i
\(472\) 0 0
\(473\) 16.0641 11.6712i 0.738628 0.536645i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 14.2601 10.3606i 0.652925 0.474378i
\(478\) 0 0
\(479\) −2.49231 + 7.67054i −0.113877 + 0.350476i −0.991711 0.128488i \(-0.958988\pi\)
0.877835 + 0.478964i \(0.158988\pi\)
\(480\) 0 0
\(481\) −3.66252 11.2721i −0.166996 0.513962i
\(482\) 0 0
\(483\) −0.408042 1.25583i −0.0185666 0.0571420i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.04666 + 4.39316i 0.274000 + 0.199073i 0.716296 0.697796i \(-0.245836\pi\)
−0.442296 + 0.896869i \(0.645836\pi\)
\(488\) 0 0
\(489\) 8.82416 6.41113i 0.399042 0.289921i
\(490\) 0 0
\(491\) −5.51407 4.00621i −0.248847 0.180798i 0.456369 0.889791i \(-0.349150\pi\)
−0.705216 + 0.708993i \(0.749150\pi\)
\(492\) 0 0
\(493\) −4.98310 −0.224428
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.77113 8.52867i 0.124302 0.382563i
\(498\) 0 0
\(499\) 19.5176 0.873727 0.436863 0.899528i \(-0.356089\pi\)
0.436863 + 0.899528i \(0.356089\pi\)
\(500\) 0 0
\(501\) −12.2305 −0.546417
\(502\) 0 0
\(503\) 4.30626 13.2533i 0.192007 0.590935i −0.807992 0.589194i \(-0.799446\pi\)
0.999998 0.00174190i \(-0.000554465\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7.28256 −0.323430
\(508\) 0 0
\(509\) 18.8189 + 13.6727i 0.834134 + 0.606034i 0.920726 0.390210i \(-0.127598\pi\)
−0.0865919 + 0.996244i \(0.527598\pi\)
\(510\) 0 0
\(511\) 2.51505 1.82729i 0.111259 0.0808345i
\(512\) 0 0
\(513\) 11.6524 + 8.46599i 0.514468 + 0.373783i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.13101 + 3.48088i 0.0497416 + 0.153089i
\(518\) 0 0
\(519\) 0.609454 + 1.87571i 0.0267520 + 0.0823343i
\(520\) 0 0
\(521\) 13.4660 41.4440i 0.589955 1.81570i 0.0115690 0.999933i \(-0.496317\pi\)
0.578386 0.815763i \(-0.303683\pi\)
\(522\) 0 0
\(523\) 6.31766 4.59005i 0.276252 0.200709i −0.441029 0.897493i \(-0.645386\pi\)
0.717281 + 0.696784i \(0.245386\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.9161 10.8372i 0.649756 0.472076i
\(528\) 0 0
\(529\) −5.07629 + 15.6232i −0.220708 + 0.679270i
\(530\) 0 0
\(531\) 10.8178 + 33.2936i 0.469451 + 1.44482i
\(532\) 0 0
\(533\) 0.636323 + 1.95840i 0.0275622 + 0.0848277i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8.25284 5.99604i −0.356137 0.258748i
\(538\) 0 0
\(539\) −9.18131 + 6.67061i −0.395467 + 0.287324i
\(540\) 0 0
\(541\) 20.8579 + 15.1541i 0.896749 + 0.651526i 0.937629 0.347638i \(-0.113016\pi\)
−0.0408799 + 0.999164i \(0.513016\pi\)
\(542\) 0 0
\(543\) 6.59171 0.282877
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7.40053 22.7765i 0.316424 0.973852i −0.658741 0.752370i \(-0.728911\pi\)
0.975164 0.221482i \(-0.0710895\pi\)
\(548\) 0 0
\(549\) −1.94571 −0.0830410
\(550\) 0 0
\(551\) −9.94376 −0.423619
\(552\) 0 0
\(553\) 3.30694 10.1777i 0.140625 0.432801i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.4185 −0.949904 −0.474952 0.880012i \(-0.657535\pi\)
