Properties

Label 200.2.m.b.41.2
Level $200$
Weight $2$
Character 200.41
Analytic conductor $1.597$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(41,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.41");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.58140625.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 4x^{6} - 7x^{5} + 11x^{4} + 5x^{3} - 10x^{2} - 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 41.2
Root \(1.17421 - 0.0566033i\) of defining polynomial
Character \(\chi\) \(=\) 200.41
Dual form 200.2.m.b.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 - 0.587785i) q^{3} +(2.09089 + 0.792578i) q^{5} -0.833366 q^{7} +(2.11803 - 1.53884i) q^{9} +(1.45608 + 1.05790i) q^{11} +(0.892334 - 0.648319i) q^{13} +(0.0665412 - 1.38036i) q^{15} +(-0.642383 + 1.97705i) q^{17} +(1.28187 - 3.94520i) q^{19} +(0.159159 + 0.489840i) q^{21} +(-2.07411 - 1.50693i) q^{23} +(3.74364 + 3.31439i) q^{25} +(-2.80902 - 2.04087i) q^{27} +(-0.740748 - 2.27979i) q^{29} +(-2.74075 + 8.43516i) q^{31} +(0.343734 - 1.05790i) q^{33} +(-1.74248 - 0.660507i) q^{35} +(-8.69331 + 6.31606i) q^{37} +(-0.551493 - 0.400683i) q^{39} +(-1.51037 + 1.09735i) q^{41} -11.0324 q^{43} +(5.64823 - 1.53884i) q^{45} +(0.628402 + 1.93402i) q^{47} -6.30550 q^{49} +1.28477 q^{51} +(-2.08052 - 6.40319i) q^{53} +(2.20603 + 3.36602i) q^{55} -2.56375 q^{57} +(10.8178 - 7.85956i) q^{59} +(-0.601258 - 0.436839i) q^{61} +(-1.76510 + 1.28242i) q^{63} +(2.37962 - 0.648319i) q^{65} +(1.37160 - 4.22134i) q^{67} +(-0.489632 + 1.50693i) q^{69} +(3.32523 + 10.2340i) q^{71} +(-3.01794 - 2.19266i) q^{73} +(1.23318 - 2.83345i) q^{75} +(-1.21345 - 0.881621i) q^{77} +(3.96818 + 12.2128i) q^{79} +(1.76393 - 5.42882i) q^{81} +(2.49532 - 7.67980i) q^{83} +(-2.91012 + 3.62466i) q^{85} +(-1.19856 + 0.870802i) q^{87} +(-8.54813 - 6.21058i) q^{89} +(-0.743641 + 0.540287i) q^{91} +5.48150 q^{93} +(5.80713 - 7.23299i) q^{95} +(3.03299 + 9.33458i) q^{97} +4.71197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 5 q^{5} + 4 q^{7} + 8 q^{9} - 2 q^{11} + 8 q^{13} - 5 q^{15} + 10 q^{17} + 3 q^{19} - 3 q^{21} + 6 q^{23} - 5 q^{25} - 18 q^{27} + 6 q^{29} - 10 q^{31} - 16 q^{33} - 15 q^{35} - 2 q^{37}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.190983 0.587785i −0.110264 0.339358i 0.880666 0.473738i \(-0.157096\pi\)
−0.990930 + 0.134380i \(0.957096\pi\)
\(4\) 0 0
\(5\) 2.09089 + 0.792578i 0.935074 + 0.354452i
\(6\) 0 0
\(7\) −0.833366 −0.314983 −0.157491 0.987520i \(-0.550341\pi\)
−0.157491 + 0.987520i \(0.550341\pi\)
\(8\) 0 0
\(9\) 2.11803 1.53884i 0.706011 0.512947i
\(10\) 0 0
\(11\) 1.45608 + 1.05790i 0.439025 + 0.318970i 0.785247 0.619182i \(-0.212536\pi\)
−0.346223 + 0.938152i \(0.612536\pi\)
\(12\) 0 0
\(13\) 0.892334 0.648319i 0.247489 0.179811i −0.457124 0.889403i \(-0.651121\pi\)
0.704613 + 0.709592i \(0.251121\pi\)
\(14\) 0 0
\(15\) 0.0665412 1.38036i 0.0171809 0.356408i
\(16\) 0 0
\(17\) −0.642383 + 1.97705i −0.155801 + 0.479505i −0.998241 0.0592843i \(-0.981118\pi\)
0.842440 + 0.538789i \(0.181118\pi\)
\(18\) 0 0
\(19\) 1.28187 3.94520i 0.294082 0.905091i −0.689447 0.724337i \(-0.742146\pi\)
0.983528 0.180754i \(-0.0578538\pi\)
\(20\) 0 0
\(21\) 0.159159 + 0.489840i 0.0347313 + 0.106892i
\(22\) 0 0
\(23\) −2.07411 1.50693i −0.432483 0.314217i 0.350158 0.936691i \(-0.386128\pi\)
−0.782641 + 0.622474i \(0.786128\pi\)
\(24\) 0 0
\(25\) 3.74364 + 3.31439i 0.748728 + 0.662877i
\(26\) 0 0
\(27\) −2.80902 2.04087i −0.540596 0.392766i
\(28\) 0 0
\(29\) −0.740748 2.27979i −0.137553 0.423346i 0.858425 0.512939i \(-0.171443\pi\)
−0.995978 + 0.0895931i \(0.971443\pi\)
\(30\) 0 0
\(31\) −2.74075 + 8.43516i −0.492253 + 1.51500i 0.328942 + 0.944350i \(0.393308\pi\)
−0.821195 + 0.570648i \(0.806692\pi\)
\(32\) 0 0
\(33\) 0.343734 1.05790i 0.0598364 0.184157i
\(34\) 0 0
\(35\) −1.74248 0.660507i −0.294532 0.111646i
\(36\) 0 0
\(37\) −8.69331 + 6.31606i −1.42917 + 1.03835i −0.439002 + 0.898486i \(0.644668\pi\)
−0.990170 + 0.139868i \(0.955332\pi\)
\(38\) 0 0
\(39\) −0.551493 0.400683i −0.0883095 0.0641606i
\(40\) 0 0
\(41\) −1.51037 + 1.09735i −0.235880 + 0.171377i −0.699446 0.714686i \(-0.746570\pi\)
0.463566 + 0.886062i \(0.346570\pi\)
\(42\) 0 0
\(43\) −11.0324 −1.68243 −0.841215 0.540701i \(-0.818159\pi\)
−0.841215 + 0.540701i \(0.818159\pi\)
\(44\) 0 0
\(45\) 5.64823 1.53884i 0.841988 0.229397i
\(46\) 0 0
\(47\) 0.628402 + 1.93402i 0.0916619 + 0.282106i 0.986369 0.164546i \(-0.0526160\pi\)
−0.894707 + 0.446653i \(0.852616\pi\)
\(48\) 0 0
\(49\) −6.30550 −0.900786
\(50\) 0 0
\(51\) 1.28477 0.179903
\(52\) 0 0
\(53\) −2.08052 6.40319i −0.285782 0.879545i −0.986163 0.165777i \(-0.946987\pi\)
0.700382 0.713769i \(-0.253013\pi\)
\(54\) 0 0
\(55\) 2.20603 + 3.36602i 0.297461 + 0.453874i
\(56\) 0 0
\(57\) −2.56375 −0.339576
\(58\) 0 0
\(59\) 10.8178 7.85956i 1.40835 1.02323i 0.414792 0.909916i \(-0.363854\pi\)
0.993560 0.113311i \(-0.0361457\pi\)
\(60\) 0 0
\(61\) −0.601258 0.436839i −0.0769832 0.0559316i 0.548628 0.836067i \(-0.315150\pi\)
−0.625611 + 0.780135i \(0.715150\pi\)
\(62\) 0 0
\(63\) −1.76510 + 1.28242i −0.222381 + 0.161569i
\(64\) 0 0
\(65\) 2.37962 0.648319i 0.295155 0.0804140i
\(66\) 0 0
\(67\) 1.37160 4.22134i 0.167567 0.515719i −0.831649 0.555302i \(-0.812603\pi\)
0.999216 + 0.0395825i \(0.0126028\pi\)
\(68\) 0 0
\(69\) −0.489632 + 1.50693i −0.0589447 + 0.181413i
\(70\) 0 0
\(71\) 3.32523 + 10.2340i 0.394632 + 1.21455i 0.929248 + 0.369458i \(0.120456\pi\)
