Properties

Label 1000.2.m.d.601.5
Level $1000$
Weight $2$
Character 1000.601
Analytic conductor $7.985$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(201,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 601.5
Character \(\chi\) \(=\) 1000.601
Dual form 1000.2.m.d.401.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0481856 + 0.0350089i) q^{3} +1.71675 q^{7} +(-0.925955 - 2.84980i) q^{9} +(0.573356 - 1.76461i) q^{11} +(0.173457 + 0.533844i) q^{13} +(3.15952 - 2.29552i) q^{17} +(-4.69249 + 3.40929i) q^{19} +(0.0827227 + 0.0601016i) q^{21} +(2.25969 - 6.95461i) q^{23} +(0.110366 - 0.339673i) q^{27} +(-2.13709 - 1.55269i) q^{29} +(1.56235 - 1.13511i) q^{31} +(0.0894045 - 0.0649561i) q^{33} +(-0.235731 - 0.725506i) q^{37} +(-0.0103312 + 0.0317961i) q^{39} +(-3.00636 - 9.25262i) q^{41} +9.68774 q^{43} +(8.42338 + 6.11994i) q^{47} -4.05276 q^{49} +0.232607 q^{51} +(0.900166 + 0.654009i) q^{53} -0.345466 q^{57} +(1.56343 + 4.81174i) q^{59} +(4.18521 - 12.8808i) q^{61} +(-1.58963 - 4.89239i) q^{63} +(1.01005 - 0.733847i) q^{67} +(0.352358 - 0.256003i) q^{69} +(10.8951 + 7.91578i) q^{71} +(1.26382 - 3.88964i) q^{73} +(0.984309 - 3.02939i) q^{77} +(-5.25455 - 3.81765i) q^{79} +(-7.25533 + 5.27131i) q^{81} +(-0.738788 + 0.536761i) q^{83} +(-0.0486192 - 0.149634i) q^{87} +(1.61785 - 4.97923i) q^{89} +(0.297782 + 0.916478i) q^{91} +0.115022 q^{93} +(-11.7557 - 8.54098i) q^{97} -5.55967 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{3} + 16 q^{7} - 10 q^{9} + 6 q^{11} - 10 q^{13} - 4 q^{17} + 6 q^{19} - 4 q^{21} + 4 q^{23} - 26 q^{27} + 2 q^{29} + 6 q^{31} - 32 q^{33} - 16 q^{37} + 12 q^{39} + 52 q^{43} + 8 q^{47} + 60 q^{49}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0481856 + 0.0350089i 0.0278200 + 0.0202124i 0.601608 0.798791i \(-0.294527\pi\)
−0.573788 + 0.819004i \(0.694527\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.71675 0.648871 0.324436 0.945908i \(-0.394826\pi\)
0.324436 + 0.945908i \(0.394826\pi\)
\(8\) 0 0
\(9\) −0.925955 2.84980i −0.308652 0.949932i
\(10\) 0 0
\(11\) 0.573356 1.76461i 0.172873 0.532049i −0.826657 0.562707i \(-0.809760\pi\)
0.999530 + 0.0306574i \(0.00976008\pi\)
\(12\) 0 0
\(13\) 0.173457 + 0.533844i 0.0481082 + 0.148062i 0.972225 0.234048i \(-0.0751974\pi\)
−0.924117 + 0.382110i \(0.875197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.15952 2.29552i 0.766295 0.556746i −0.134539 0.990908i \(-0.542955\pi\)
0.900835 + 0.434162i \(0.142955\pi\)
\(18\) 0 0
\(19\) −4.69249 + 3.40929i −1.07653 + 0.782145i −0.977075 0.212897i \(-0.931710\pi\)
−0.0994556 + 0.995042i \(0.531710\pi\)
\(20\) 0 0
\(21\) 0.0827227 + 0.0601016i 0.0180516 + 0.0131152i
\(22\) 0 0
\(23\) 2.25969 6.95461i 0.471178 1.45014i −0.379866 0.925041i \(-0.624030\pi\)
0.851044 0.525094i \(-0.175970\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.110366 0.339673i 0.0212400 0.0653700i
\(28\) 0 0
\(29\) −2.13709 1.55269i −0.396848 0.288327i 0.371408 0.928470i \(-0.378875\pi\)
−0.768256 + 0.640143i \(0.778875\pi\)
\(30\) 0 0
\(31\) 1.56235 1.13511i 0.280607 0.203873i −0.438575 0.898694i \(-0.644517\pi\)
0.719182 + 0.694822i \(0.244517\pi\)
\(32\) 0 0
\(33\) 0.0894045 0.0649561i 0.0155633 0.0113074i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.235731 0.725506i −0.0387539 0.119272i 0.929808 0.368045i \(-0.119973\pi\)
−0.968562 + 0.248773i \(0.919973\pi\)
\(38\) 0 0
\(39\) −0.0103312 + 0.0317961i −0.00165431 + 0.00509146i
\(40\) 0 0
\(41\) −3.00636 9.25262i −0.469514 1.44502i −0.853215 0.521559i \(-0.825351\pi\)
0.383701 0.923457i \(-0.374649\pi\)
\(42\) 0 0
\(43\) 9.68774 1.47737 0.738683 0.674053i \(-0.235448\pi\)
0.738683 + 0.674053i \(0.235448\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.42338 + 6.11994i 1.22868 + 0.892685i 0.996790 0.0800577i \(-0.0255104\pi\)
0.231886 + 0.972743i \(0.425510\pi\)
\(48\) 0 0
\(49\) −4.05276 −0.578966
\(50\) 0 0
\(51\) 0.232607 0.0325715
\(52\) 0 0
\(53\) 0.900166 + 0.654009i 0.123647 + 0.0898351i 0.647890 0.761734i \(-0.275652\pi\)
−0.524243 + 0.851569i \(0.675652\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.345466 −0.0457581
\(58\) 0 0
\(59\) 1.56343 + 4.81174i 0.203541 + 0.626435i 0.999770 + 0.0214397i \(0.00682500\pi\)
−0.796229 + 0.604995i \(0.793175\pi\)
\(60\) 0 0
\(61\) 4.18521 12.8808i 0.535862 1.64921i −0.205918 0.978569i \(-0.566018\pi\)
0.741780 0.670643i \(-0.233982\pi\)
\(62\) 0 0
\(63\) −1.58963 4.89239i −0.200275 0.616383i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.01005 0.733847i 0.123398 0.0896537i −0.524375 0.851488i \(-0.675701\pi\)
0.647772 + 0.761834i \(0.275701\pi\)
\(68\) 0 0
\(69\) 0.352358 0.256003i 0.0424189 0.0308191i
\(70\) 0 0
\(71\) 10.8951 + 7.91578i 1.29302 + 0.939430i 0.999862 0.0166349i \(-0.00529530\pi\)
0.293154 + 0.956065i \(0.405295\pi\)
\(72\) 0 0
\(73\) 1.26382 3.88964i 0.147919 0.455248i −0.849456 0.527660i \(-0.823070\pi\)
0.997375 + 0.0724119i \(0.0230696\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.984309 3.02939i 0.112172 0.345231i
\(78\) 0 0
\(79\) −5.25455 3.81765i −0.591183 0.429520i 0.251555 0.967843i \(-0.419058\pi\)