−0.474952 + 0.880012i \(0.657535\pi\)
\(558\) 0 0
\(559\) −9.84461 7.15253i −0.416383 0.302520i
\(560\) 0 0
\(561\) 1.87072 1.35916i 0.0789819 0.0573837i
\(562\) 0 0
\(563\) −8.17248 5.93765i −0.344429 0.250242i 0.402099 0.915596i \(-0.368281\pi\)
−0.746528 + 0.665354i \(0.768281\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.47000 + 4.52420i 0.0617342 + 0.189998i
\(568\) 0 0
\(569\) 3.48538 + 10.7269i 0.146115 + 0.449695i 0.997153 0.0754091i \(-0.0240263\pi\)
−0.851038 + 0.525104i \(0.824026\pi\)
\(570\) 0 0
\(571\) 1.62957 5.01529i 0.0681953 0.209883i −0.911151 0.412072i \(-0.864805\pi\)
0.979347 + 0.202188i \(0.0648053\pi\)
\(572\) 0 0
\(573\) −0.245991 + 0.178723i −0.0102764 + 0.00746626i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −13.8012 + 10.0272i −0.574553 + 0.417437i −0.836756 0.547576i \(-0.815551\pi\)
0.262203 + 0.965013i \(0.415551\pi\)
\(578\) 0 0
\(579\) −3.18881 + 9.81415i −0.132522 + 0.407862i
\(580\) 0 0
\(581\) −2.07951 6.40009i −0.0862728 0.265520i
\(582\) 0 0
\(583\) −3.74455 11.5245i −0.155083 0.477298i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.82680 1.32725i −0.0754001 0.0547814i 0.549447 0.835529i \(-0.314839\pi\)
−0.624847 + 0.780747i \(0.714839\pi\)
\(588\) 0 0
\(589\) 29.7651 21.6256i 1.22645 0.891067i
\(590\) 0 0
\(591\) 5.37195 + 3.90295i 0.220972 + 0.160546i
\(592\) 0 0
\(593\) −27.9744 −1.14877 −0.574385 0.818585i \(-0.694759\pi\)
−0.574385 + 0.818585i \(0.694759\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.45960 + 7.56986i −0.100665 + 0.309814i
\(598\) 0 0
\(599\) −5.13906 −0.209976 −0.104988 0.994473i \(-0.533480\pi\)
−0.104988 + 0.994473i \(0.533480\pi\)
\(600\) 0 0
\(601\) 37.9217 1.54686 0.773429 0.633882i \(-0.218540\pi\)
0.773429 + 0.633882i \(0.218540\pi\)
\(602\) 0 0
\(603\) 3.59089 11.0516i 0.146232 0.450057i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 39.0728 1.58592 0.792959 0.609275i \(-0.208539\pi\)
0.792959 + 0.609275i \(0.208539\pi\)
\(608\) 0 0
\(609\) 0.998835 + 0.725696i 0.0404748 + 0.0294067i
\(610\) 0 0
\(611\) 1.81461 1.31839i 0.0734112 0.0533363i
\(612\) 0 0
\(613\) −1.53761 1.11714i −0.0621035 0.0451208i 0.556300 0.830981i \(-0.312220\pi\)
−0.618404 + 0.785860i \(0.712220\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.39305 13.5204i −0.176858 0.544312i 0.822856 0.568250i \(-0.192379\pi\)
−0.999713 + 0.0239383i \(0.992379\pi\)
\(618\) 0 0
\(619\) 6.80529 + 20.9445i 0.273528 + 0.841831i 0.989605 + 0.143811i \(0.0459356\pi\)
−0.716078 + 0.698021i \(0.754064\pi\)
\(620\) 0 0
\(621\) 2.75077 8.46599i 0.110385 0.339729i
\(622\) 0 0
\(623\) −7.12372 + 5.17569i −0.285406 + 0.207360i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3.73302 2.71220i 0.149082 0.108315i
\(628\) 0 0
\(629\) −6.90274 + 21.2444i −0.275230 + 0.847072i
\(630\) 0 0