−0.534615 + 0.845095i \(0.679544\pi\)
\(72\) 0 0
\(73\) −3.01794 2.19266i −0.353223 0.256632i 0.396997 0.917820i \(-0.370052\pi\)
−0.750220 + 0.661188i \(0.770052\pi\)
\(74\) 0 0
\(75\) 1.23318 2.83345i 0.142395 0.327178i
\(76\) 0 0
\(77\) −1.21345 0.881621i −0.138285 0.100470i
\(78\) 0 0
\(79\) 3.96818 + 12.2128i 0.446455 + 1.37405i 0.880881 + 0.473339i \(0.156951\pi\)
−0.434426 + 0.900708i \(0.643049\pi\)
\(80\) 0 0
\(81\) 1.76393 5.42882i 0.195992 0.603203i
\(82\) 0 0
\(83\) 2.49532 7.67980i 0.273897 0.842968i −0.715612 0.698498i \(-0.753852\pi\)
0.989509 0.144470i \(-0.0461478\pi\)
\(84\) 0 0
\(85\) −2.91012 + 3.62466i −0.315647 + 0.393149i
\(86\) 0 0
\(87\) −1.19856 + 0.870802i −0.128499 + 0.0933597i
\(88\) 0 0
\(89\) −8.54813 6.21058i −0.906100 0.658321i 0.0339252 0.999424i \(-0.489199\pi\)
−0.940026 + 0.341104i \(0.889199\pi\)
\(90\) 0 0
\(91\) −0.743641 + 0.540287i −0.0779547 + 0.0566374i
\(92\) 0 0
\(93\) 5.48150 0.568405
\(94\) 0 0
\(95\) 5.80713 7.23299i 0.595799 0.742089i
\(96\) 0 0
\(97\) 3.03299 + 9.33458i 0.307953 + 0.947783i 0.978559 + 0.205969i \(0.0660345\pi\)
−0.670605 + 0.741814i \(0.733966\pi\)
\(98\) 0 0
\(99\) 4.71197 0.473571
\(100\) 0 0
\(101\) −4.87628 −0.485208 −0.242604 0.970125i \(-0.578002\pi\)
−0.242604 + 0.970125i \(0.578002\pi\)
\(102\) 0 0
\(103\) 3.87845 + 11.9366i 0.382155 + 1.17615i 0.938523 + 0.345216i \(0.112194\pi\)
−0.556368 + 0.830936i \(0.687806\pi\)
\(104\) 0 0
\(105\) −0.0554531 + 1.15035i −0.00541167 + 0.112262i
\(106\) 0 0
\(107\) 15.1540 1.46499 0.732497 0.680770i \(-0.238355\pi\)
0.732497 + 0.680770i \(0.238355\pi\)
\(108\) 0 0
\(109\) 10.6005 7.70174i 1.01535 0.737693i 0.0500235 0.998748i \(-0.484070\pi\)
0.965324 + 0.261055i \(0.0840704\pi\)
\(110\) 0 0
\(111\) 5.37276 + 3.90354i 0.509960 + 0.370508i
\(112\) 0 0
\(113\) 7.25589 5.27172i 0.682577 0.495921i −0.191635 0.981466i \(-0.561379\pi\)
0.874212 + 0.485545i \(0.161379\pi\)
\(114\) 0 0
\(115\) −3.14238 4.79473i −0.293029 0.447110i
\(116\) 0 0
\(117\) 0.892334 2.74632i 0.0824963 0.253898i
\(118\) 0 0
\(119\) 0.535340 1.64761i 0.0490745 0.151036i
\(120\) 0 0
\(121\) −2.39818 7.38084i −0.218016 0.670985i
\(122\) 0 0
\(123\) 0.933459 + 0.678198i 0.0841671 + 0.0611510i
\(124\) 0 0
\(125\) 5.20063 + 9.89714i 0.465159 + 0.885227i
\(126\) 0 0
\(127\) −10.2785 7.46778i −0.912071 0.662658i 0.0294670 0.999566i \(-0.490619\pi\)
−0.941538 + 0.336908i \(0.890619\pi\)
\(128\) 0 0
\(129\) 2.10701 + 6.48470i 0.185512 + 0.570946i
\(130\) 0 0
\(131\) 2.04046 6.27990i 0.178276 0.548678i −0.821492 0.570220i \(-0.806858\pi\)
0.999768 + 0.0215426i \(0.00685777\pi\)
\(132\) 0 0
\(133\) −1.06827 + 3.28779i −0.0926307 + 0.285088i
\(134\) 0 0
\(135\) −4.25580 6.49360i −0.366281 0.558880i
\(136\) 0 0
\(137\) 0.548854 0.398766i 0.0468918 0.0340689i −0.564092 0.825712i \(-0.690774\pi\)
0.610984 + 0.791643i \(0.290774\pi\)
\(138\) 0 0
\(139\) −1.85573 1.34827i −0.157401 0.114359i 0.506297 0.862359i \(-0.331014\pi\)
−0.663698 + 0.748001i \(0.731014\pi\)
\(140\) 0 0
\(141\) 1.01678 0.738731i 0.0856280 0.0622124i
\(142\) 0 0
\(143\) 1.98517 0.166008
\(144\) 0 0
\(145\) 0.258087 5.35389i 0.0214330 0.444616i
\(146\) 0 0
\(147\) 1.20424 + 3.70628i 0.0993243 + 0.305689i
\(148\) 0 0
\(149\) −23.5046 −1.92557 −0.962784 0.270271i \(-0.912887\pi\)
−0.962784 + 0.270271i \(0.912887\pi\)
\(150\) 0 0
\(151\) −0.497767 −0.0405077 −0.0202539 0.999795i \(-0.506447\pi\)
−0.0202539 + 0.999795i \(0.506447\pi\)
\(152\) 0 0
\(153\) 1.68178 + 5.17599i 0.135964 + 0.418454i
\(154\) 0 0
\(155\) −12.4161 + 15.4647i −0.997287 + 1.24216i
\(156\) 0 0
\(157\) 7.32045 0.584236 0.292118 0.956382i \(-0.405640\pi\)
0.292118 + 0.956382i \(0.405640\pi\)
\(158\) 0 0
\(159\) −3.36635 + 2.44580i −0.266969 + 0.193965i
\(160\) 0 0
\(161\) 1.72850 + 1.25583i 0.136225 + 0.0989729i
\(162\) 0 0
\(163\) −14.2778 + 10.3734i −1.11832 + 0.812509i −0.983954 0.178422i \(-0.942901\pi\)
−0.134369 + 0.990931i \(0.542901\pi\)
\(164\) 0 0
\(165\) 1.55718 1.93952i 0.121226 0.150992i
\(166\) 0 0
\(167\) 6.11524 18.8208i 0.473211 1.45639i −0.375143 0.926967i \(-0.622407\pi\)
0.848355 0.529428i \(-0.177593\pi\)
\(168\) 0 0
\(169\) −3.64128 + 11.2067i −0.280098 + 0.862054i
\(170\) 0 0
\(171\) −3.35599 10.3287i −0.256639 0.789853i
\(172\) 0 0
\(173\) 2.58169 + 1.87571i 0.196282 + 0.142607i 0.681585 0.731739i \(-0.261291\pi\)
−0.485303 + 0.874346i \(0.661291\pi\)
\(174\) 0 0
\(175\) −3.11982 2.76210i −0.235836 0.208795i
\(176\) 0 0
\(177\) −6.68574 4.85747i −0.502531 0.365110i
\(178\) 0 0
\(179\) 5.10054 + 15.6978i 0.381232 + 1.17331i 0.939177 + 0.343434i \(0.111590\pi\)
−0.557945 + 0.829878i \(0.688410\pi\)
\(180\) 0 0
\(181\) 3.29585 10.1436i 0.244979 0.753967i −0.750661 0.660687i \(-0.770265\pi\)
0.995640 0.0932799i \(-0.0297351\pi\)
\(182\) 0 0
\(183\) −0.141938 + 0.436839i −0.0104923 + 0.0322921i
\(184\) 0 0
\(185\) −23.1827 + 6.31606i −1.70443 + 0.464366i
\(186\) 0 0
\(187\) −3.02689 + 2.19916i −0.221348 + 0.160819i
\(188\) 0 0
\(189\) 2.34094 + 1.70079i 0.170278 + 0.123714i
\(190\) 0 0
\(191\) −0.398022 + 0.289180i −0.0287999 + 0.0209243i −0.602092 0.798427i \(-0.705666\pi\)
0.573292 + 0.819351i \(0.305666\pi\)
\(192\) 0 0
\(193\) 16.6968 1.20186 0.600932 0.799300i \(-0.294796\pi\)
0.600932 + 0.799300i \(0.294796\pi\)
\(194\) 0 0
\(195\) −0.835538 1.27489i −0.0598341 0.0912964i
\(196\) 0 0
\(197\) 3.32005 + 10.2180i 0.236543 + 0.728006i 0.996913 + 0.0785151i \(0.0250179\pi\)
−0.760370 + 0.649491i \(0.774982\pi\)
\(198\) 0 0