−0.842738 + 0.538323i \(0.819058\pi\)
\(80\) 0 0
\(81\) −7.25533 + 5.27131i −0.806148 + 0.585701i
\(82\) 0 0
\(83\) −0.738788 + 0.536761i −0.0810925 + 0.0589172i −0.627593 0.778542i \(-0.715960\pi\)
0.546500 + 0.837459i \(0.315960\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.0486192 0.149634i −0.00521252 0.0160425i
\(88\) 0 0
\(89\) 1.61785 4.97923i 0.171492 0.527797i −0.827964 0.560781i \(-0.810501\pi\)
0.999456 + 0.0329839i \(0.0105010\pi\)
\(90\) 0 0
\(91\) 0.297782 + 0.916478i 0.0312160 + 0.0960730i
\(92\) 0 0
\(93\) 0.115022 0.0119272
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.7557 8.54098i −1.19361 0.867205i −0.199965 0.979803i \(-0.564083\pi\)
−0.993641 + 0.112598i \(0.964083\pi\)
\(98\) 0 0
\(99\) −5.55967 −0.558768
\(100\) 0 0
\(101\) −1.84989 −0.184071 −0.0920354 0.995756i \(-0.529337\pi\)
−0.0920354 + 0.995756i \(0.529337\pi\)
\(102\) 0 0
\(103\) −8.34571 6.06351i −0.822327 0.597456i 0.0950510 0.995472i \(-0.469699\pi\)
−0.917378 + 0.398017i \(0.869699\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.1159 1.46131 0.730656 0.682746i \(-0.239214\pi\)
0.730656 + 0.682746i \(0.239214\pi\)
\(108\) 0 0
\(109\) −1.40146 4.31325i −0.134235 0.413134i 0.861235 0.508207i \(-0.169692\pi\)
−0.995470 + 0.0950729i \(0.969692\pi\)
\(110\) 0 0
\(111\) 0.0140403 0.0432116i 0.00133265 0.00410146i
\(112\) 0 0
\(113\) 4.82952 + 14.8637i 0.454323 + 1.39826i 0.871929 + 0.489633i \(0.162869\pi\)
−0.417606 + 0.908628i \(0.637131\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.36073 0.988632i 0.125800 0.0913990i
\(118\) 0 0
\(119\) 5.42411 3.94084i 0.497227 0.361257i
\(120\) 0 0
\(121\) 6.11408 + 4.44214i 0.555826 + 0.403831i
\(122\) 0 0
\(123\) 0.179061 0.551092i 0.0161454 0.0496903i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.414665 + 1.27621i −0.0367956 + 0.113245i −0.967767 0.251846i \(-0.918962\pi\)
0.930972 + 0.365091i \(0.118962\pi\)
\(128\) 0 0
\(129\) 0.466810 + 0.339157i 0.0411003 + 0.0298611i
\(130\) 0 0
\(131\) −11.2000 + 8.13727i −0.978548 + 0.710957i −0.957384 0.288819i \(-0.906737\pi\)
−0.0211645 + 0.999776i \(0.506737\pi\)
\(132\) 0 0
\(133\) −8.05583 + 5.85291i −0.698529 + 0.507511i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.60633 + 8.02147i 0.222674 + 0.685320i 0.998519 + 0.0543972i \(0.0173237\pi\)
−0.775845 + 0.630923i \(0.782676\pi\)
\(138\) 0 0
\(139\) −4.91470 + 15.1259i −0.416860 + 1.28296i 0.493717 + 0.869622i \(0.335638\pi\)
−0.910577 + 0.413340i \(0.864362\pi\)
\(140\) 0 0
\(141\) 0.191633 + 0.589786i 0.0161384 + 0.0496690i
\(142\) 0 0
\(143\) 1.04148 0.0870928
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.195285 0.141883i −0.0161068 0.0117023i
\(148\) 0 0
\(149\) 8.35969 0.684852 0.342426 0.939545i \(-0.388751\pi\)
0.342426 + 0.939545i \(0.388751\pi\)
\(150\) 0 0
\(151\) −5.35624 −0.435885 −0.217942 0.975962i \(-0.569934\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(152\) 0 0
\(153\) −9.46734 6.87843i −0.765389 0.556088i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.3180 −1.06289 −0.531446 0.847092i \(-0.678351\pi\)
−0.531446 + 0.847092i \(0.678351\pi\)
\(158\) 0 0
\(159\) 0.0204789 + 0.0630277i 0.00162408 + 0.00499842i
\(160\) 0 0
\(161\) 3.87932 11.9393i 0.305734 0.940951i
\(162\) 0 0
\(163\) 4.38148 + 13.4848i 0.343184 + 1.05621i 0.962549 + 0.271109i \(0.0873903\pi\)
−0.619364 + 0.785104i \(0.712610\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.3470 + 13.3299i −1.41973 + 1.03150i −0.427916 + 0.903818i \(0.640752\pi\)
−0.991816 + 0.127677i \(0.959248\pi\)
\(168\) 0 0
\(169\) 10.2623 7.45601i 0.789409 0.573539i
\(170\) 0 0
\(171\) 14.0608 + 10.2158i 1.07526 + 0.781220i
\(172\) 0 0
\(173\) −2.09238 + 6.43969i −0.159081 + 0.489601i −0.998551 0.0538045i \(-0.982865\pi\)
0.839471 + 0.543405i \(0.182865\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.0931189 + 0.286590i −0.00699924 + 0.0215415i
\(178\) 0 0
\(179\) 20.3012 + 14.7497i 1.51739 + 1.10245i 0.962764 + 0.270342i \(0.0871368\pi\)
0.554621 + 0.832103i \(0.312863\pi\)
\(180\) 0 0
\(181\) −20.3908 + 14.8148i −1.51564 + 1.10117i −0.552039 + 0.833818i \(0.686150\pi\)
−0.963598 + 0.267356i \(0.913850\pi\)
\(182\) 0 0
\(183\) 0.652608 0.474148i 0.0482422 0.0350500i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.23917 6.89146i −0.163744 0.503953i
\(188\) 0 0
\(189\) 0.189472 0.583133i 0.0137820 0.0424167i
\(190\) 0 0
\(191\) −6.14957 18.9264i −0.444967 1.36947i −0.882520 0.470275i \(-0.844155\pi\)
0.437552 0.899193i \(-0.355845\pi\)
\(192\) 0 0
\(193\) 4.79198 0.344934 0.172467 0.985015i \(-0.444826\pi\)
0.172467 + 0.985015i \(0.444826\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.542119 0.393872i −0.0386244 0.0280622i 0.568306 0.822818i \(-0.307599\pi\)
−0.606930 + 0.794755i \(0.707599\pi\)
\(198\) 0 0
\(199\) 9.41311 0.667278 0.333639 0.942701i \(-0.391723\pi\)
0.333639 + 0.942701i \(0.391723\pi\)
\(200\) 0 0
\(201\) 0.0743612 0.00524504
\(202\) 0 0
\(203\) −3.66886 2.66558i −0.257503 0.187087i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −21.9116 −1.52296
