Properties

Label 200.2.q.a.169.5
Level $200$
Weight $2$
Character 200.169
Analytic conductor $1.597$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(9,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.q (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 169.5
Character \(\chi\) \(=\) 200.169
Dual form 200.2.q.a.129.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0350089 + 0.0481856i) q^{3} +(-0.243712 - 2.22275i) q^{5} -1.71675i q^{7} +(0.925955 - 2.84980i) q^{9} +(0.573356 + 1.76461i) q^{11} +(0.533844 + 0.173457i) q^{13} +(0.0985723 - 0.0895593i) q^{15} +(2.29552 - 3.15952i) q^{17} +(4.69249 + 3.40929i) q^{19} +(0.0827227 - 0.0601016i) q^{21} +(-6.95461 + 2.25969i) q^{23} +(-4.88121 + 1.08342i) q^{25} +(0.339673 - 0.110366i) q^{27} +(2.13709 - 1.55269i) q^{29} +(1.56235 + 1.13511i) q^{31} +(-0.0649561 + 0.0894045i) q^{33} +(-3.81590 + 0.418393i) q^{35} +(0.725506 + 0.235731i) q^{37} +(0.0103312 + 0.0317961i) q^{39} +(-3.00636 + 9.25262i) q^{41} +9.68774i q^{43} +(-6.56004 - 1.36363i) q^{45} +(-6.11994 - 8.42338i) q^{47} +4.05276 q^{49} +0.232607 q^{51} +(0.654009 + 0.900166i) q^{53} +(3.78254 - 1.70448i) q^{55} +0.345466i q^{57} +(-1.56343 + 4.81174i) q^{59} +(4.18521 + 12.8808i) q^{61} +(-4.89239 - 1.58963i) q^{63} +(0.255446 - 1.22887i) q^{65} +(0.733847 - 1.01005i) q^{67} +(-0.352358 - 0.256003i) q^{69} +(10.8951 - 7.91578i) q^{71} +(-3.88964 + 1.26382i) q^{73} +(-0.223091 - 0.197275i) q^{75} +(3.02939 - 0.984309i) q^{77} +(5.25455 - 3.81765i) q^{79} +(-7.25533 - 5.27131i) q^{81} +(0.536761 - 0.738788i) q^{83} +(-7.58225 - 4.33236i) q^{85} +(0.149634 + 0.0486192i) q^{87} +(-1.61785 - 4.97923i) q^{89} +(0.297782 - 0.916478i) q^{91} +0.115022i q^{93} +(6.43438 - 11.2611i) q^{95} +(8.54098 + 11.7557i) q^{97} +5.55967 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{5} + 10 q^{9} + 6 q^{11} + 12 q^{15} - 6 q^{19} - 4 q^{21} - 30 q^{23} + 6 q^{25} - 2 q^{29} + 6 q^{31} + 8 q^{35} - 40 q^{37} - 12 q^{39} - 12 q^{45} - 20 q^{47} - 60 q^{49} - 60 q^{51} - 30 q^{53}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0350089 + 0.0481856i 0.0202124 + 0.0278200i 0.819004 0.573788i \(-0.194527\pi\)
−0.798791 + 0.601608i \(0.794527\pi\)
\(4\) 0 0
\(5\) −0.243712 2.22275i −0.108991 0.994043i
\(6\) 0 0
\(7\) 1.71675i 0.648871i −0.945908 0.324436i \(-0.894826\pi\)
0.945908 0.324436i \(-0.105174\pi\)
\(8\) 0 0
\(9\) 0.925955 2.84980i 0.308652 0.949932i
\(10\) 0 0
\(11\) 0.573356 + 1.76461i 0.172873 + 0.532049i 0.999530 0.0306574i \(-0.00976008\pi\)
−0.826657 + 0.562707i \(0.809760\pi\)
\(12\) 0 0
\(13\) 0.533844 + 0.173457i 0.148062 + 0.0481082i 0.382110 0.924117i \(-0.375197\pi\)
−0.234048 + 0.972225i \(0.575197\pi\)
\(14\) 0 0
\(15\) 0.0985723 0.0895593i 0.0254513 0.0231241i