\(631\) −9.56547 29.4395i −0.380795 1.17197i −0.939485 0.342591i \(-0.888696\pi\)
0.558689 0.829377i \(-0.311304\pi\)
\(632\) 0 0
\(633\) 5.05623 + 15.5615i 0.200967 + 0.618514i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.62661 + 4.08797i 0.222935 + 0.161971i
\(638\) 0 0
\(639\) 22.7915 16.5590i 0.901616 0.655063i
\(640\) 0 0
\(641\) −16.2639 11.8164i −0.642385 0.466720i 0.218284 0.975885i \(-0.429954\pi\)
−0.860669 + 0.509166i \(0.829954\pi\)
\(642\) 0 0
\(643\) 17.9165 0.706558 0.353279 0.935518i \(-0.385067\pi\)
0.353279 + 0.935518i \(0.385067\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.64211 + 23.5200i −0.300442 + 0.924666i 0.680897 + 0.732380i \(0.261590\pi\)
−0.981339 + 0.192287i \(0.938410\pi\)
\(648\) 0 0
\(649\) 24.0662 0.944680
\(650\) 0 0
\(651\) −4.56809 −0.179038
\(652\) 0 0
\(653\) 0.918758 2.82765i 0.0359538 0.110654i −0.931469 0.363821i \(-0.881472\pi\)
0.967423 + 0.253166i \(0.0814720\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9.76626 0.381018
\(658\) 0 0
\(659\) −15.3181 11.1293i −0.596709 0.433534i 0.248001 0.968760i \(-0.420227\pi\)
−0.844709 + 0.535226i \(0.820227\pi\)
\(660\) 0 0
\(661\) −31.7914 + 23.0978i −1.23654 + 0.898401i −0.997363 0.0725749i \(-0.976878\pi\)
−0.239179 + 0.970975i \(0.576878\pi\)
\(662\) 0 0
\(663\) −1.14644 0.832937i −0.0445240 0.0323486i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.89909 + 5.84480i 0.0735331 + 0.226311i
\(668\) 0 0
\(669\) 3.88317 + 11.9512i 0.150132 + 0.462059i
\(670\) 0 0
\(671\) −0.413345 + 1.27215i −0.0159570 + 0.0491107i
\(672\) 0 0
\(673\) 19.9660 14.5061i 0.769632 0.559170i −0.132217 0.991221i \(-0.542210\pi\)
0.901850 + 0.432050i \(0.142210\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −35.2934 + 25.6421i −1.35643 + 0.985508i −0.357772 + 0.933809i \(0.616464\pi\)
−0.998663 + 0.0516988i \(0.983536\pi\)
\(678\) 0 0
\(679\) −2.52759 + 7.77912i −0.0970000 + 0.298535i
\(680\) 0 0
\(681\) 2.97113 + 9.14419i 0.113854 + 0.350406i
\(682\) 0 0
\(683\) −6.81741 20.9818i −0.260861 0.802847i −0.992618 0.121282i \(-0.961300\pi\)
0.731757 0.681565i \(-0.238700\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.3113 7.49163i −0.393402 0.285824i
\(688\) 0 0
\(689\) −6.00783 + 4.36494i −0.228880 + 0.166291i
\(690\) 0 0
\(691\) −14.7311 10.7028i −0.560397 0.407152i 0.271207 0.962521i \(-0.412577\pi\)
−0.831604 + 0.555369i \(0.812577\pi\)
\(692\) 0 0
\(693\) 3.92680 0.149167
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.19928 3.69099i 0.0454258 0.139806i
\(698\) 0 0
\(699\) 13.4642 0.509263
\(700\) 0 0
\(701\) 1.95162 0.0737115 0.0368558 0.999321i \(-0.488266\pi\)
0.0368558 + 0.999321i \(0.488266\pi\)
\(702\) 0 0
\(703\) −13.7744 + 42.3932i −0.519511 + 1.59889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.06372 −0.152832
\(708\) 0 0
\(709\) −27.8786 20.2550i −1.04700 0.760692i −0.0753622 0.997156i \(-0.524011\pi\)