\(208\) 0 0
\(209\) 3.32560 + 10.2351i 0.230036 + 0.707979i
\(210\) 0 0
\(211\) −3.80217 + 11.7019i −0.261752 + 0.805589i 0.730672 + 0.682729i \(0.239207\pi\)
−0.992424 + 0.122861i \(0.960793\pi\)
\(212\) 0 0
\(213\) 0.247866 + 0.762854i 0.0169835 + 0.0522699i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.68217 1.94871i 0.182078 0.132287i
\(218\) 0 0
\(219\) 0.197070 0.143180i 0.0133168 0.00967519i
\(220\) 0 0
\(221\) 1.77349 + 1.28852i 0.119298 + 0.0866750i
\(222\) 0 0
\(223\) 4.36656 13.4389i 0.292406 0.899934i −0.691674 0.722210i \(-0.743127\pi\)
0.984080 0.177724i \(-0.0568735\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.21158 + 3.72885i −0.0804151 + 0.247492i −0.983179 0.182644i \(-0.941534\pi\)
0.902764 + 0.430136i \(0.141534\pi\)
\(228\) 0 0
\(229\) −2.16082 1.56993i −0.142791 0.103744i 0.514096 0.857732i \(-0.328127\pi\)
−0.656887 + 0.753989i \(0.728127\pi\)
\(230\) 0 0
\(231\) 0.153485 0.111514i 0.0100986 0.00733705i
\(232\) 0 0
\(233\) −18.1188 + 13.1641i −1.18700 + 0.862409i −0.992944 0.118581i \(-0.962165\pi\)
−0.194059 + 0.980990i \(0.562165\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.119542 0.367912i −0.00776508 0.0238985i
\(238\) 0 0
\(239\) 6.69719 20.6118i 0.433205 1.33327i −0.461710 0.887031i \(-0.652764\pi\)
0.894915 0.446237i \(-0.147236\pi\)
\(240\) 0 0
\(241\) 5.45316 + 16.7831i 0.351269 + 1.08109i 0.958141 + 0.286296i \(0.0924239\pi\)
−0.606872 + 0.794799i \(0.707576\pi\)
\(242\) 0 0
\(243\) −1.60560 −0.103000
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.63397 1.91369i −0.167596 0.121765i
\(248\) 0 0
\(249\) −0.0543904 −0.00344685
\(250\) 0 0
\(251\) −16.2475 −1.02553 −0.512766 0.858528i \(-0.671379\pi\)
−0.512766 + 0.858528i \(0.671379\pi\)
\(252\) 0 0
\(253\) −10.9765 7.97493i −0.690090 0.501379i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.12754 −0.569361 −0.284680 0.958623i \(-0.591887\pi\)
−0.284680 + 0.958623i \(0.591887\pi\)
\(258\) 0 0
\(259\) −0.404692 1.24551i −0.0251463 0.0773924i
\(260\) 0 0
\(261\) −2.44599 + 7.52800i −0.151403 + 0.465971i
\(262\) 0 0
\(263\) 5.93742 + 18.2735i 0.366117 + 1.12679i 0.949279 + 0.314436i \(0.101816\pi\)
−0.583161 + 0.812356i \(0.698184\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.252274 0.183288i 0.0154389 0.0112170i
\(268\) 0 0
\(269\) −4.36357 + 3.17032i −0.266052 + 0.193298i −0.712811 0.701356i \(-0.752578\pi\)
0.446759 + 0.894654i \(0.352578\pi\)
\(270\) 0 0
\(271\) 17.3290 + 12.5902i 1.05266 + 0.764803i 0.972717 0.231996i \(-0.0745258\pi\)
0.0799442 + 0.996799i \(0.474526\pi\)
\(272\) 0 0
\(273\) −0.0177361 + 0.0545861i −0.00107344 + 0.00330370i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.45635 + 13.7152i −0.267756 + 0.824068i 0.723290 + 0.690545i \(0.242629\pi\)
−0.991046 + 0.133524i \(0.957371\pi\)
\(278\) 0 0
\(279\) −4.68151 3.40132i −0.280275 0.203632i
\(280\) 0 0
\(281\) −10.6166 + 7.71340i −0.633332 + 0.460143i −0.857553 0.514395i \(-0.828016\pi\)
0.224221 + 0.974538i \(0.428016\pi\)
\(282\) 0 0
\(283\) −21.4630 + 15.5938i −1.27584 + 0.926953i −0.999419 0.0340827i \(-0.989149\pi\)
−0.276423 + 0.961036i \(0.589149\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.16117 15.8844i −0.304654 0.937629i
\(288\) 0 0
\(289\) −0.540169 + 1.66247i −0.0317747 + 0.0977923i
\(290\) 0 0
\(291\) −0.267443 0.823105i −0.0156778 0.0482513i
\(292\) 0 0
\(293\) 24.1828 1.41277 0.706386 0.707827i \(-0.250324\pi\)
0.706386 + 0.707827i \(0.250324\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.536110 0.389506i −0.0311082 0.0226015i
\(298\) 0 0
\(299\) 4.10464 0.237377
\(300\) 0 0
\(301\) 16.6314 0.958621
\(302\) 0 0
\(303\) −0.0891380 0.0647625i −0.00512084 0.00372051i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.1169 1.09106 0.545530 0.838091i \(-0.316328\pi\)
0.545530 + 0.838091i \(0.316328\pi\)
\(308\) 0 0
\(309\) −0.189866 0.584348i −0.0108011 0.0332424i
\(310\) 0 0
\(311\) 7.01668 21.5951i 0.397879 1.22455i −0.528817 0.848736i \(-0.677364\pi\)
0.926696 0.375811i \(-0.122636\pi\)
\(312\) 0 0
\(313\) −4.14797 12.7661i −0.234457 0.721585i −0.997193 0.0748747i \(-0.976144\pi\)
0.762736 0.646710i \(-0.223856\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0105 15.9915i 1.23623 0.898174i 0.238889 0.971047i \(-0.423217\pi\)
0.997341 + 0.0728730i \(0.0232168\pi\)
\(318\) 0 0
\(319\) −3.96520 + 2.88089i −0.222009 + 0.161299i
\(320\) 0 0
\(321\) 0.728370 + 0.529192i 0.0406537 + 0.0295366i
\(322\) 0 0
\(323\) −6.99988 + 21.5434i −0.389484 + 1.19871i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.0834719 0.256900i 0.00461601 0.0142066i
\(328\) 0 0
\(329\) 14.4608 + 10.5064i 0.797252 + 0.579238i
\(330\) 0 0
\(331\) −23.3469 + 16.9625i −1.28326 + 0.932344i −0.999646 0.0265941i \(-0.991534\pi\)
−0.283615 + 0.958938i \(0.591534\pi\)
\(332\) 0 0
\(333\) −1.84927 + 1.34357i −0.101339 + 0.0736272i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.48418 + 19.9562i 0.353216 + 1.08709i 0.957037 + 0.289966i \(0.0936440\pi\)
−0.603821 + 0.797120i \(0.706356\pi\)
\(338\) 0 0