\(16\) 0 0
\(17\) 2.29552 3.15952i 0.556746 0.766295i −0.434162 0.900835i \(-0.642955\pi\)
0.990908 + 0.134539i \(0.0429555\pi\)
\(18\) 0 0
\(19\) 4.69249 + 3.40929i 1.07653 + 0.782145i 0.977075 0.212897i \(-0.0682899\pi\)
0.0994556 + 0.995042i \(0.468290\pi\)
\(20\) 0 0
\(21\) 0.0827227 0.0601016i 0.0180516 0.0131152i
\(22\) 0 0
\(23\) −6.95461 + 2.25969i −1.45014 + 0.471178i −0.925041 0.379866i \(-0.875970\pi\)
−0.525094 + 0.851044i \(0.675970\pi\)
\(24\) 0 0
\(25\) −4.88121 + 1.08342i −0.976242 + 0.216684i
\(26\) 0 0
\(27\) 0.339673 0.110366i 0.0653700 0.0212400i
\(28\) 0 0
\(29\) 2.13709 1.55269i 0.396848 0.288327i −0.371408 0.928470i \(-0.621125\pi\)
0.768256 + 0.640143i \(0.221125\pi\)
\(30\) 0 0
\(31\) 1.56235 + 1.13511i 0.280607 + 0.203873i 0.719182 0.694822i \(-0.244517\pi\)
−0.438575 + 0.898694i \(0.644517\pi\)
\(32\) 0 0
\(33\) −0.0649561 + 0.0894045i −0.0113074 + 0.0155633i
\(34\) 0 0
\(35\) −3.81590 + 0.418393i −0.645006 + 0.0707213i
\(36\) 0 0
\(37\) 0.725506 + 0.235731i 0.119272 + 0.0387539i 0.368045 0.929808i \(-0.380027\pi\)
−0.248773 + 0.968562i \(0.580027\pi\)
\(38\) 0 0
\(39\) 0.0103312 + 0.0317961i 0.00165431 + 0.00509146i
\(40\) 0 0
\(41\) −3.00636 + 9.25262i −0.469514 + 1.44502i 0.383701 + 0.923457i \(0.374649\pi\)
−0.853215 + 0.521559i \(0.825351\pi\)
\(42\) 0 0
\(43\) 9.68774i 1.47737i 0.674053 + 0.738683i \(0.264552\pi\)
−0.674053 + 0.738683i \(0.735448\pi\)
\(44\) 0 0
\(45\) −6.56004 1.36363i −0.977913 0.203278i
\(46\) 0 0
\(47\) −6.11994 8.42338i −0.892685 1.22868i −0.972743 0.231886i \(-0.925510\pi\)
0.0800577 0.996790i \(-0.474490\pi\)
\(48\) 0 0
\(49\) 4.05276 0.578966
\(50\) 0 0
\(51\) 0.232607 0.0325715
\(52\) 0 0
\(53\) 0.654009 + 0.900166i 0.0898351 + 0.123647i 0.851569 0.524243i \(-0.175652\pi\)
−0.761734 + 0.647890i \(0.775652\pi\)
\(54\) 0 0
\(55\) 3.78254 1.70448i 0.510038 0.229832i
\(56\) 0 0
\(57\) 0.345466i 0.0457581i
\(58\) 0 0
\(59\) −1.56343 + 4.81174i −0.203541 + 0.626435i 0.796229 + 0.604995i \(0.206825\pi\)
−0.999770 + 0.0214397i \(0.993175\pi\)
\(60\) 0 0
\(61\) 4.18521 + 12.8808i 0.535862 + 1.64921i 0.741780 + 0.670643i \(0.233982\pi\)
−0.205918 + 0.978569i \(0.566018\pi\)
\(62\) 0 0
\(63\) −4.89239 1.58963i −0.616383 0.200275i
\(64\) 0 0
\(65\) 0.255446 1.22887i 0.0316841 0.152423i
\(66\) 0 0
\(67\) 0.733847 1.01005i 0.0896537 0.123398i −0.761834 0.647772i \(-0.775701\pi\)
0.851488 + 0.524375i \(0.175701\pi\)
\(68\) 0 0
\(69\) −0.352358 0.256003i −0.0424189 0.0308191i
\(70\) 0 0
\(71\) 10.8951 7.91578i 1.29302 0.939430i 0.293154 0.956065i \(-0.405295\pi\)
0.999862 + 0.0166349i \(0.00529530\pi\)
\(72\) 0 0
\(73\) −3.88964 + 1.26382i −0.455248 + 0.147919i −0.527660 0.849456i \(-0.676930\pi\)