\(199\) −12.8786 −0.912940 −0.456470 0.889739i \(-0.650886\pi\)
−0.456470 + 0.889739i \(0.650886\pi\)
\(200\) 0 0
\(201\) −2.74320 −0.193490
\(202\) 0 0
\(203\) 0.617314 + 1.89990i 0.0433270 + 0.133347i
\(204\) 0 0
\(205\) −4.02775 + 1.09735i −0.281310 + 0.0766420i
\(206\) 0 0
\(207\) −6.71197 −0.466514
\(208\) 0 0
\(209\) 6.04015 4.38843i 0.417806 0.303554i
\(210\) 0 0
\(211\) −21.4185 15.5615i −1.47451 1.07130i −0.979274 0.202540i \(-0.935080\pi\)
−0.495240 0.868756i \(-0.664920\pi\)
\(212\) 0 0
\(213\) 5.38034 3.90904i 0.368655 0.267843i
\(214\) 0 0
\(215\) −23.0676 8.74406i −1.57320 0.596340i
\(216\) 0 0
\(217\) 2.28405 7.02957i 0.155051 0.477198i
\(218\) 0 0
\(219\) −0.712439 + 2.19266i −0.0481422 + 0.148166i
\(220\) 0 0
\(221\) 0.708539 + 2.18066i 0.0476615 + 0.146687i
\(222\) 0 0
\(223\) 16.4494 + 11.9512i 1.10153 + 0.800309i 0.981309 0.192438i \(-0.0616395\pi\)
0.120222 + 0.992747i \(0.461639\pi\)
\(224\) 0 0
\(225\) 13.0295 + 1.25911i 0.868632 + 0.0839408i
\(226\) 0 0
\(227\) 12.5859 + 9.14419i 0.835356 + 0.606921i 0.921069 0.389398i \(-0.127317\pi\)
−0.0857138 + 0.996320i \(0.527317\pi\)
\(228\) 0 0
\(229\) 6.37276 + 19.6133i 0.421124 + 1.29609i 0.906657 + 0.421868i \(0.138626\pi\)
−0.485533 + 0.874218i \(0.661374\pi\)
\(230\) 0 0
\(231\) −0.286456 + 0.881621i −0.0188474 + 0.0580064i
\(232\) 0 0
\(233\) −6.73211 + 20.7193i −0.441035 + 1.35737i 0.445739 + 0.895163i \(0.352941\pi\)
−0.886774 + 0.462203i \(0.847059\pi\)
\(234\) 0 0
\(235\) −0.218944 + 4.54189i −0.0142823 + 0.296280i
\(236\) 0 0
\(237\) 6.42064 4.66487i 0.417066 0.303016i
\(238\) 0 0
\(239\) −19.2533 13.9883i −1.24539 0.904830i −0.247446 0.968902i \(-0.579591\pi\)
−0.997945 + 0.0640715i \(0.979591\pi\)
\(240\) 0 0
\(241\) 9.80377 7.12286i 0.631517 0.458824i −0.225409 0.974264i \(-0.572372\pi\)
0.856925 + 0.515441i \(0.172372\pi\)
\(242\) 0 0
\(243\) −13.9443 −0.894525
\(244\) 0 0
\(245\) −13.1841 4.99760i −0.842302 0.319285i
\(246\) 0 0
\(247\) −1.41389 4.35150i −0.0899635 0.276879i
\(248\) 0 0
\(249\) −4.99064 −0.316269
\(250\) 0 0
\(251\) 7.11071 0.448824 0.224412 0.974494i \(-0.427954\pi\)
0.224412 + 0.974494i \(0.427954\pi\)
\(252\) 0 0
\(253\) −1.42589 4.38843i −0.0896447 0.275898i
\(254\) 0 0
\(255\) 2.68630 + 1.01828i 0.168223 + 0.0637670i
\(256\) 0 0
\(257\) 25.6564 1.60040 0.800202 0.599730i \(-0.204725\pi\)
0.800202 + 0.599730i \(0.204725\pi\)
\(258\) 0 0
\(259\) 7.24471 5.26359i 0.450164 0.327063i
\(260\) 0 0
\(261\) −5.07716 3.68878i −0.314269 0.228329i
\(262\) 0 0
\(263\) 20.1357 14.6294i 1.24162 0.902089i 0.243913 0.969797i \(-0.421569\pi\)
0.997705 + 0.0677085i \(0.0215688\pi\)
\(264\) 0 0
\(265\) 0.724883 15.0373i 0.0445292 0.923736i
\(266\) 0 0
\(267\) −2.01794 + 6.21058i −0.123496 + 0.380082i
\(268\) 0 0
\(269\) 0.748944 2.30501i 0.0456639 0.140539i −0.925625 0.378442i \(-0.876460\pi\)
0.971289 + 0.237903i \(0.0764600\pi\)
\(270\) 0 0
\(271\) −2.44851 7.53573i −0.148736 0.457763i 0.848736 0.528816i \(-0.177364\pi\)
−0.997473 + 0.0710533i \(0.977364\pi\)
\(272\) 0 0
\(273\) 0.459595 + 0.333915i 0.0278160 + 0.0202095i
\(274\) 0 0
\(275\) 1.94474 + 8.78642i 0.117272 + 0.529841i
\(276\) 0 0
\(277\) −6.36259 4.62269i −0.382291 0.277750i 0.379998 0.924987i \(-0.375925\pi\)
−0.762289 + 0.647237i \(0.775925\pi\)
\(278\) 0 0
\(279\) 7.17537 + 22.0835i 0.429578 + 1.32211i
\(280\) 0 0
\(281\) −3.84952 + 11.8476i −0.229643 + 0.706769i 0.768144 + 0.640277i \(0.221181\pi\)
−0.997787 + 0.0664914i \(0.978819\pi\)
\(282\) 0 0
\(283\) 4.28071 13.1747i 0.254462 0.783153i −0.739474 0.673186i \(-0.764926\pi\)
0.993935 0.109967i \(-0.0350745\pi\)
\(284\) 0 0
\(285\) −5.36051 2.03197i −0.317529 0.120363i
\(286\) 0 0
\(287\) 1.25869 0.914491i 0.0742981 0.0539807i
\(288\) 0 0
\(289\) 10.2572 + 7.45230i 0.603366 + 0.438371i
\(290\) 0 0
\(291\) 4.90748 3.56549i 0.287682 0.209013i
\(292\) 0 0
\(293\) 9.26026 0.540990 0.270495 0.962721i \(-0.412813\pi\)
0.270495 + 0.962721i \(0.412813\pi\)
\(294\) 0 0
\(295\) 28.8480 7.85956i 1.67960 0.457601i
\(296\) 0 0
\(297\) −1.93111 5.94334i −0.112054 0.344868i
\(298\) 0 0
\(299\) −2.82777 −0.163534
\(300\) 0 0
\(301\) 9.19405 0.529936
\(302\) 0 0
\(303\) 0.931286 + 2.86620i 0.0535010 + 0.164659i
\(304\) 0 0
\(305\) −0.910935 1.38993i −0.0521600 0.0795870i
\(306\) 0 0
\(307\) 22.6968 1.29538 0.647688 0.761906i \(-0.275736\pi\)
0.647688 + 0.761906i \(0.275736\pi\)
\(308\) 0 0
\(309\) 6.27546 4.55939i 0.356999 0.259375i
\(310\) 0 0
\(311\) 8.39548 + 6.09967i 0.476064 + 0.345881i 0.799800 0.600267i \(-0.204939\pi\)
−0.323736 + 0.946148i \(0.604939\pi\)
\(312\) 0 0
\(313\) −13.7311 + 9.97621i −0.776126 + 0.563889i −0.903814 0.427926i \(-0.859245\pi\)
0.127688 + 0.991814i \(0.459245\pi\)
\(314\) 0 0
\(315\) −4.70704 + 1.28242i −0.265212 + 0.0722561i
\(316\) 0 0
\(317\) 5.99658 18.4556i 0.336802 1.03657i −0.629026 0.777384i \(-0.716546\pi\)
0.965828 0.259185i \(-0.0834538\pi\)
\(318\) 0 0
\(319\) 1.33321 4.10319i 0.0746454 0.229735i
\(320\) 0 0
\(321\) −2.89416 8.90731i −0.161536 0.497157i
\(322\) 0 0
\(323\) 6.97641 + 5.06865i 0.388178 + 0.282028i
\(324\) 0 0
\(325\) 5.48936 + 0.530468i 0.304495 + 0.0294250i
\(326\) 0 0
\(327\) −6.55149 4.75994i −0.362298 0.263225i
\(328\) 0 0
\(329\) −0.523689 1.61175i −0.0288719 0.0888586i
\(330\) 0 0
\(331\) 2.56085 7.88150i 0.140757 0.433206i −0.855684 0.517499i \(-0.826863\pi\)
0.996441 + 0.0842928i \(0.0268631\pi\)
\(332\) 0 0
\(333\) −8.69331 + 26.7553i −0.476391 + 1.46618i
\(334\) 0 0