\(339\) −0.287649 + 0.885294i −0.0156230 + 0.0480825i
\(340\) 0 0
\(341\) −1.10725 3.40776i −0.0599609 0.184541i
\(342\) 0 0
\(343\) −18.9748 −1.02455
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.2570 + 10.3583i 0.765355 + 0.556063i 0.900548 0.434756i \(-0.143165\pi\)
−0.135193 + 0.990819i \(0.543165\pi\)
\(348\) 0 0
\(349\) 13.6103 0.728544 0.364272 0.931293i \(-0.381318\pi\)
0.364272 + 0.931293i \(0.381318\pi\)
\(350\) 0 0
\(351\) 0.200476 0.0107006
\(352\) 0 0
\(353\) 10.5459 + 7.66202i 0.561299 + 0.407808i 0.831934 0.554874i \(-0.187234\pi\)
−0.270635 + 0.962682i \(0.587234\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.399328 0.0211347
\(358\) 0 0
\(359\) −4.59073 14.1288i −0.242289 0.745690i −0.996070 0.0885643i \(-0.971772\pi\)
0.753781 0.657126i \(-0.228228\pi\)
\(360\) 0 0
\(361\) 4.52484 13.9260i 0.238150 0.732949i
\(362\) 0 0
\(363\) 0.139096 + 0.428095i 0.00730067 + 0.0224691i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −21.4062 + 15.5525i −1.11740 + 0.811836i −0.983812 0.179202i \(-0.942649\pi\)
−0.133584 + 0.991038i \(0.542649\pi\)
\(368\) 0 0
\(369\) −23.5843 + 17.1350i −1.22775 + 0.892013i
\(370\) 0 0
\(371\) 1.54536 + 1.12277i 0.0802312 + 0.0582914i
\(372\) 0 0
\(373\) 10.3367 31.8132i 0.535215 1.64722i −0.207968 0.978136i \(-0.566685\pi\)
0.743183 0.669088i \(-0.233315\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.458201 1.41020i 0.0235986 0.0726289i
\(378\) 0 0
\(379\) −19.6075 14.2457i −1.00717 0.731753i −0.0435574 0.999051i \(-0.513869\pi\)
−0.963614 + 0.267298i \(0.913869\pi\)
\(380\) 0 0
\(381\) −0.0646596 + 0.0469779i −0.00331261 + 0.00240675i
\(382\) 0 0
\(383\) 2.06777 1.50232i 0.105658 0.0767650i −0.533702 0.845673i \(-0.679200\pi\)
0.639360 + 0.768908i \(0.279200\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.97041 27.6081i −0.455992 1.40340i
\(388\) 0 0
\(389\) −3.92452 + 12.0784i −0.198981 + 0.612400i 0.800926 + 0.598763i \(0.204341\pi\)
−0.999907 + 0.0136371i \(0.995659\pi\)
\(390\) 0 0
\(391\) −8.82494 27.1604i −0.446296 1.37356i
\(392\) 0 0
\(393\) −0.824556 −0.0415933
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −16.2097 11.7770i −0.813541 0.591072i 0.101314 0.994855i \(-0.467695\pi\)
−0.914855 + 0.403782i \(0.867695\pi\)
\(398\) 0 0
\(399\) −0.593079 −0.0296911
\(400\) 0 0
\(401\) 0.685119 0.0342132 0.0171066 0.999854i \(-0.494555\pi\)
0.0171066 + 0.999854i \(0.494555\pi\)
\(402\) 0 0
\(403\) 0.876975 + 0.637160i 0.0436852 + 0.0317392i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.41539 −0.0701583
\(408\) 0 0
\(409\) −0.120676 0.371402i −0.00596704 0.0183647i 0.948029 0.318185i \(-0.103073\pi\)
−0.953996 + 0.299820i \(0.903073\pi\)
\(410\) 0 0
\(411\) −0.155235 + 0.477764i −0.00765718 + 0.0235664i
\(412\) 0 0
\(413\) 2.68402 + 8.26056i 0.132072 + 0.406476i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.766359 + 0.556792i −0.0375288 + 0.0272662i
\(418\) 0 0
\(419\) 13.9723 10.1515i 0.682591 0.495931i −0.191625 0.981468i \(-0.561376\pi\)
0.874216 + 0.485537i \(0.161376\pi\)
\(420\) 0 0
\(421\) 14.0506 + 10.2083i 0.684784 + 0.497524i 0.874941 0.484229i \(-0.160900\pi\)
−0.190158 + 0.981754i \(0.560900\pi\)
\(422\) 0 0
\(423\) 9.64092 29.6717i 0.468758 1.44269i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.18497 22.1131i 0.347705 1.07013i
\(428\) 0 0
\(429\) 0.0501843 + 0.0364610i 0.00242292 + 0.00176035i
\(430\) 0 0
\(431\) 27.9780 20.3272i 1.34765 0.979126i 0.348526 0.937299i \(-0.386682\pi\)
0.999125 0.0418269i \(-0.0133178\pi\)
\(432\) 0 0
\(433\) 30.7353 22.3305i 1.47704 1.07314i 0.498550 0.866861i \(-0.333866\pi\)
0.978494 0.206275i \(-0.0661341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.1067 + 40.3383i 0.626979 + 1.92964i
\(438\) 0 0
\(439\) 1.45680 4.48356i 0.0695291 0.213989i −0.910254 0.414050i \(-0.864114\pi\)
0.979783 + 0.200061i \(0.0641140\pi\)
\(440\) 0 0
\(441\) 3.75268 + 11.5495i 0.178699 + 0.549979i
\(442\) 0 0
\(443\) 30.4179 1.44520 0.722600 0.691267i \(-0.242947\pi\)
0.722600 + 0.691267i \(0.242947\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.402817 + 0.292663i 0.0190526 + 0.0138425i
\(448\) 0 0
\(449\) −13.7761 −0.650133 −0.325067 0.945691i \(-0.605387\pi\)
−0.325067 + 0.945691i \(0.605387\pi\)
\(450\) 0 0
\(451\) −18.0510 −0.849986
\(452\) 0 0
\(453\) −0.258094 0.187516i −0.0121263 0.00881027i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.6462 0.685122 0.342561 0.939496i \(-0.388706\pi\)
0.342561 + 0.939496i \(0.388706\pi\)
\(458\) 0 0
\(459\) −0.431022 1.32655i −0.0201184 0.0619180i
\(460\) 0 0
\(461\) 6.89410 21.2179i 0.321090 0.988215i −0.652084 0.758147i \(-0.726105\pi\)
0.973175 0.230068i \(-0.0738949\pi\)
\(462\) 0 0
\(463\) −4.94346 15.2144i −0.229742 0.707073i −0.997776 0.0666636i \(-0.978765\pi\)
0.768033 0.640410i \(-0.221235\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.94787 5.04792i 0.321509 0.233590i −0.415310 0.909680i \(-0.636327\pi\)
0.736819 + 0.676090i \(0.236327\pi\)
\(468\) 0 0
\(469\) 1.73401 1.25983i 0.0800692 0.0581737i
\(470\) 0 0
\(471\) −0.641736 0.466248i −0.0295696 0.0214836i