0.0724119 + 0.997375i \(0.476930\pi\)
\(74\) 0 0
\(75\) −0.223091 0.197275i −0.0257603 0.0227793i
\(76\) 0 0
\(77\) 3.02939 0.984309i 0.345231 0.112172i
\(78\) 0 0
\(79\) 5.25455 3.81765i 0.591183 0.429520i −0.251555 0.967843i \(-0.580942\pi\)
0.842738 + 0.538323i \(0.180942\pi\)
\(80\) 0 0
\(81\) −7.25533 5.27131i −0.806148 0.585701i
\(82\) 0 0
\(83\) 0.536761 0.738788i 0.0589172 0.0810925i −0.778542 0.627593i \(-0.784040\pi\)
0.837459 + 0.546500i \(0.184040\pi\)
\(84\) 0 0
\(85\) −7.58225 4.33236i −0.822411 0.469910i
\(86\) 0 0
\(87\) 0.149634 + 0.0486192i 0.0160425 + 0.00521252i
\(88\) 0 0
\(89\) −1.61785 4.97923i −0.171492 0.527797i 0.827964 0.560781i \(-0.189499\pi\)
−0.999456 + 0.0329839i \(0.989499\pi\)
\(90\) 0 0
\(91\) 0.297782 0.916478i 0.0312160 0.0960730i
\(92\) 0 0
\(93\) 0.115022i 0.0119272i
\(94\) 0 0
\(95\) 6.43438 11.2611i 0.660153 1.15536i
\(96\) 0 0
\(97\) 8.54098 + 11.7557i 0.867205 + 1.19361i 0.979803 + 0.199965i \(0.0640828\pi\)
−0.112598 + 0.993641i \(0.535917\pi\)
\(98\) 0 0
\(99\) 5.55967 0.558768
\(100\) 0 0
\(101\) −1.84989 −0.184071 −0.0920354 0.995756i \(-0.529337\pi\)
−0.0920354 + 0.995756i \(0.529337\pi\)
\(102\) 0 0
\(103\) −6.06351 8.34571i −0.597456 0.822327i 0.398017 0.917378i \(-0.369699\pi\)
−0.995472 + 0.0950510i \(0.969699\pi\)
\(104\) 0 0
\(105\) −0.153751 0.169224i −0.0150046 0.0165146i
\(106\) 0 0
\(107\) 15.1159i 1.46131i −0.682746 0.730656i \(-0.739214\pi\)
0.682746 0.730656i \(-0.260786\pi\)
\(108\) 0 0
\(109\) 1.40146 4.31325i 0.134235 0.413134i −0.861235 0.508207i \(-0.830308\pi\)
0.995470 + 0.0950729i \(0.0303084\pi\)
\(110\) 0 0
\(111\) 0.0140403 + 0.0432116i 0.00133265 + 0.00410146i
\(112\) 0 0
\(113\) 14.8637 + 4.82952i 1.39826 + 0.454323i 0.908628 0.417606i \(-0.137131\pi\)
0.489633 + 0.871929i \(0.337131\pi\)
\(114\) 0 0
\(115\) 6.71764 + 14.9076i 0.626423 + 1.39014i
\(116\) 0 0
\(117\) 0.988632 1.36073i 0.0913990 0.125800i
\(118\) 0 0
\(119\) −5.42411 3.94084i −0.497227 0.361257i
\(120\) 0 0
\(121\) 6.11408 4.44214i 0.555826 0.403831i
\(122\) 0 0
\(123\) −0.551092 + 0.179061i −0.0496903 + 0.0161454i
\(124\) 0 0
\(125\) 3.59778 + 10.5856i 0.321795 + 0.946809i
\(126\) 0 0
\(127\) −1.27621 + 0.414665i −0.113245 + 0.0367956i −0.365091 0.930972i \(-0.618962\pi\)
0.251846 + 0.967767i \(0.418962\pi\)
\(128\) 0 0
\(129\) −0.466810 + 0.339157i −0.0411003 + 0.0298611i
\(130\) 0 0
\(131\) −11.2000 8.13727i −0.978548 0.710957i −0.0211645 0.999776i \(-0.506737\pi\)
−0.957384 + 0.288819i \(0.906737\pi\)
\(132\) 0 0
\(133\) 5.85291 8.05583i 0.507511 0.698529i
\(134\) 0 0
\(135\) −0.328099 0.728109i −0.0282382 0.0626656i
\(136\) 0 0
\(137\) −8.02147 2.60633i −0.685320 0.222674i −0.0543972 0.998519i \(-0.517324\pi\)
−0.630923 + 0.775845i \(0.717324\pi\)