−0.971640 + 0.236465i \(0.924011\pi\)
\(710\) 0 0
\(711\) 27.1983 19.7607i 1.02002 0.741084i
\(712\) 0 0
\(713\) −18.3958 13.3654i −0.688929 0.500536i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.54508 + 13.9883i 0.169739 + 0.522404i
\(718\) 0 0
\(719\) −5.09724 15.6877i −0.190095 0.585052i 0.809904 0.586562i \(-0.199519\pi\)
−0.999999 + 0.00151058i \(0.999519\pi\)
\(720\) 0 0
\(721\) −3.23217 + 9.94759i −0.120372 + 0.370468i
\(722\) 0 0
\(723\) 6.05907 4.40217i 0.225339 0.163718i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6.01184 + 4.36786i −0.222967 + 0.161995i −0.693661 0.720301i \(-0.744003\pi\)
0.470694 + 0.882296i \(0.344003\pi\)
\(728\) 0 0
\(729\) −2.62868 + 8.09024i −0.0973584 + 0.299638i
\(730\) 0 0
\(731\) 7.08704 + 21.8117i 0.262124 + 0.806734i
\(732\) 0 0
\(733\) 1.21919 + 3.75230i 0.0450320 + 0.138594i 0.971045 0.238898i \(-0.0767863\pi\)
−0.926013 + 0.377493i \(0.876786\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.46293 4.69560i −0.238065 0.172964i
\(738\) 0 0
\(739\) 8.04823 5.84738i 0.296059 0.215099i −0.429833 0.902909i \(-0.641427\pi\)
0.725892 + 0.687809i \(0.241427\pi\)
\(740\) 0 0
\(741\) −2.28772 1.66212i −0.0840414 0.0610597i
\(742\) 0 0
\(743\) 29.7044 1.08975 0.544875 0.838517i \(-0.316577\pi\)
0.544875 + 0.838517i \(0.316577\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.53283 20.1060i 0.239024 0.735640i
\(748\) 0 0
\(749\) −12.6288 −0.461448
\(750\) 0 0
\(751\) −3.82521 −0.139584 −0.0697919 0.997562i \(-0.522234\pi\)
−0.0697919 + 0.997562i \(0.522234\pi\)
\(752\) 0 0
\(753\) 1.35803 4.17957i 0.0494892 0.152312i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.8075 0.719917 0.359959 0.932968i \(-0.382791\pi\)
0.359959 + 0.932968i \(0.382791\pi\)
\(758\) 0 0
\(759\) −2.30713 1.67623i −0.0837436 0.0608433i
\(760\) 0 0
\(761\) −2.24147 + 1.62852i −0.0812532 + 0.0590339i −0.627670 0.778479i \(-0.715991\pi\)
0.546417 + 0.837513i \(0.315991\pi\)
\(762\) 0 0
\(763\) 8.83412 + 6.41837i 0.319817 + 0.232360i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.55755 14.0267i −0.164564 0.506475i
\(768\) 0 0
\(769\) −15.1222 46.5413i −0.545320 1.67832i −0.720228 0.693738i \(-0.755963\pi\)
0.174908 0.984585i \(-0.444037\pi\)
\(770\) 0 0
\(771\) −4.89994 + 15.0805i −0.176467 + 0.543110i
\(772\) 0 0
\(773\) −8.69890 + 6.32012i −0.312878 + 0.227319i −0.733130 0.680088i \(-0.761941\pi\)
0.420253 + 0.907407i \(0.361941\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.47748 3.25308i 0.160629 0.116703i
\(778\) 0 0
\(779\) 2.39315 7.36536i 0.0857435 0.263891i
\(780\) 0 0
\(781\) −5.98479 18.4193i −0.214153 0.659095i
\(782\) 0 0
\(783\) 2.57198 + 7.91574i 0.0919150 + 0.282885i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −19.3427 14.0533i −0.689492 0.500945i 0.187001 0.982360i \(-0.440123\pi\)
−0.876493 + 0.481415i \(0.840123\pi\)