\(335\) 6.21360 7.73927i 0.339485 0.422841i
\(336\) 0 0
\(337\) −6.66048 + 4.83912i −0.362819 + 0.263604i −0.754227 0.656614i \(-0.771988\pi\)
0.391408 + 0.920217i \(0.371988\pi\)
\(338\) 0 0
\(339\) −4.48439 3.25810i −0.243559 0.176956i
\(340\) 0 0
\(341\) −12.9143 + 9.38281i −0.699350 + 0.508108i
\(342\) 0 0
\(343\) 11.0883 0.598715
\(344\) 0 0
\(345\) −2.21813 + 2.76276i −0.119420 + 0.148742i
\(346\) 0 0
\(347\) 6.16394 + 18.9706i 0.330897 + 1.01840i 0.968708 + 0.248204i \(0.0798404\pi\)
−0.637810 + 0.770193i \(0.720160\pi\)
\(348\) 0 0
\(349\) 4.67641 0.250322 0.125161 0.992136i \(-0.460055\pi\)
0.125161 + 0.992136i \(0.460055\pi\)
\(350\) 0 0
\(351\) −3.82972 −0.204415
\(352\) 0 0
\(353\) −7.67782 23.6299i −0.408649 1.25769i −0.917810 0.397021i \(-0.870044\pi\)
0.509160 0.860672i \(-0.329956\pi\)
\(354\) 0 0
\(355\) −1.15856 + 24.0337i −0.0614898 + 1.27558i
\(356\) 0 0
\(357\) −1.07068 −0.0566664
\(358\) 0 0
\(359\) −15.2461 + 11.0770i −0.804660 + 0.584620i −0.912277 0.409573i \(-0.865678\pi\)
0.107618 + 0.994192i \(0.465678\pi\)
\(360\) 0 0
\(361\) 1.44993 + 1.05343i 0.0763119 + 0.0554438i
\(362\) 0 0
\(363\) −3.88034 + 2.81923i −0.203665 + 0.147971i
\(364\) 0 0
\(365\) −4.57233 6.97657i −0.239326 0.365170i
\(366\) 0 0
\(367\) 3.00893 9.26053i 0.157065 0.483396i −0.841299 0.540569i \(-0.818209\pi\)
0.998364 + 0.0571736i \(0.0182089\pi\)
\(368\) 0 0
\(369\) −1.51037 + 4.64844i −0.0786266 + 0.241988i
\(370\) 0 0
\(371\) 1.73384 + 5.33620i 0.0900162 + 0.277042i
\(372\) 0 0
\(373\) −23.5821 17.1334i −1.22104 0.887135i −0.224851 0.974393i \(-0.572189\pi\)
−0.996186 + 0.0872583i \(0.972189\pi\)
\(374\) 0 0
\(375\) 4.82416 4.94704i 0.249119 0.255464i
\(376\) 0 0
\(377\) −2.13902 1.55409i −0.110165 0.0800398i
\(378\) 0 0
\(379\) 1.87942 + 5.78426i 0.0965394 + 0.297118i 0.987652 0.156665i \(-0.0500743\pi\)
−0.891112 + 0.453783i \(0.850074\pi\)
\(380\) 0 0
\(381\) −2.42643 + 7.46778i −0.124310 + 0.382586i
\(382\) 0 0
\(383\) 9.76498 30.0535i 0.498967 1.53566i −0.311715 0.950176i \(-0.600903\pi\)
0.810682 0.585487i \(-0.199097\pi\)
\(384\) 0 0
\(385\) −1.83843 2.80512i −0.0936951 0.142962i
\(386\) 0 0
\(387\) −23.3671 + 16.9772i −1.18781 + 0.862997i
\(388\) 0 0
\(389\) −4.83362 3.51183i −0.245074 0.178057i 0.458467 0.888712i \(-0.348399\pi\)
−0.703541 + 0.710655i \(0.748399\pi\)
\(390\) 0 0
\(391\) 4.31166 3.13260i 0.218050 0.158422i
\(392\) 0 0
\(393\) −4.08093 −0.205856
\(394\) 0 0
\(395\) −1.38257 + 28.6807i −0.0695645 + 1.44308i
\(396\) 0 0
\(397\) −0.501105 1.54224i −0.0251497 0.0774029i 0.937694 0.347462i \(-0.112957\pi\)
−0.962844 + 0.270060i \(0.912957\pi\)
\(398\) 0 0
\(399\) 2.13654 0.106961
\(400\) 0 0
\(401\) −5.63644 −0.281470 −0.140735 0.990047i \(-0.544947\pi\)
−0.140735 + 0.990047i \(0.544947\pi\)
\(402\) 0 0
\(403\) 3.02301 + 9.30386i 0.150587 + 0.463458i
\(404\) 0 0
\(405\) 7.99095 9.95302i 0.397074 0.494570i
\(406\) 0 0
\(407\) −19.3399 −0.958645
\(408\) 0 0
\(409\) 26.8187 19.4849i 1.32610 0.963468i 0.326265 0.945278i \(-0.394210\pi\)
0.999835 0.0181896i \(-0.00579024\pi\)
\(410\) 0 0
\(411\) −0.339211 0.246451i −0.0167320 0.0121565i
\(412\) 0 0
\(413\) −9.01515 + 6.54989i −0.443606 + 0.322299i
\(414\) 0 0
\(415\) 11.3043 14.0799i 0.554905 0.691155i
\(416\) 0 0
\(417\) −0.438079 + 1.34827i −0.0214528 + 0.0660250i
\(418\) 0 0
\(419\) 7.32237 22.5360i 0.357721 1.10095i −0.596693 0.802469i \(-0.703519\pi\)
0.954415 0.298484i \(-0.0964809\pi\)
\(420\) 0 0
\(421\) 3.01571 + 9.28140i 0.146977 + 0.452348i 0.997260 0.0739778i \(-0.0235694\pi\)
−0.850283 + 0.526325i \(0.823569\pi\)
\(422\) 0 0
\(423\) 4.30713 + 3.12931i 0.209420 + 0.152152i
\(424\) 0 0
\(425\) −8.95756 + 5.27226i −0.434505 + 0.255742i
\(426\) 0 0
\(427\) 0.501068 + 0.364047i 0.0242484 + 0.0176175i
\(428\) 0 0
\(429\) −0.379133 1.16685i −0.0183047 0.0563362i
\(430\) 0 0
\(431\) −4.37321 + 13.4593i −0.210650 + 0.648314i 0.788784 + 0.614671i \(0.210711\pi\)
−0.999434 + 0.0336434i \(0.989289\pi\)
\(432\) 0 0
\(433\) −0.156266 + 0.480938i −0.00750967 + 0.0231124i −0.954741 0.297438i \(-0.903868\pi\)
0.947231 + 0.320550i \(0.103868\pi\)
\(434\) 0 0
\(435\) −3.19623 + 0.870802i −0.153247 + 0.0417517i
\(436\) 0 0
\(437\) −8.60390 + 6.25110i −0.411580 + 0.299031i
\(438\) 0 0
\(439\) −29.9702 21.7746i −1.43040 1.03925i −0.989942 0.141472i \(-0.954816\pi\)
−0.440457 0.897774i \(-0.645184\pi\)
\(440\) 0 0
\(441\) −13.3553 + 9.70317i −0.635965 + 0.462056i
\(442\) 0 0
\(443\) −20.7271 −0.984775 −0.492388 0.870376i \(-0.663876\pi\)
−0.492388 + 0.870376i \(0.663876\pi\)
\(444\) 0 0
\(445\) −12.9508 19.7607i −0.613929 0.936747i
\(446\) 0 0
\(447\) 4.48897 + 13.8156i 0.212321 + 0.653457i
\(448\) 0 0
\(449\) −6.56029 −0.309599 −0.154800 0.987946i \(-0.549473\pi\)
−0.154800 + 0.987946i \(0.549473\pi\)
\(450\) 0 0
\(451\) −3.36010 −0.158221
\(452\) 0 0
\(453\) 0.0950651 + 0.292580i 0.00446655 + 0.0137466i
\(454\) 0 0
\(455\) −1.98309 + 0.540287i −0.0929687 + 0.0253290i
\(456\) 0 0
\(457\) −28.9369 −1.35361 −0.676805 0.736163i \(-0.736636\pi\)
−0.676805 + 0.736163i \(0.736636\pi\)
\(458\) 0 0
\(459\) 5.83937 4.24255i 0.272558 0.198025i
\(460\) 0 0
\(461\) 27.5079 + 19.9856i 1.28117 + 0.930824i 0.999588 0.0287136i \(-0.00914107\pi\)
0.281581 + 0.959537i \(0.409141\pi\)
\(462\) 0 0
\(463\) 2.13334 1.54996i 0.0991445 0.0720327i −0.537108 0.843513i \(-0.680483\pi\)
0.636253 + 0.771480i \(0.280483\pi\)
\(464\) 0 0
\(465\) 11.4612 + 4.34451i 0.531501 + 0.201472i
\(466\) 0 0