\(472\) 0 0
\(473\) 5.55452 17.0951i 0.255397 0.786032i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.03028 3.17087i 0.0471732 0.145184i
\(478\) 0 0
\(479\) −3.64835 2.65068i −0.166697 0.121113i 0.501309 0.865268i \(-0.332852\pi\)
−0.668006 + 0.744156i \(0.732852\pi\)
\(480\) 0 0
\(481\) 0.346418 0.251687i 0.0157953 0.0114760i
\(482\) 0 0
\(483\) 0.604910 0.439493i 0.0275244 0.0199976i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.17503 6.69405i −0.0985599 0.303336i 0.889605 0.456730i \(-0.150980\pi\)
−0.988165 + 0.153394i \(0.950980\pi\)
\(488\) 0 0
\(489\) −0.260964 + 0.803165i −0.0118012 + 0.0363204i
\(490\) 0 0
\(491\) −7.80243 24.0134i −0.352119 1.08371i −0.957661 0.287897i \(-0.907044\pi\)
0.605543 0.795813i \(-0.292956\pi\)
\(492\) 0 0
\(493\) −10.3164 −0.464628
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.7042 + 13.5894i 0.839000 + 0.609569i
\(498\) 0 0
\(499\) −22.8665 −1.02364 −0.511822 0.859092i \(-0.671029\pi\)
−0.511822 + 0.859092i \(0.671029\pi\)
\(500\) 0 0
\(501\) −1.35072 −0.0603459
\(502\) 0 0
\(503\) 7.13284 + 5.18231i 0.318038 + 0.231068i 0.735338 0.677701i \(-0.237024\pi\)
−0.417300 + 0.908769i \(0.637024\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.755523 0.0335539
\(508\) 0 0
\(509\) 6.02799 + 18.5522i 0.267186 + 0.822314i 0.991182 + 0.132509i \(0.0423035\pi\)
−0.723996 + 0.689804i \(0.757697\pi\)
\(510\) 0 0
\(511\) 2.16967 6.67755i 0.0959804 0.295397i
\(512\) 0 0
\(513\) 0.640150 + 1.97018i 0.0282633 + 0.0869856i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15.6289 11.3551i 0.687358 0.499395i
\(518\) 0 0
\(519\) −0.326269 + 0.237048i −0.0143216 + 0.0104053i
\(520\) 0 0
\(521\) −10.7036 7.77662i −0.468933 0.340700i 0.328092 0.944646i \(-0.393594\pi\)
−0.797025 + 0.603946i \(0.793594\pi\)
\(522\) 0 0
\(523\) −13.1941 + 40.6072i −0.576937 + 1.77563i 0.0525482 + 0.998618i \(0.483266\pi\)
−0.629486 + 0.777012i \(0.716734\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.33059 7.17283i 0.101522 0.312453i
\(528\) 0 0
\(529\) −24.6530 17.9114i −1.07187 0.778758i
\(530\) 0 0
\(531\) 12.2648 8.91090i 0.532247 0.386700i
\(532\) 0 0
\(533\) 4.41799 3.20985i 0.191364 0.139034i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.461856 + 1.42145i 0.0199306 + 0.0613400i
\(538\) 0 0
\(539\) −2.32368 + 7.15154i −0.100088 + 0.308039i
\(540\) 0 0
\(541\) 2.59118 + 7.97483i 0.111404 + 0.342865i 0.991180 0.132523i \(-0.0423078\pi\)
−0.879776 + 0.475388i \(0.842308\pi\)
\(542\) 0 0
\(543\) −1.50119 −0.0644224
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.6881 + 8.49189i 0.499747 + 0.363087i 0.808920 0.587918i \(-0.200052\pi\)
−0.309174 + 0.951006i \(0.600052\pi\)
\(548\) 0 0
\(549\) −40.5829 −1.73203
\(550\) 0 0
\(551\) 15.3218 0.652732
\(552\) 0 0
\(553\) −9.02076 6.55396i −0.383602 0.278703i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.2330 0.730187 0.365093 0.930971i \(-0.381037\pi\)
0.365093 + 0.930971i \(0.381037\pi\)
\(558\) 0 0
\(559\) 1.68040 + 5.17175i 0.0710734 + 0.218742i
\(560\) 0 0
\(561\) 0.133367 0.410460i 0.00563074 0.0173296i
\(562\) 0 0
\(563\) −2.20350 6.78168i −0.0928665 0.285814i 0.893825 0.448415i \(-0.148011\pi\)
−0.986692 + 0.162602i \(0.948011\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −12.4556 + 9.04953i −0.523086 + 0.380044i
\(568\) 0 0
\(569\) 11.5916 8.42179i 0.485945 0.353060i −0.317678 0.948199i \(-0.602903\pi\)
0.803623 + 0.595139i \(0.202903\pi\)
\(570\) 0 0
\(571\) −8.30283 6.03236i −0.347462 0.252446i 0.400341 0.916366i \(-0.368892\pi\)
−0.747804 + 0.663920i \(0.768892\pi\)
\(572\) 0 0
\(573\) 0.366273 1.12727i 0.0153013 0.0470924i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.96534 9.12639i 0.123449 0.379937i −0.870166 0.492758i \(-0.835989\pi\)
0.993615 + 0.112821i \(0.0359888\pi\)
\(578\) 0 0
\(579\) 0.230904 + 0.167762i 0.00959606 + 0.00697194i
\(580\) 0 0
\(581\) −1.26832 + 0.921485i −0.0526186 + 0.0382296i
\(582\) 0 0
\(583\) 1.67019 1.21346i 0.0691720 0.0502564i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.63478 5.03134i −0.0674747 0.207666i 0.911634 0.411003i \(-0.134821\pi\)
−0.979109 + 0.203337i \(0.934821\pi\)
\(588\) 0 0
\(589\) −3.46138 + 10.6530i −0.142624 + 0.438950i
\(590\) 0 0
\(591\) −0.0123333 0.0379580i −0.000507324 0.00156138i
\(592\) 0 0
\(593\) 2.21453 0.0909397 0.0454699 0.998966i \(-0.485522\pi\)
0.0454699 + 0.998966i \(0.485522\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.453577 + 0.329543i 0.0185637 + 0.0134873i
\(598\) 0 0
\(599\) 1.85018 0.0755964 0.0377982 0.999285i \(-0.487966\pi\)
0.0377982 + 0.999285i \(0.487966\pi\)
\(600\) 0 0
\(601\) 32.8477 1.33988 0.669942 0.742413i \(-0.266319\pi\)
0.669942 + 0.742413i \(0.266319\pi\)
\(602\) 0 0
\(603\) −3.02658 2.19894i −0.123252 0.0895477i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 29.1371 1.18264 0.591319 0.806438i \(-0.298608\pi\)
0.591319 + 0.806438i \(0.298608\pi\)
\(608\) 0 0
\(609\) −0.0834671 0.256885i −0.00338226 0.0104095i
\(610\) 0 0
\(611\) −1.80601 + 5.55832i −0.0730632 + 0.224865i
\(612\) 0 0