\(788\) 0 0
\(789\) −12.4445 + 9.04148i −0.443037 + 0.321885i
\(790\) 0 0
\(791\) −6.04681 4.39327i −0.215000 0.156207i
\(792\) 0 0
\(793\) 0.819734 0.0291096
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.9085 39.7284i 0.457244 1.40725i −0.411236 0.911529i \(-0.634903\pi\)
0.868480 0.495724i \(-0.165097\pi\)
\(798\) 0 0
\(799\) −4.22734 −0.149552
\(800\) 0 0
\(801\) −27.6623 −0.977401
\(802\) 0 0
\(803\) 2.07474 6.38538i 0.0732159 0.225335i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.49789 0.0527281
\(808\) 0 0
\(809\) −21.8310 15.8612i −0.767538 0.557649i 0.133675 0.991025i \(-0.457322\pi\)
−0.901213 + 0.433376i \(0.857322\pi\)
\(810\) 0 0
\(811\) −30.8555 + 22.4178i −1.08348 + 0.787196i −0.978287 0.207256i \(-0.933547\pi\)
−0.105195 + 0.994452i \(0.533547\pi\)
\(812\) 0 0
\(813\) 3.96177 + 2.87839i 0.138945 + 0.100950i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 14.1422 + 43.5251i 0.494772 + 1.52275i
\(818\) 0 0
\(819\) −0.743641 2.28869i −0.0259849 0.0799733i
\(820\) 0 0
\(821\) −14.3480 + 44.1587i −0.500750 + 1.54115i 0.307049 + 0.951694i \(0.400658\pi\)
−0.807800 + 0.589457i \(0.799342\pi\)
\(822\) 0 0
\(823\) −34.2286 + 24.8685i −1.19313 + 0.866862i −0.993592 0.113028i \(-0.963945\pi\)
−0.199541 + 0.979889i \(0.563945\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.6821 + 10.6671i −0.510546 + 0.370933i −0.813030 0.582221i \(-0.802184\pi\)
0.302485 + 0.953154i \(0.402184\pi\)
\(828\) 0 0
\(829\) −3.34078 + 10.2819i −0.116030 + 0.357104i −0.992160 0.124970i \(-0.960116\pi\)
0.876130 + 0.482074i \(0.160116\pi\)
\(830\) 0 0
\(831\) −1.50200 4.62269i −0.0521039 0.160359i
\(832\) 0 0
\(833\) −4.05055 12.4663i −0.140343 0.431932i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −24.9139 18.1010i −0.861149 0.625662i
\(838\) 0 0
\(839\) 24.0000 17.4370i 0.828571 0.601992i −0.0905835 0.995889i \(-0.528873\pi\)
0.919155 + 0.393897i \(0.128873\pi\)
\(840\) 0 0
\(841\) 18.8128 + 13.6683i 0.648716 + 0.471320i
\(842\) 0 0
\(843\) −7.69904 −0.265169
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.99856 + 6.15094i −0.0686713 + 0.211349i
\(848\) 0 0
\(849\) −8.56142 −0.293827
\(850\) 0 0
\(851\) 27.5488 0.944361
\(852\) 0 0
\(853\) −3.00414 + 9.24579i −0.102860 + 0.316570i −0.989222 0.146422i \(-0.953224\pi\)
0.886362 + 0.462992i \(0.153224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.25560 0.0428905 0.0214452 0.999770i \(-0.493173\pi\)
0.0214452 + 0.999770i \(0.493173\pi\)
\(858\) 0 0
\(859\) −22.5900 16.4126i −0.770761 0.559991i 0.131431 0.991325i \(-0.458043\pi\)
−0.902192 + 0.431334i \(0.858043\pi\)
\(860\) 0 0
\(861\) −0.777913 + 0.565187i −0.0265112 + 0.0192615i
\(862\) 0 0
\(863\) 15.8484 + 11.5145i 0.539484 + 0.391958i 0.823894 0.566745i \(-0.191797\pi\)
−0.284409 + 0.958703i \(0.591797\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2.42140 7.45230i −0.0822351 0.253093i