\(467\) −11.9619 + 36.8148i −0.553529 + 1.70359i 0.146267 + 0.989245i \(0.453274\pi\)
−0.699796 + 0.714342i \(0.746726\pi\)
\(468\) 0 0
\(469\) −1.14304 + 3.51792i −0.0527808 + 0.162443i
\(470\) 0 0
\(471\) −1.39808 4.30285i −0.0644202 0.198265i
\(472\) 0 0
\(473\) −16.0641 11.6712i −0.738628 0.536645i
\(474\) 0 0
\(475\) 17.8748 10.5208i 0.820151 0.482727i
\(476\) 0 0
\(477\) −14.2601 10.3606i −0.652925 0.474378i
\(478\) 0 0
\(479\) −2.49231 7.67054i −0.113877 0.350476i 0.877835 0.478964i \(-0.158988\pi\)
−0.991711 + 0.128488i \(0.958988\pi\)
\(480\) 0 0
\(481\) −3.66252 + 11.2721i −0.166996 + 0.513962i
\(482\) 0 0
\(483\) 0.408042 1.25583i 0.0185666 0.0571420i
\(484\) 0 0
\(485\) −1.05674 + 21.9215i −0.0479839 + 0.995402i
\(486\) 0 0
\(487\) −6.04666 + 4.39316i −0.274000 + 0.199073i −0.716296 0.697796i \(-0.754164\pi\)
0.442296 + 0.896869i \(0.354164\pi\)
\(488\) 0 0
\(489\) 8.82416 + 6.41113i 0.399042 + 0.289921i
\(490\) 0 0
\(491\) −5.51407 + 4.00621i −0.248847 + 0.180798i −0.705216 0.708993i \(-0.749150\pi\)
0.456369 + 0.889791i \(0.349150\pi\)
\(492\) 0 0
\(493\) 4.98310 0.224428
\(494\) 0 0
\(495\) 9.85222 + 3.73461i 0.442824 + 0.167858i
\(496\) 0 0
\(497\) −2.77113 8.52867i −0.124302 0.382563i
\(498\) 0 0
\(499\) 19.5176 0.873727 0.436863 0.899528i \(-0.356089\pi\)
0.436863 + 0.899528i \(0.356089\pi\)
\(500\) 0 0
\(501\) −12.2305 −0.546417
\(502\) 0 0
\(503\) −4.30626 13.2533i −0.192007 0.590935i −0.999998 0.00174190i \(-0.999446\pi\)
0.807992 0.589194i \(-0.200554\pi\)
\(504\) 0 0
\(505\) −10.1958 3.86483i −0.453705 0.171983i
\(506\) 0 0
\(507\) 7.28256 0.323430
\(508\) 0 0
\(509\) 18.8189 13.6727i 0.834134 0.606034i −0.0865919 0.996244i \(-0.527598\pi\)
0.920726 + 0.390210i \(0.127598\pi\)
\(510\) 0 0
\(511\) 2.51505 + 1.82729i 0.111259 + 0.0808345i
\(512\) 0 0
\(513\) −11.6524 + 8.46599i −0.514468 + 0.373783i
\(514\) 0 0
\(515\) −1.35131 + 28.0322i −0.0595457 + 1.23525i
\(516\) 0 0
\(517\) −1.13101 + 3.48088i −0.0497416 + 0.153089i
\(518\) 0 0
\(519\) 0.609454 1.87571i 0.0267520 0.0823343i
\(520\) 0 0
\(521\) 13.4660 + 41.4440i 0.589955 + 1.81570i 0.578386 + 0.815763i \(0.303683\pi\)
0.0115690 + 0.999933i \(0.496317\pi\)
\(522\) 0 0
\(523\) −6.31766 4.59005i −0.276252 0.200709i 0.441029 0.897493i \(-0.354614\pi\)
−0.717281 + 0.696784i \(0.754614\pi\)
\(524\) 0 0
\(525\) −1.02769 + 2.36130i −0.0448519 + 0.103056i
\(526\) 0 0
\(527\) −14.9161 10.8372i −0.649756 0.472076i
\(528\) 0 0
\(529\) −5.07629 15.6232i −0.220708 0.679270i
\(530\) 0 0
\(531\) 10.8178 33.2936i 0.469451 1.44482i
\(532\) 0 0
\(533\) −0.636323 + 1.95840i −0.0275622 + 0.0848277i
\(534\) 0 0
\(535\) 31.6854 + 12.0107i 1.36988 + 0.519269i
\(536\) 0 0
\(537\) 8.25284 5.99604i 0.356137 0.258748i
\(538\) 0 0
\(539\) −9.18131 6.67061i −0.395467 0.287324i
\(540\) 0 0
\(541\) 20.8579 15.1541i 0.896749 0.651526i −0.0408799 0.999164i \(-0.513016\pi\)
0.937629 + 0.347638i \(0.113016\pi\)
\(542\) 0 0
\(543\) −6.59171 −0.282877
\(544\) 0 0
\(545\) 28.2688 7.70174i 1.21090 0.329906i
\(546\) 0 0
\(547\) −7.40053 22.7765i −0.316424 0.973852i −0.975164 0.221482i \(-0.928911\pi\)
0.658741 0.752370i \(-0.271089\pi\)
\(548\) 0 0
\(549\) −1.94571 −0.0830410
\(550\) 0 0
\(551\) −9.94376 −0.423619
\(552\) 0 0
\(553\) −3.30694 10.1777i −0.140625 0.432801i
\(554\) 0 0
\(555\) 8.14000 + 12.4202i 0.345524 + 0.527208i
\(556\) 0 0
\(557\) 22.4185 0.949904 0.474952 0.880012i \(-0.342465\pi\)
0.474952 + 0.880012i \(0.342465\pi\)
\(558\) 0 0
\(559\) −9.84461 + 7.15253i −0.416383 + 0.302520i
\(560\) 0 0
\(561\) 1.87072 + 1.35916i 0.0789819 + 0.0573837i
\(562\) 0 0
\(563\) 8.17248 5.93765i 0.344429 0.250242i −0.402099 0.915596i \(-0.631719\pi\)
0.746528 + 0.665354i \(0.231719\pi\)
\(564\) 0 0
\(565\) 19.3495 5.27172i 0.814040 0.221783i
\(566\) 0 0
\(567\) −1.47000 + 4.52420i −0.0617342 + 0.189998i
\(568\) 0 0
\(569\) 3.48538 10.7269i 0.146115 0.449695i −0.851038 0.525104i \(-0.824026\pi\)
0.997153 + 0.0754091i \(0.0240263\pi\)
\(570\) 0 0
\(571\) 1.62957 + 5.01529i 0.0681953 + 0.209883i 0.979347 0.202188i \(-0.0648053\pi\)
−0.911151 + 0.412072i \(0.864805\pi\)
\(572\) 0 0
\(573\) 0.245991 + 0.178723i 0.0102764 + 0.00746626i
\(574\) 0 0
\(575\) −2.77018 12.5158i −0.115525 0.521946i
\(576\) 0 0
\(577\) 13.8012 + 10.0272i 0.574553 + 0.417437i 0.836756 0.547576i \(-0.184449\pi\)
−0.262203 + 0.965013i \(0.584449\pi\)
\(578\) 0 0
\(579\) −3.18881 9.81415i −0.132522 0.407862i
\(580\) 0 0
\(581\) −2.07951 + 6.40009i −0.0862728 + 0.265520i
\(582\) 0 0
\(583\) 3.74455 11.5245i 0.155083 0.477298i
\(584\) 0 0
\(585\) 4.04245 5.03501i 0.167135 0.208172i
\(586\) 0 0
\(587\) 1.82680 1.32725i 0.0754001 0.0547814i −0.549447 0.835529i \(-0.685161\pi\)
0.624847 + 0.780747i \(0.285161\pi\)
\(588\) 0 0
\(589\) 29.7651 + 21.6256i 1.22645 + 0.891067i
\(590\) 0 0
\(591\) 5.37195 3.90295i 0.220972 0.160546i
\(592\) 0 0
\(593\) 27.9744 1.14877 0.574385 0.818585i \(-0.305241\pi\)
0.574385 + 0.818585i \(0.305241\pi\)
\(594\) 0 0
\(595\) 2.42519 3.02066i 0.0994232 0.123835i
\(596\) 0 0
\(597\) 2.45960 + 7.56986i 0.100665 + 0.309814i
\(598\) 0 0
\(599\) −5.13906 −0.209976 −0.104988 0.994473i \(-0.533480\pi\)
−0.104988 + 0.994473i \(0.533480\pi\)
\(600\) 0 0
\(601\) 37.9217 1.54686 0.773429 0.633882i \(-0.218540\pi\)
0.773429 + 0.633882i \(0.218540\pi\)
\(602\) 0 0
\(603\) −3.59089 11.0516i −0.146232 0.450057i
\(604\) 0 0
\(605\) 0.835559 17.3333i 0.0339703 0.704697i
\(606\) 0 0
\(607\) −39.0728 −1.58592 −0.792959 0.609275i \(-0.791461\pi\)