\(613\) −1.17501 3.61632i −0.0474584 0.146062i 0.924519 0.381136i \(-0.124467\pi\)
−0.971978 + 0.235074i \(0.924467\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.8466 28.9502i 1.60416 1.16549i 0.725278 0.688456i \(-0.241711\pi\)
0.878884 0.477035i \(-0.158289\pi\)
\(618\) 0 0
\(619\) −5.13396 + 3.73004i −0.206351 + 0.149923i −0.686161 0.727449i \(-0.740706\pi\)
0.479810 + 0.877372i \(0.340706\pi\)
\(620\) 0 0
\(621\) −2.11290 1.53511i −0.0847876 0.0616018i
\(622\) 0 0
\(623\) 2.77745 8.54810i 0.111276 0.342472i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.198075 + 0.609612i −0.00791035 + 0.0243455i
\(628\) 0 0
\(629\) −2.41021 1.75112i −0.0961014 0.0698218i
\(630\) 0 0
\(631\) 4.48099 3.25563i 0.178385 0.129604i −0.495010 0.868888i \(-0.664835\pi\)
0.673395 + 0.739283i \(0.264835\pi\)
\(632\) 0 0
\(633\) −0.592879 + 0.430752i −0.0235648 + 0.0171208i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.702979 2.16355i −0.0278530 0.0857228i
\(638\) 0 0
\(639\) 12.4700 38.3786i 0.493304 1.51823i
\(640\) 0 0
\(641\) 3.16032 + 9.72646i 0.124825 + 0.384172i 0.993869 0.110563i \(-0.0352653\pi\)
−0.869044 + 0.494735i \(0.835265\pi\)
\(642\) 0 0
\(643\) 20.5779 0.811515 0.405757 0.913981i \(-0.367008\pi\)
0.405757 + 0.913981i \(0.367008\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.59123 4.06226i −0.219814 0.159704i 0.472429 0.881369i \(-0.343377\pi\)
−0.692243 + 0.721665i \(0.743377\pi\)
\(648\) 0 0
\(649\) 9.38723 0.368481
\(650\) 0 0
\(651\) 0.197464 0.00773923
\(652\) 0 0
\(653\) 1.34166 + 0.974775i 0.0525033 + 0.0381459i 0.613727 0.789518i \(-0.289669\pi\)
−0.561224 + 0.827664i \(0.689669\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.2549 −0.478110
\(658\) 0 0
\(659\) −0.956983 2.94529i −0.0372788 0.114732i 0.930685 0.365820i \(-0.119212\pi\)
−0.967964 + 0.251088i \(0.919212\pi\)
\(660\) 0 0
\(661\) −4.38102 + 13.4834i −0.170402 + 0.524443i −0.999394 0.0348175i \(-0.988915\pi\)
0.828992 + 0.559261i \(0.188915\pi\)
\(662\) 0 0
\(663\) 0.0403472 + 0.124176i 0.00156696 + 0.00482259i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.6275 + 11.3540i −0.605099 + 0.439630i
\(668\) 0 0
\(669\) 0.680886 0.494692i 0.0263246 0.0191259i
\(670\) 0 0
\(671\) −20.3299 14.7705i −0.784826 0.570210i
\(672\) 0 0
\(673\) −1.58367 + 4.87403i −0.0610460 + 0.187880i −0.976929 0.213566i \(-0.931492\pi\)
0.915883 + 0.401446i \(0.131492\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.36884 + 25.7566i −0.321641 + 0.989908i 0.651294 + 0.758826i \(0.274227\pi\)
−0.972934 + 0.231082i \(0.925773\pi\)
\(678\) 0 0
\(679\) −20.1815 14.6627i −0.774496 0.562704i
\(680\) 0 0
\(681\) −0.188923 + 0.137261i −0.00723956 + 0.00525985i
\(682\) 0 0
\(683\) 11.8925 8.64040i 0.455053 0.330616i −0.336534 0.941671i \(-0.609255\pi\)
0.791588 + 0.611056i \(0.209255\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.0491590 0.151296i −0.00187553 0.00577229i
\(688\) 0 0
\(689\) −0.192999 + 0.593991i −0.00735269 + 0.0226293i
\(690\) 0 0
\(691\) 4.25630 + 13.0995i 0.161917 + 0.498330i 0.998796 0.0490586i \(-0.0156221\pi\)
−0.836879 + 0.547388i \(0.815622\pi\)
\(692\) 0 0
\(693\) −9.54458 −0.362569
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −30.7382 22.3326i −1.16429 0.845909i
\(698\) 0 0
\(699\) −1.33393 −0.0504538
\(700\) 0 0
\(701\) 3.95616 0.149422 0.0747111 0.997205i \(-0.476197\pi\)
0.0747111 + 0.997205i \(0.476197\pi\)
\(702\) 0 0
\(703\) 3.57962 + 2.60075i 0.135008 + 0.0980891i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.17580 −0.119438
\(708\) 0 0
\(709\) −10.5384 32.4338i −0.395777 1.21808i −0.928355 0.371696i \(-0.878776\pi\)
0.532577 0.846381i \(-0.321224\pi\)
\(710\) 0 0
\(711\) −6.01406 + 18.5094i −0.225545 + 0.694156i
\(712\) 0 0
\(713\) −4.36385 13.4305i −0.163427 0.502978i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.04431 0.758732i 0.0390003 0.0283354i
\(718\) 0 0
\(719\) −18.8977 + 13.7300i −0.704766 + 0.512043i −0.881481 0.472220i \(-0.843453\pi\)
0.176715 + 0.984262i \(0.443453\pi\)
\(720\) 0 0
\(721\) −14.3275 10.4095i −0.533584 0.387672i
\(722\) 0 0
\(723\) −0.324794 + 0.999614i −0.0120792 + 0.0371760i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.95904 + 12.1847i −0.146833 + 0.451904i −0.997242 0.0742170i \(-0.976354\pi\)
0.850409 + 0.526121i \(0.176354\pi\)
\(728\) 0 0
\(729\) 21.6886 + 15.7577i 0.803283 + 0.583619i
\(730\) 0 0
\(731\) 30.6086 22.2384i 1.13210 0.822518i
\(732\) 0 0
\(733\) 21.6920 15.7602i 0.801213 0.582115i −0.110057 0.993925i \(-0.535103\pi\)
0.911270 + 0.411810i \(0.135103\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.715832 2.20310i −0.0263680 0.0811524i
\(738\) 0 0
\(739\) −15.7123 + 48.3574i −0.577986 + 1.77886i 0.0477941 + 0.998857i \(0.484781\pi\)
−0.625780 + 0.780000i \(0.715219\pi\)
\(740\) 0 0
\(741\) −0.0599233 0.184425i −0.00220134 0.00677502i
\(742\) 0 0
\(743\) −25.4540 −0.933816 −0.466908 0.884306i \(-0.654632\pi\)
−0.466908 + 0.884306i \(0.654632\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.21374 + 1.60838i 0.0809966 + 0.0588475i
\(748\) 0 0
\(749\) 25.9503 0.948203