\(868\) 0 0
\(869\) −7.14198 21.9807i −0.242275 0.745646i
\(870\) 0 0
\(871\) −1.51285 + 4.65608i −0.0512611 + 0.157765i
\(872\) 0 0
\(873\) −20.7884 + 15.1037i −0.703581 + 0.511182i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.5200 17.8148i 0.827980 0.601563i −0.0910069 0.995850i \(-0.529009\pi\)
0.918987 + 0.394287i \(0.129009\pi\)
\(878\) 0 0
\(879\) −1.76855 + 5.44304i −0.0596518 + 0.183589i
\(880\) 0 0
\(881\) 6.74593 + 20.7618i 0.227276 + 0.699484i 0.998053 + 0.0623785i \(0.0198686\pi\)
−0.770776 + 0.637106i \(0.780131\pi\)
\(882\) 0 0
\(883\) 7.88167 + 24.2573i 0.265239 + 0.816323i 0.991638 + 0.129049i \(0.0411925\pi\)
−0.726399 + 0.687273i \(0.758807\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −34.0788 24.7597i −1.14425 0.831349i −0.156547 0.987671i \(-0.550036\pi\)
−0.987706 + 0.156322i \(0.950036\pi\)
\(888\) 0 0
\(889\) 8.56576 6.22339i 0.287286 0.208726i
\(890\) 0 0
\(891\) 8.31160 + 6.03873i 0.278449 + 0.202305i
\(892\) 0 0
\(893\) −8.43564 −0.282288
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.540057 + 1.66212i −0.0180320 + 0.0554967i
\(898\) 0 0
\(899\) 21.2606 0.709080
\(900\) 0 0
\(901\) 13.9959 0.466272
\(902\) 0 0
\(903\) 1.75591 5.40412i 0.0584329 0.179838i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −48.7145 −1.61754 −0.808769 0.588126i \(-0.799866\pi\)
−0.808769 + 0.588126i \(0.799866\pi\)
\(908\) 0 0
\(909\) −10.3281 7.50382i −0.342562 0.248886i
\(910\) 0 0
\(911\) 14.7336 10.7046i 0.488147 0.354659i −0.316324 0.948651i \(-0.602449\pi\)
0.804471 + 0.593992i \(0.202449\pi\)
\(912\) 0 0
\(913\) −11.7579 8.54260i −0.389129 0.282719i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.70045 + 5.23346i 0.0561539 + 0.172824i
\(918\) 0 0
\(919\) −3.09130 9.51404i −0.101973 0.313839i 0.887035 0.461701i \(-0.152761\pi\)
−0.989008 + 0.147862i \(0.952761\pi\)
\(920\) 0 0
\(921\) −4.33471 + 13.3409i −0.142833 + 0.439596i
\(922\) 0 0
\(923\) −9.60211 + 6.97634i −0.316057 + 0.229629i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −26.5833 + 19.3139i −0.873110 + 0.634352i
\(928\) 0 0
\(929\) −14.5855 + 44.8895i −0.478534 + 1.47278i 0.362597 + 0.931946i \(0.381890\pi\)
−0.841131 + 0.540831i \(0.818110\pi\)
\(930\) 0 0
\(931\) −8.08285 24.8765i −0.264905 0.815293i
\(932\) 0 0
\(933\) −1.98190 6.09967i −0.0648846 0.199694i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.30953 + 0.951426i 0.0427803 + 0.0310817i 0.608970 0.793193i \(-0.291583\pi\)
−0.566190 + 0.824275i \(0.691583\pi\)
\(938\) 0 0
\(939\) 8.48627 6.16564i 0.276939 0.201208i
\(940\) 0 0
\(941\) 11.2661 + 8.18530i 0.367265 + 0.266833i 0.756076 0.654484i \(-0.227114\pi\)
−0.388811 + 0.921317i \(0.627114\pi\)
\(942\) 0 0
\(943\) −4.78630 −0.155863
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.1131 40.3580i 0.426119 1.31146i −0.475801 0.879553i \(-0.657842\pi\)