−0.792959 + 0.609275i \(0.791461\pi\)
\(608\) 0 0
\(609\) 0.998835 0.725696i 0.0404748 0.0294067i
\(610\) 0 0
\(611\) 1.81461 + 1.31839i 0.0734112 + 0.0533363i
\(612\) 0 0
\(613\) 1.53761 1.11714i 0.0621035 0.0451208i −0.556300 0.830981i \(-0.687780\pi\)
0.618404 + 0.785860i \(0.287780\pi\)
\(614\) 0 0
\(615\) 1.41424 + 2.15788i 0.0570275 + 0.0870139i
\(616\) 0 0
\(617\) 4.39305 13.5204i 0.176858 0.544312i −0.822856 0.568250i \(-0.807621\pi\)
0.999713 + 0.0239383i \(0.00762053\pi\)
\(618\) 0 0
\(619\) 6.80529 20.9445i 0.273528 0.841831i −0.716078 0.698021i \(-0.754064\pi\)
0.989605 0.143811i \(-0.0459356\pi\)
\(620\) 0 0
\(621\) 2.75077 + 8.46599i 0.110385 + 0.339729i
\(622\) 0 0
\(623\) 7.12372 + 5.17569i 0.285406 + 0.207360i
\(624\) 0 0
\(625\) 3.02969 + 24.8157i 0.121188 + 0.992630i
\(626\) 0 0
\(627\) −3.73302 2.71220i −0.149082 0.108315i
\(628\) 0 0
\(629\) −6.90274 21.2444i −0.275230 0.847072i
\(630\) 0 0
\(631\) −9.56547 + 29.4395i −0.380795 + 1.17197i 0.558689 + 0.829377i \(0.311304\pi\)
−0.939485 + 0.342591i \(0.888696\pi\)
\(632\) 0 0
\(633\) −5.05623 + 15.5615i −0.200967 + 0.618514i
\(634\) 0 0
\(635\) −15.5724 23.7608i −0.617974 0.942920i
\(636\) 0 0
\(637\) −5.62661 + 4.08797i −0.222935 + 0.161971i
\(638\) 0 0
\(639\) 22.7915 + 16.5590i 0.901616 + 0.655063i
\(640\) 0 0
\(641\) −16.2639 + 11.8164i −0.642385 + 0.466720i −0.860669 0.509166i \(-0.829954\pi\)
0.218284 + 0.975885i \(0.429954\pi\)
\(642\) 0 0
\(643\) −17.9165 −0.706558 −0.353279 0.935518i \(-0.614933\pi\)
−0.353279 + 0.935518i \(0.614933\pi\)
\(644\) 0 0
\(645\) −0.734110 + 15.2288i −0.0289056 + 0.599632i
\(646\) 0 0
\(647\) 7.64211 + 23.5200i 0.300442 + 0.924666i 0.981339 + 0.192287i \(0.0615903\pi\)
−0.680897 + 0.732380i \(0.738410\pi\)
\(648\) 0 0
\(649\) 24.0662 0.944680
\(650\) 0 0
\(651\) −4.56809 −0.179038
\(652\) 0 0
\(653\) −0.918758 2.82765i −0.0359538 0.110654i 0.931469 0.363821i \(-0.118528\pi\)
−0.967423 + 0.253166i \(0.918528\pi\)
\(654\) 0 0
\(655\) 9.24370 11.5134i 0.361181 0.449864i
\(656\) 0 0
\(657\) −9.76626 −0.381018
\(658\) 0 0
\(659\) −15.3181 + 11.1293i −0.596709 + 0.433534i −0.844709 0.535226i \(-0.820227\pi\)
0.248001 + 0.968760i \(0.420227\pi\)
\(660\) 0 0
\(661\) −31.7914 23.0978i −1.23654 0.898401i −0.239179 0.970975i \(-0.576878\pi\)
−0.997363 + 0.0725749i \(0.976878\pi\)
\(662\) 0 0
\(663\) 1.14644 0.832937i 0.0445240 0.0323486i
\(664\) 0 0
\(665\) −4.83946 + 6.02773i −0.187666 + 0.233745i
\(666\) 0 0
\(667\) −1.89909 + 5.84480i −0.0735331 + 0.226311i
\(668\) 0 0
\(669\) 3.88317 11.9512i 0.150132 0.462059i
\(670\) 0 0
\(671\) −0.413345 1.27215i −0.0159570 0.0491107i
\(672\) 0 0
\(673\) −19.9660 14.5061i −0.769632 0.559170i 0.132217 0.991221i \(-0.457790\pi\)
−0.901850 + 0.432050i \(0.857790\pi\)
\(674\) 0 0
\(675\) −3.75172 16.9505i −0.144404 0.652423i
\(676\) 0 0
\(677\) 35.2934 + 25.6421i 1.35643 + 0.985508i 0.998663 + 0.0516988i \(0.0164636\pi\)
0.357772 + 0.933809i \(0.383536\pi\)
\(678\) 0 0
\(679\) −2.52759 7.77912i −0.0970000 0.298535i
\(680\) 0 0
\(681\) 2.97113 9.14419i 0.113854 0.350406i
\(682\) 0 0
\(683\) 6.81741 20.9818i 0.260861 0.802847i −0.731757 0.681565i \(-0.761300\pi\)
0.992618 0.121282i \(-0.0387005\pi\)
\(684\) 0 0
\(685\) 1.46365 0.398766i 0.0559231 0.0152361i
\(686\) 0 0
\(687\) 10.3113 7.49163i 0.393402 0.285824i
\(688\) 0 0
\(689\) −6.00783 4.36494i −0.228880 0.166291i
\(690\) 0 0
\(691\) −14.7311 + 10.7028i −0.560397 + 0.407152i −0.831604 0.555369i \(-0.812577\pi\)
0.271207 + 0.962521i \(0.412577\pi\)
\(692\) 0 0
\(693\) −3.92680 −0.149167
\(694\) 0 0
\(695\) −2.81152 4.28989i −0.106647 0.162725i
\(696\) 0 0
\(697\) −1.19928 3.69099i −0.0454258 0.139806i
\(698\) 0 0
\(699\) 13.4642 0.509263
\(700\) 0 0
\(701\) 1.95162 0.0737115 0.0368558 0.999321i \(-0.488266\pi\)
0.0368558 + 0.999321i \(0.488266\pi\)
\(702\) 0 0
\(703\) 13.7744 + 42.3932i 0.519511 + 1.59889i
\(704\) 0 0
\(705\) 2.71147 0.738731i 0.102120 0.0278222i
\(706\) 0 0
\(707\) 4.06372 0.152832
\(708\) 0 0
\(709\) −27.8786 + 20.2550i −1.04700 + 0.760692i −0.971640 0.236465i \(-0.924011\pi\)
−0.0753622 + 0.997156i \(0.524011\pi\)
\(710\) 0 0
\(711\) 27.1983 + 19.7607i 1.02002 + 0.741084i
\(712\) 0 0
\(713\) 18.3958 13.3654i 0.688929 0.500536i
\(714\) 0 0
\(715\) 4.15077 + 1.57340i 0.155230 + 0.0588419i
\(716\) 0 0
\(717\) −4.54508 + 13.9883i −0.169739 + 0.522404i
\(718\) 0 0
\(719\) −5.09724 + 15.6877i −0.190095 + 0.585052i −0.999999 0.00151058i \(-0.999519\pi\)
0.809904 + 0.586562i \(0.199519\pi\)
\(720\) 0 0
\(721\) −3.23217 9.94759i −0.120372 0.370468i
\(722\) 0 0
\(723\) −6.05907 4.40217i −0.225339 0.163718i
\(724\) 0 0
\(725\) 4.78300 10.9898i 0.177636 0.408152i
\(726\) 0 0
\(727\) 6.01184 + 4.36786i 0.222967 + 0.161995i 0.693661 0.720301i \(-0.255997\pi\)
−0.470694 + 0.882296i \(0.655997\pi\)
\(728\) 0 0
\(729\) −2.62868 8.09024i −0.0973584 0.299638i
\(730\) 0 0
\(731\) 7.08704 21.8117i 0.262124 0.806734i
\(732\) 0 0
\(733\) −1.21919 + 3.75230i −0.0450320 + 0.138594i −0.971045 0.238898i \(-0.923214\pi\)
0.926013 + 0.377493i \(0.123214\pi\)
\(734\) 0 0
\(735\) −0.419575 + 8.70388i −0.0154763 + 0.321048i
\(736\) 0 0
\(737\) 6.46293 4.69560i 0.238065 0.172964i
\(738\) 0 0
\(739\) 8.04823 + 5.84738i 0.296059 + 0.215099i 0.725892 0.687809i \(-0.241427\pi\)
−0.429833 + 0.902909i \(0.641427\pi\)
\(740\) 0 0
\(741\) −2.28772 + 1.66212i −0.0840414 + 0.0610597i
\(742\) 0 0
\(743\) −29.7044 −1.08975 −0.544875 0.838517i \(-0.683423\pi\)