\(750\) 0 0
\(751\) −21.1719 −0.772574 −0.386287 0.922379i \(-0.626243\pi\)
−0.386287 + 0.922379i \(0.626243\pi\)
\(752\) 0 0
\(753\) −0.782895 0.568806i −0.0285303 0.0207285i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.8326 −1.26601 −0.633006 0.774147i \(-0.718179\pi\)
−0.633006 + 0.774147i \(0.718179\pi\)
\(758\) 0 0
\(759\) −0.249718 0.768554i −0.00906420 0.0278967i
\(760\) 0 0
\(761\) −2.49606 + 7.68209i −0.0904822 + 0.278476i −0.986050 0.166450i \(-0.946770\pi\)
0.895568 + 0.444925i \(0.146770\pi\)
\(762\) 0 0
\(763\) −2.40596 7.40478i −0.0871015 0.268071i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.29753 + 1.66926i −0.0829591 + 0.0602733i
\(768\) 0 0
\(769\) 10.2491 7.44644i 0.369593 0.268525i −0.387449 0.921891i \(-0.626644\pi\)
0.757042 + 0.653366i \(0.226644\pi\)
\(770\) 0 0
\(771\) −0.439816 0.319545i −0.0158396 0.0115081i
\(772\) 0 0
\(773\) −12.6446 + 38.9161i −0.454795 + 1.39971i 0.416582 + 0.909098i \(0.363228\pi\)
−0.871376 + 0.490615i \(0.836772\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.0241037 0.0741836i 0.000864716 0.00266132i
\(778\) 0 0
\(779\) 45.6522 + 33.1682i 1.63566 + 1.18838i
\(780\) 0 0
\(781\) 20.2150 14.6871i 0.723351 0.525545i
\(782\) 0 0
\(783\) −0.763269 + 0.554547i −0.0272770 + 0.0198179i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.801249 + 2.46599i 0.0285615 + 0.0879031i 0.964321 0.264735i \(-0.0852846\pi\)
−0.935760 + 0.352638i \(0.885285\pi\)
\(788\) 0 0
\(789\) −0.353637 + 1.08838i −0.0125898 + 0.0387474i
\(790\) 0 0
\(791\) 8.29108 + 25.5173i 0.294797 + 0.907291i
\(792\) 0 0
\(793\) 7.60228 0.269965
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.4095 + 12.6487i 0.616676 + 0.448041i 0.851759 0.523934i \(-0.175536\pi\)
−0.235083 + 0.971975i \(0.575536\pi\)
\(798\) 0 0
\(799\) 40.6623 1.43853
\(800\) 0 0
\(801\) −15.6878 −0.554302
\(802\) 0 0
\(803\) −6.13907 4.46029i −0.216643 0.157400i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.321251 −0.0113086
\(808\) 0 0
\(809\) −1.07271 3.30147i −0.0377146 0.116074i 0.930427 0.366478i \(-0.119436\pi\)
−0.968141 + 0.250404i \(0.919436\pi\)
\(810\) 0 0
\(811\) −11.3665 + 34.9826i −0.399133 + 1.22841i 0.526563 + 0.850136i \(0.323481\pi\)
−0.925696 + 0.378269i \(0.876519\pi\)
\(812\) 0 0
\(813\) 0.394237 + 1.21334i 0.0138265 + 0.0425536i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −45.4596 + 33.0283i −1.59043 + 1.15552i
\(818\) 0 0
\(819\) 2.33604 1.69723i 0.0816280 0.0593062i
\(820\) 0 0
\(821\) −38.2615 27.7986i −1.33534 0.970179i −0.999602 0.0282220i \(-0.991015\pi\)
−0.335735 0.941957i \(-0.608985\pi\)
\(822\) 0 0
\(823\) 3.23902 9.96867i 0.112905 0.347486i −0.878599 0.477560i \(-0.841521\pi\)
0.991504 + 0.130074i \(0.0415214\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.78324 5.48824i 0.0620093 0.190845i −0.915253 0.402880i \(-0.868009\pi\)
0.977262 + 0.212035i \(0.0680091\pi\)
\(828\) 0 0
\(829\) 23.6650 + 17.1936i 0.821919 + 0.597159i 0.917261 0.398286i \(-0.130395\pi\)
−0.0953427 + 0.995445i \(0.530395\pi\)
\(830\) 0 0
\(831\) −0.694887 + 0.504865i −0.0241054 + 0.0175136i
\(832\) 0 0
\(833\) −12.8048 + 9.30322i −0.443659 + 0.322337i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.213136 0.655966i −0.00736707 0.0226735i
\(838\) 0 0
\(839\) 4.96033 15.2663i 0.171250 0.527052i −0.828193 0.560444i \(-0.810631\pi\)
0.999442 + 0.0333911i \(0.0106307\pi\)
\(840\) 0 0
\(841\) −6.80517 20.9442i −0.234661 0.722212i
\(842\) 0 0
\(843\) −0.781604 −0.0269199
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.4964 + 7.62605i 0.360659 + 0.262034i
\(848\) 0 0
\(849\) −1.58013 −0.0542298
\(850\) 0 0
\(851\) −5.57828 −0.191221
\(852\) 0 0
\(853\) 27.2433 + 19.7934i 0.932792 + 0.677713i 0.946675 0.322190i \(-0.104419\pi\)
−0.0138826 + 0.999904i \(0.504419\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.5384 −0.633260 −0.316630 0.948549i \(-0.602551\pi\)
−0.316630 + 0.948549i \(0.602551\pi\)
\(858\) 0 0
\(859\) −0.00514740 0.0158421i −0.000175627 0.000540524i 0.950969 0.309287i \(-0.100090\pi\)
−0.951144 + 0.308747i \(0.900090\pi\)
\(860\) 0 0
\(861\) 0.307403 0.946089i 0.0104763 0.0322426i
\(862\) 0 0
\(863\) 10.2867 + 31.6593i 0.350164 + 1.07769i 0.958761 + 0.284214i \(0.0917328\pi\)
−0.608597 + 0.793480i \(0.708267\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.0842296 + 0.0611964i −0.00286059 + 0.00207834i
\(868\) 0 0
\(869\) −9.74939 + 7.08335i −0.330725 + 0.240286i
\(870\) 0 0
\(871\) 0.566961 + 0.411921i 0.0192107 + 0.0139574i
\(872\) 0 0
\(873\) −13.4548 + 41.4098i −0.455378 + 1.40151i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.5958 38.7660i 0.425331 1.30903i −0.477346 0.878715i \(-0.658401\pi\)
0.902677 0.430319i \(-0.141599\pi\)
\(878\) 0 0
\(879\) 1.16526 + 0.846612i 0.0393033 + 0.0285555i
\(880\) 0 0
\(881\) −20.0854 + 14.5929i −0.676694 + 0.491647i −0.872259 0.489044i \(-0.837346\pi\)
0.195565 + 0.980691i \(0.437346\pi\)
\(882\) 0 0
\(883\) −1.37115 + 0.996201i −0.0461430 + 0.0335248i −0.610618 0.791926i \(-0.709079\pi\)