0.901919 0.431905i \(-0.142158\pi\)
\(948\) 0 0
\(949\) −4.11456 −0.133564
\(950\) 0 0
\(951\) −11.9932 −0.388905
\(952\) 0 0
\(953\) −16.4010 + 50.4771i −0.531281 + 1.63511i 0.220270 + 0.975439i \(0.429306\pi\)
−0.751550 + 0.659676i \(0.770694\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.66642 0.0861930
\(958\) 0 0
\(959\) −0.457396 0.332318i −0.0147701 0.0107311i
\(960\) 0 0
\(961\) −38.5606 + 28.0159i −1.24389 + 0.903740i
\(962\) 0 0
\(963\) −32.0967 23.3196i −1.03430 0.751464i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.32828 25.6318i −0.267819 0.824263i −0.991030 0.133636i \(-0.957335\pi\)
0.723211 0.690627i \(-0.242665\pi\)
\(968\) 0 0
\(969\) 1.64691 + 5.06865i 0.0529062 + 0.162829i
\(970\) 0 0
\(971\) 8.41468 25.8977i 0.270040 0.831097i −0.720449 0.693508i \(-0.756064\pi\)
0.990489 0.137590i \(-0.0439356\pi\)
\(972\) 0 0
\(973\) −1.54650 + 1.12360i −0.0495786 + 0.0360210i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.8970 + 15.1826i −0.668554 + 0.485733i −0.869541 0.493861i \(-0.835585\pi\)
0.200987 + 0.979594i \(0.435585\pi\)
\(978\) 0 0
\(979\) −5.87657 + 18.0862i −0.187816 + 0.578038i
\(980\) 0 0
\(981\) 10.6005 + 32.6251i 0.338449 + 1.04164i
\(982\) 0 0
\(983\) 4.09840 + 12.6136i 0.130719 + 0.402311i 0.994900 0.100870i \(-0.0321628\pi\)
−0.864181 + 0.503181i \(0.832163\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0.847346 + 0.615633i 0.0269713 + 0.0195958i
\(988\) 0 0
\(989\) 22.8825 16.6251i 0.727621 0.528648i
\(990\) 0 0
\(991\) 19.3656 + 14.0700i 0.615170 + 0.446947i 0.851231 0.524791i \(-0.175857\pi\)
−0.236061 + 0.971738i \(0.575857\pi\)
\(992\) 0 0
\(993\) 5.12171 0.162532
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −15.1968 + 46.7710i −0.481288 + 1.48125i 0.355999 + 0.934487i \(0.384141\pi\)
−0.837286 + 0.546765i \(0.815859\pi\)
\(998\) 0 0
\(999\) 37.3099 1.18043
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.m.b.801.2 8
5.2 odd 4 1000.2.q.b.449.2 16
5.3 odd 4 1000.2.q.b.449.3 16
5.4 even 2 200.2.m.b.161.2 yes 8
20.19 odd 2 400.2.u.e.161.2 8
25.4 even 10 5000.2.a.i.1.1 4
25.9 even 10 200.2.m.b.41.2 8
25.12 odd 20 1000.2.q.b.49.4 16
25.13 odd 20 1000.2.q.b.49.1 16
25.16 even 5 inner 1000.2.m.b.201.2 8
25.21 even 5 5000.2.a.f.1.4 4
100.59 odd 10 400.2.u.e.241.2 8
100.71 odd 10 10000.2.a.z.1.1 4
100.79 odd 10 10000.2.a.q.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.m.b.41.2 8 25.9 even 10
200.2.m.b.161.2 yes 8 5.4 even 2
400.2.u.e.161.2 8 20.19 odd 2
400.2.u.e.241.2 8 100.59 odd 10
1000.2.m.b.201.2 8 25.16 even 5 inner
1000.2.m.b.801.2 8 1.1 even 1 trivial
1000.2.q.b.49.1 16 25.13 odd 20
1000.2.q.b.49.4 16 25.12 odd 20
1000.2.q.b.449.2 16 5.2 odd 4
1000.2.q.b.449.3 16 5.3 odd 4
5000.2.a.f.1.4 4 25.21 even 5
5000.2.a.i.1.1 4 25.4 even 10
10000.2.a.q.1.4 4 100.79 odd 10
10000.2.a.z.1.1 4 100.71 odd 10