−0.544875 + 0.838517i \(0.683423\pi\)
\(744\) 0 0
\(745\) −49.1455 18.6292i −1.80055 0.682521i
\(746\) 0 0
\(747\) −6.53283 20.1060i −0.239024 0.735640i
\(748\) 0 0
\(749\) −12.6288 −0.461448
\(750\) 0 0
\(751\) −3.82521 −0.139584 −0.0697919 0.997562i \(-0.522234\pi\)
−0.0697919 + 0.997562i \(0.522234\pi\)
\(752\) 0 0
\(753\) −1.35803 4.17957i −0.0494892 0.152312i
\(754\) 0 0
\(755\) −1.04078 0.394519i −0.0378777 0.0143580i
\(756\) 0 0
\(757\) −19.8075 −0.719917 −0.359959 0.932968i \(-0.617209\pi\)
−0.359959 + 0.932968i \(0.617209\pi\)
\(758\) 0 0
\(759\) −2.30713 + 1.67623i −0.0837436 + 0.0608433i
\(760\) 0 0
\(761\) −2.24147 1.62852i −0.0812532 0.0590339i 0.546417 0.837513i \(-0.315991\pi\)
−0.627670 + 0.778479i \(0.715991\pi\)
\(762\) 0 0
\(763\) −8.83412 + 6.41837i −0.319817 + 0.232360i
\(764\) 0 0
\(765\) −0.585956 + 12.1554i −0.0211853 + 0.439478i
\(766\) 0 0
\(767\) 4.55755 14.0267i 0.164564 0.506475i
\(768\) 0 0
\(769\) −15.1222 + 46.5413i −0.545320 + 1.67832i 0.174908 + 0.984585i \(0.444037\pi\)
−0.720228 + 0.693738i \(0.755963\pi\)
\(770\) 0 0
\(771\) −4.89994 15.0805i −0.176467 0.543110i
\(772\) 0 0
\(773\) 8.69890 + 6.32012i 0.312878 + 0.227319i 0.733130 0.680088i \(-0.238059\pi\)
−0.420253 + 0.907407i \(0.638059\pi\)
\(774\) 0 0
\(775\) −38.2177 + 22.4943i −1.37282 + 0.808019i
\(776\) 0 0
\(777\) −4.47748 3.25308i −0.160629 0.116703i
\(778\) 0 0
\(779\) 2.39315 + 7.36536i 0.0857435 + 0.263891i
\(780\) 0 0
\(781\) −5.98479 + 18.4193i −0.214153 + 0.659095i
\(782\) 0 0
\(783\) −2.57198 + 7.91574i −0.0919150 + 0.282885i
\(784\) 0 0
\(785\) 15.3063 + 5.80203i 0.546304 + 0.207083i
\(786\) 0 0
\(787\) 19.3427 14.0533i 0.689492 0.500945i −0.187001 0.982360i \(-0.559877\pi\)
0.876493 + 0.481415i \(0.159877\pi\)
\(788\) 0 0
\(789\) −12.4445 9.04148i −0.443037 0.321885i
\(790\) 0 0
\(791\) −6.04681 + 4.39327i −0.215000 + 0.156207i
\(792\) 0 0
\(793\) −0.819734 −0.0291096
\(794\) 0 0
\(795\) −8.97716 + 2.44580i −0.318387 + 0.0867436i
\(796\) 0 0
\(797\) −12.9085 39.7284i −0.457244 1.40725i −0.868480 0.495724i \(-0.834903\pi\)
0.411236 0.911529i \(-0.365097\pi\)
\(798\) 0 0
\(799\) −4.22734 −0.149552
\(800\) 0 0
\(801\) −27.6623 −0.977401
\(802\) 0 0
\(803\) −2.07474 6.38538i −0.0732159 0.225335i
\(804\) 0 0
\(805\) 2.61875 + 3.99576i 0.0922989 + 0.140832i
\(806\) 0 0
\(807\) −1.49789 −0.0527281
\(808\) 0 0
\(809\) −21.8310 + 15.8612i −0.767538 + 0.557649i −0.901213 0.433376i \(-0.857322\pi\)
0.133675 + 0.991025i \(0.457322\pi\)
\(810\) 0 0
\(811\) −30.8555 22.4178i −1.08348 0.787196i −0.105195 0.994452i \(-0.533547\pi\)
−0.978287 + 0.207256i \(0.933547\pi\)
\(812\) 0 0
\(813\) −3.96177 + 2.87839i −0.138945 + 0.100950i
\(814\) 0 0
\(815\) −38.0750 + 10.3734i −1.33371 + 0.363365i
\(816\) 0 0
\(817\) −14.1422 + 43.5251i −0.494772 + 1.52275i
\(818\) 0 0
\(819\) −0.743641 + 2.28869i −0.0259849 + 0.0799733i
\(820\) 0 0
\(821\) −14.3480 44.1587i −0.500750 1.54115i −0.807800 0.589457i \(-0.799342\pi\)
0.307049 0.951694i \(-0.400658\pi\)
\(822\) 0 0
\(823\) 34.2286 + 24.8685i 1.19313 + 0.866862i 0.993592 0.113028i \(-0.0360548\pi\)
0.199541 + 0.979889i \(0.436055\pi\)
\(824\) 0 0
\(825\) 4.79312 2.82115i 0.166875 0.0982197i
\(826\) 0 0
\(827\) 14.6821 + 10.6671i 0.510546 + 0.370933i 0.813030 0.582221i \(-0.197816\pi\)
−0.302485 + 0.953154i \(0.597816\pi\)
\(828\) 0 0
\(829\) −3.34078 10.2819i −0.116030 0.357104i 0.876130 0.482074i \(-0.160116\pi\)
−0.992160 + 0.124970i \(0.960116\pi\)
\(830\) 0 0
\(831\) −1.50200 + 4.62269i −0.0521039 + 0.160359i
\(832\) 0 0
\(833\) 4.05055 12.4663i 0.140343 0.431932i
\(834\) 0 0
\(835\) 27.7032 34.5054i 0.958709 1.19411i
\(836\) 0 0
\(837\) 24.9139 18.1010i 0.861149 0.625662i
\(838\) 0 0
\(839\) 24.0000 + 17.4370i 0.828571 + 0.601992i 0.919155 0.393897i \(-0.128873\pi\)
−0.0905835 + 0.995889i \(0.528873\pi\)
\(840\) 0 0
\(841\) 18.8128 13.6683i 0.648716 0.471320i
\(842\) 0 0
\(843\) 7.69904 0.265169
\(844\) 0 0
\(845\) −16.4957 + 20.5460i −0.567469 + 0.706803i
\(846\) 0 0
\(847\) 1.99856 + 6.15094i 0.0686713 + 0.211349i
\(848\) 0 0
\(849\) −8.56142 −0.293827
\(850\) 0 0
\(851\) 27.5488 0.944361
\(852\) 0 0
\(853\) 3.00414 + 9.24579i 0.102860 + 0.316570i 0.989222 0.146422i \(-0.0467758\pi\)
−0.886362 + 0.462992i \(0.846776\pi\)
\(854\) 0 0
\(855\) 1.16927 24.2560i 0.0399883 0.829537i
\(856\) 0 0
\(857\) −1.25560 −0.0428905 −0.0214452 0.999770i \(-0.506827\pi\)
−0.0214452 + 0.999770i \(0.506827\pi\)
\(858\) 0 0
\(859\) −22.5900 + 16.4126i −0.770761 + 0.559991i −0.902192 0.431334i \(-0.858043\pi\)
0.131431 + 0.991325i \(0.458043\pi\)
\(860\) 0 0
\(861\) −0.777913 0.565187i −0.0265112 0.0192615i
\(862\) 0 0
\(863\) −15.8484 + 11.5145i −0.539484 + 0.391958i −0.823894 0.566745i \(-0.808203\pi\)
0.284409 + 0.958703i \(0.408203\pi\)
\(864\) 0 0
\(865\) 3.91138 + 5.96808i 0.132991 + 0.202921i
\(866\) 0 0
\(867\) 2.42140 7.45230i 0.0822351 0.253093i
\(868\) 0 0
\(869\) −7.14198 + 21.9807i −0.242275 + 0.745646i
\(870\) 0 0
\(871\) −1.51285 4.65608i −0.0512611 0.157765i
\(872\) 0 0
\(873\) 20.7884 + 15.1037i 0.703581 + 0.511182i
\(874\) 0 0
\(875\) −4.33403 8.24794i −0.146517 0.278831i
\(876\) 0 0
\(877\) −24.5200 17.8148i −0.827980 0.601563i 0.0910069 0.995850i \(-0.470991\pi\)
−0.918987 + 0.394287i \(0.870991\pi\)
\(878\) 0 0
\(879\) −1.76855 5.44304i −0.0596518 0.183589i
\(880\) 0 0
\(881\) 6.74593 20.7618i 0.227276 0.699484i −0.770776 0.637106i \(-0.780131\pi\)
0.998053 0.0623785i \(-0.0198686\pi\)
\(882\) 0 0