0.564475 + 0.825450i \(0.309079\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.74964 11.5402i −0.125901 0.387482i 0.868164 0.496278i \(-0.165300\pi\)
−0.994064 + 0.108796i \(0.965300\pi\)
\(888\) 0 0
\(889\) −0.711877 + 2.19093i −0.0238756 + 0.0734816i
\(890\) 0 0
\(891\) 5.14190 + 15.8252i 0.172260 + 0.530163i
\(892\) 0 0
\(893\) −60.3913 −2.02092
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.197784 + 0.143699i 0.00660383 + 0.00479796i
\(898\) 0 0
\(899\) −5.10137 −0.170140
\(900\) 0 0
\(901\) 4.34538 0.144766
\(902\) 0 0
\(903\) 0.801396 + 0.582249i 0.0266688 + 0.0193760i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.9224 −0.495491 −0.247746 0.968825i \(-0.579690\pi\)
−0.247746 + 0.968825i \(0.579690\pi\)
\(908\) 0 0
\(909\) 1.71291 + 5.27180i 0.0568137 + 0.174855i
\(910\) 0 0
\(911\) −14.2166 + 43.7543i −0.471018 + 1.44964i 0.380236 + 0.924890i \(0.375843\pi\)
−0.851254 + 0.524754i \(0.824157\pi\)
\(912\) 0 0
\(913\) 0.523584 + 1.61143i 0.0173281 + 0.0533304i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.2276 + 13.9697i −0.634952 + 0.461319i
\(918\) 0 0
\(919\) 4.67512 3.39667i 0.154218 0.112046i −0.508000 0.861357i \(-0.669615\pi\)
0.662218 + 0.749311i \(0.269615\pi\)
\(920\) 0 0
\(921\) 0.921160 + 0.669262i 0.0303532 + 0.0220529i
\(922\) 0 0
\(923\) −2.33596 + 7.18935i −0.0768891 + 0.236640i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −9.55202 + 29.3981i −0.313730 + 0.965560i
\(928\) 0 0
\(929\) −11.1761 8.11994i −0.366677 0.266406i 0.389155 0.921172i \(-0.372767\pi\)
−0.755832 + 0.654766i \(0.772767\pi\)
\(930\) 0 0
\(931\) 19.0175 13.8171i 0.623275 0.452836i
\(932\) 0 0
\(933\) 1.09412 0.794928i 0.0358200 0.0260248i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.746290 + 2.29684i 0.0243802 + 0.0750346i 0.962506 0.271259i \(-0.0874400\pi\)
−0.938126 + 0.346294i \(0.887440\pi\)
\(938\) 0 0
\(939\) 0.247056 0.760360i 0.00806237 0.0248134i
\(940\) 0 0
\(941\) 9.18367 + 28.2644i 0.299379 + 0.921394i 0.981715 + 0.190356i \(0.0609641\pi\)
−0.682336 + 0.731039i \(0.739036\pi\)
\(942\) 0 0
\(943\) −71.1417 −2.31669
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.39633 + 5.37375i 0.240348 + 0.174623i 0.701438 0.712730i \(-0.252542\pi\)
−0.461090 + 0.887353i \(0.652542\pi\)
\(948\) 0 0
\(949\) 2.29568 0.0745209
\(950\) 0 0
\(951\) 1.62043 0.0525461
\(952\) 0 0
\(953\) 23.7118 + 17.2277i 0.768102 + 0.558059i 0.901385 0.433019i \(-0.142552\pi\)
−0.133283 + 0.991078i \(0.542552\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.291922 −0.00943651
\(958\) 0 0
\(959\) 4.47443 + 13.7709i 0.144487 + 0.444685i
\(960\) 0 0
\(961\) −8.42707 + 25.9359i −0.271841 + 0.836640i
\(962\) 0 0
\(963\) −13.9967 43.0773i −0.451036 1.38815i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.0016 20.3443i 0.900470 0.654230i −0.0381168 0.999273i \(-0.512136\pi\)
0.938587 + 0.345044i \(0.112136\pi\)
\(968\) 0 0
\(969\) −1.09151 + 0.793025i −0.0350642 + 0.0254756i
\(970\) 0 0
\(971\) 24.0628 + 17.4826i 0.772211 + 0.561044i 0.902631 0.430415i \(-0.141633\pi\)
−0.130420 + 0.991459i \(0.541633\pi\)
\(972\) 0 0
\(973\) −8.43732 + 25.9674i −0.270488 + 0.832477i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.0352 + 40.1184i −0.417035 + 1.28350i 0.493384 + 0.869812i \(0.335760\pi\)
−0.910418 + 0.413689i \(0.864240\pi\)
\(978\) 0 0
\(979\) −7.85878 5.70974i −0.251168 0.182484i
\(980\) 0 0
\(981\) −10.9942 + 7.98775i −0.351017 + 0.255029i
\(982\) 0 0
\(983\) 18.8353 13.6846i 0.600752 0.436472i −0.245394 0.969424i \(-0.578917\pi\)
0.846146 + 0.532952i \(0.178917\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0.328987 + 1.01252i 0.0104718 + 0.0322288i
\(988\) 0 0
\(989\) 21.8913 67.3744i 0.696102 2.14238i
\(990\) 0 0
\(991\) 16.3062 + 50.1854i 0.517984 + 1.59419i 0.777786 + 0.628529i \(0.216343\pi\)
−0.259802 + 0.965662i \(0.583657\pi\)
\(992\) 0 0
\(993\) −1.71882 −0.0545452
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −47.8165 34.7408i −1.51437 1.10025i −0.964194 0.265199i \(-0.914562\pi\)
−0.550171 0.835052i \(-0.685438\pi\)
\(998\) 0 0
\(999\) −0.272451 −0.00861997
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.m.d.601.5 32
5.2 odd 4 200.2.q.a.129.5 32
5.3 odd 4 1000.2.q.c.649.4 32
5.4 even 2 1000.2.m.e.601.4 32
20.7 even 4 400.2.y.d.129.4 32
25.6 even 5 inner 1000.2.m.d.401.5 32
25.8 odd 20 200.2.q.a.169.5 yes 32
25.9 even 10 5000.2.a.q.1.9 16
25.16 even 5 5000.2.a.r.1.8 16
25.17 odd 20 1000.2.q.c.849.4 32
25.19 even 10 1000.2.m.e.401.4 32
100.59 odd 10 10000.2.a.br.1.8 16
100.83 even 20 400.2.y.d.369.4 32
100.91 odd 10 10000.2.a.bq.1.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.129.5 32 5.2 odd 4
200.2.q.a.169.5 yes 32 25.8 odd 20
400.2.y.d.129.4 32 20.7 even 4
400.2.y.d.369.4 32 100.83 even 20
1000.2.m.d.401.5 32 25.6 even 5 inner
1000.2.m.d.601.5 32 1.1 even 1 trivial
1000.2.m.e.401.4 32 25.19 even 10
1000.2.m.e.601.4 32 5.4 even 2
1000.2.q.c.649.4 32 5.3 odd 4
1000.2.q.c.849.4 32 25.17 odd 20
5000.2.a.q.1.9 16 25.9 even 10
5000.2.a.r.1.8 16 25.16 even 5
10000.2.a.bq.1.9 16 100.91 odd 10
10000.2.a.br.1.8 16 100.59 odd 10