\(883\) −7.88167 + 24.2573i −0.265239 + 0.816323i 0.726399 + 0.687273i \(0.241193\pi\)
−0.991638 + 0.129049i \(0.958807\pi\)
\(884\) 0 0
\(885\) −10.1292 15.4554i −0.340490 0.519528i
\(886\) 0 0
\(887\) 34.0788 24.7597i 1.14425 0.831349i 0.156547 0.987671i \(-0.449964\pi\)
0.987706 + 0.156322i \(0.0499637\pi\)
\(888\) 0 0
\(889\) 8.56576 + 6.22339i 0.287286 + 0.208726i
\(890\) 0 0
\(891\) 8.31160 6.03873i 0.278449 0.202305i
\(892\) 0 0
\(893\) 8.43564 0.282288
\(894\) 0 0
\(895\) −1.77710 + 36.8650i −0.0594019 + 1.23226i
\(896\) 0 0
\(897\) 0.540057 + 1.66212i 0.0180320 + 0.0554967i
\(898\) 0 0
\(899\) 21.2606 0.709080
\(900\) 0 0
\(901\) 13.9959 0.466272
\(902\) 0 0
\(903\) −1.75591 5.40412i −0.0584329 0.179838i
\(904\) 0 0
\(905\) 14.9309 18.5969i 0.496318 0.618182i
\(906\) 0 0
\(907\) 48.7145 1.61754 0.808769 0.588126i \(-0.200134\pi\)
0.808769 + 0.588126i \(0.200134\pi\)
\(908\) 0 0
\(909\) −10.3281 + 7.50382i −0.342562 + 0.248886i
\(910\) 0 0
\(911\) 14.7336 + 10.7046i 0.488147 + 0.354659i 0.804471 0.593992i \(-0.202449\pi\)
−0.316324 + 0.948651i \(0.602449\pi\)
\(912\) 0 0
\(913\) 11.7579 8.54260i 0.389129 0.282719i
\(914\) 0 0
\(915\) −0.643006 + 0.800887i −0.0212571 + 0.0264765i
\(916\) 0 0
\(917\) −1.70045 + 5.23346i −0.0561539 + 0.172824i
\(918\) 0 0
\(919\) −3.09130 + 9.51404i −0.101973 + 0.313839i −0.989008 0.147862i \(-0.952761\pi\)
0.887035 + 0.461701i \(0.152761\pi\)
\(920\) 0 0
\(921\) −4.33471 13.3409i −0.142833 0.439596i
\(922\) 0 0
\(923\) 9.60211 + 6.97634i 0.316057 + 0.229629i
\(924\) 0 0
\(925\) −53.4785 5.16793i −1.75836 0.169920i
\(926\) 0 0
\(927\) 26.5833 + 19.3139i 0.873110 + 0.634352i
\(928\) 0 0
\(929\) −14.5855 44.8895i −0.478534 1.47278i −0.841131 0.540831i \(-0.818110\pi\)
0.362597 0.931946i \(-0.381890\pi\)
\(930\) 0 0
\(931\) −8.08285 + 24.8765i −0.264905 + 0.815293i
\(932\) 0 0
\(933\) 1.98190 6.09967i 0.0648846 0.199694i
\(934\) 0 0
\(935\) −8.07190 + 2.19916i −0.263979 + 0.0719204i
\(936\) 0 0
\(937\) −1.30953 + 0.951426i −0.0427803 + 0.0310817i −0.608970 0.793193i \(-0.708417\pi\)
0.566190 + 0.824275i \(0.308417\pi\)
\(938\) 0 0
\(939\) 8.48627 + 6.16564i 0.276939 + 0.201208i
\(940\) 0 0
\(941\) 11.2661 8.18530i 0.367265 0.266833i −0.388811 0.921317i \(-0.627114\pi\)
0.756076 + 0.654484i \(0.227114\pi\)
\(942\) 0 0
\(943\) 4.78630 0.155863
\(944\) 0 0
\(945\) 3.54663 + 5.41154i 0.115372 + 0.176038i
\(946\) 0 0
\(947\) −13.1131 40.3580i −0.426119 1.31146i −0.901919 0.431905i \(-0.857842\pi\)
0.475801 0.879553i \(-0.342158\pi\)
\(948\) 0 0
\(949\) −4.11456 −0.133564
\(950\) 0 0
\(951\) −11.9932 −0.388905
\(952\) 0 0
\(953\) 16.4010 + 50.4771i 0.531281 + 1.63511i 0.751550 + 0.659676i \(0.229306\pi\)
−0.220270 + 0.975439i \(0.570694\pi\)
\(954\) 0 0
\(955\) −1.06142 + 0.289180i −0.0343467 + 0.00935764i
\(956\) 0 0
\(957\) −2.66642 −0.0861930
\(958\) 0 0
\(959\) −0.457396 + 0.332318i −0.0147701 + 0.0107311i
\(960\) 0 0
\(961\) −38.5606 28.0159i −1.24389 0.903740i
\(962\) 0 0
\(963\) 32.0967 23.3196i 1.03430 0.751464i
\(964\) 0 0
\(965\) 34.9112 + 13.2335i 1.12383 + 0.426003i
\(966\) 0 0
\(967\) 8.32828 25.6318i 0.267819 0.824263i −0.723211 0.690627i \(-0.757335\pi\)
0.991030 0.133636i \(-0.0426654\pi\)
\(968\) 0 0
\(969\) 1.64691 5.06865i 0.0529062 0.162829i
\(970\) 0 0
\(971\) 8.41468 + 25.8977i 0.270040 + 0.831097i 0.990489 + 0.137590i \(0.0439356\pi\)
−0.720449 + 0.693508i \(0.756064\pi\)
\(972\) 0 0
\(973\) 1.54650 + 1.12360i 0.0495786 + 0.0360210i
\(974\) 0 0
\(975\) −0.736573 3.32787i −0.0235892 0.106577i
\(976\) 0 0
\(977\) 20.8970 + 15.1826i 0.668554 + 0.485733i 0.869541 0.493861i \(-0.164415\pi\)
−0.200987 + 0.979594i \(0.564415\pi\)
\(978\) 0 0
\(979\) −5.87657 18.0862i −0.187816 0.578038i
\(980\) 0 0
\(981\) 10.6005 32.6251i 0.338449 1.04164i
\(982\) 0 0
\(983\) −4.09840 + 12.6136i −0.130719 + 0.402311i −0.994900 0.100870i \(-0.967837\pi\)
0.864181 + 0.503181i \(0.167837\pi\)
\(984\) 0 0
\(985\) −1.15675 + 23.9962i −0.0368571 + 0.764583i
\(986\) 0 0
\(987\) −0.847346 + 0.615633i −0.0269713 + 0.0195958i
\(988\) 0 0
\(989\) 22.8825 + 16.6251i 0.727621 + 0.528648i
\(990\) 0 0
\(991\) 19.3656 14.0700i 0.615170 0.446947i −0.236061 0.971738i \(-0.575857\pi\)
0.851231 + 0.524791i \(0.175857\pi\)
\(992\) 0 0
\(993\) −5.12171 −0.162532
\(994\) 0 0
\(995\) −26.9277 10.2073i −0.853667 0.323593i
\(996\) 0 0
\(997\) 15.1968 + 46.7710i 0.481288 + 1.48125i 0.837286 + 0.546765i \(0.184141\pi\)
−0.355999 + 0.934487i \(0.615859\pi\)
\(998\) 0 0
\(999\) 37.3099 1.18043
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.m.b.41.2 8
4.3 odd 2 400.2.u.e.241.2 8
5.2 odd 4 1000.2.q.b.49.1 16
5.3 odd 4 1000.2.q.b.49.4 16
5.4 even 2 1000.2.m.b.201.2 8
25.2 odd 20 1000.2.q.b.449.3 16
25.6 even 5 5000.2.a.i.1.1 4
25.11 even 5 inner 200.2.m.b.161.2 yes 8
25.14 even 10 1000.2.m.b.801.2 8
25.19 even 10 5000.2.a.f.1.4 4
25.23 odd 20 1000.2.q.b.449.2 16
100.11 odd 10 400.2.u.e.161.2 8
100.19 odd 10 10000.2.a.z.1.1 4
100.31 odd 10 10000.2.a.q.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.m.b.41.2 8 1.1 even 1 trivial
200.2.m.b.161.2 yes 8 25.11 even 5 inner
400.2.u.e.161.2 8 100.11 odd 10
400.2.u.e.241.2 8 4.3 odd 2
1000.2.m.b.201.2 8 5.4 even 2
1000.2.m.b.801.2 8 25.14 even 10
1000.2.q.b.49.1 16 5.2 odd 4
1000.2.q.b.49.4 16 5.3 odd 4
1000.2.q.b.449.2 16 25.23 odd 20
1000.2.q.b.449.3 16 25.2 odd 20
5000.2.a.f.1.4 4 25.19 even 10
5000.2.a.i.1.1 4 25.6 even 5
10000.2.a.q.1.4 4 100.31 odd 10
10000.2.a.z.1.1 4 100.19 odd 10