\(138\) 0 0
\(139\) 4.91470 + 15.1259i 0.416860 + 1.28296i 0.910577 + 0.413340i \(0.135638\pi\)
−0.493717 + 0.869622i \(0.664362\pi\)
\(140\) 0 0
\(141\) 0.191633 0.589786i 0.0161384 0.0496690i
\(142\) 0 0
\(143\) 1.04148i 0.0870928i
\(144\) 0 0
\(145\) −3.97207 4.37181i −0.329862 0.363059i
\(146\) 0 0
\(147\) 0.141883 + 0.195285i 0.0117023 + 0.0161068i
\(148\) 0 0
\(149\) −8.35969 −0.684852 −0.342426 0.939545i \(-0.611249\pi\)
−0.342426 + 0.939545i \(0.611249\pi\)
\(150\) 0 0
\(151\) −5.35624 −0.435885 −0.217942 0.975962i \(-0.569934\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(152\) 0 0
\(153\) −6.87843 9.46734i −0.556088 0.765389i
\(154\) 0 0
\(155\) 2.14231 3.74935i 0.172074 0.301155i
\(156\) 0 0
\(157\) 13.3180i 1.06289i 0.847092 + 0.531446i \(0.178351\pi\)
−0.847092 + 0.531446i \(0.821649\pi\)
\(158\) 0 0
\(159\) −0.0204789 + 0.0630277i −0.00162408 + 0.00499842i
\(160\) 0 0
\(161\) 3.87932 + 11.9393i 0.305734 + 0.940951i
\(162\) 0 0
\(163\) 13.4848 + 4.38148i 1.05621 + 0.343184i 0.785104 0.619364i \(-0.212610\pi\)
0.271109 + 0.962549i \(0.412610\pi\)
\(164\) 0 0
\(165\) 0.214554 + 0.122592i 0.0167030 + 0.00954379i
\(166\) 0 0
\(167\) −13.3299 + 18.3470i −1.03150 + 1.41973i −0.127677 + 0.991816i \(0.540752\pi\)
−0.903818 + 0.427916i \(0.859248\pi\)
\(168\) 0 0
\(169\) −10.2623 7.45601i −0.789409 0.573539i
\(170\) 0 0
\(171\) 14.0608 10.2158i 1.07526 0.781220i
\(172\) 0 0
\(173\) 6.43969 2.09238i 0.489601 0.159081i −0.0538045 0.998551i \(-0.517135\pi\)
0.543405 + 0.839471i \(0.317135\pi\)
\(174\) 0 0
\(175\) 1.85996 + 8.37982i 0.140600 + 0.633455i
\(176\) 0 0
\(177\) −0.286590 + 0.0931189i −0.0215415 + 0.00699924i
\(178\) 0 0
\(179\) −20.3012 + 14.7497i −1.51739 + 1.10245i −0.554621 + 0.832103i \(0.687137\pi\)
−0.962764 + 0.270342i \(0.912863\pi\)
\(180\) 0 0
\(181\) −20.3908 14.8148i −1.51564 1.10117i −0.963598 0.267356i \(-0.913850\pi\)
−0.552039 0.833818i \(-0.686150\pi\)
\(182\) 0 0
\(183\) −0.474148 + 0.652608i −0.0350500 + 0.0482422i
\(184\) 0 0
\(185\) 0.347156 1.67007i 0.0255234 0.122786i
\(186\) 0 0
\(187\) 6.89146 + 2.23917i 0.503953 + 0.163744i
\(188\) 0 0
\(189\) −0.189472 0.583133i −0.0137820 0.0424167i
\(190\) 0 0
\(191\) −6.14957 + 18.9264i −0.444967 + 1.36947i 0.437552 + 0.899193i \(0.355845\pi\)
−0.882520 + 0.470275i \(0.844155\pi\)
\(192\) 0 0
\(193\) 4.79198i 0.344934i 0.985015 + 0.172467i \(0.0551738\pi\)
−0.985015 + 0.172467i \(0.944826\pi\)
\(194\) 0 0
\(195\) 0.0681569 0.0307127i 0.00488082 0.00219938i
\(196\) 0 0
\(197\) 0.393872 + 0.542119i 0.0280622 + 0.0386244i 0.822818 0.568306i \(-0.192401\pi\)
−0.794755 + 0.606930i \(0.792401\pi\)
\(198\) 0 0
\(199\) −9.41311 −0.667278 −0.333639 0.942701i \(-0.608277\pi\)
−0.333639 + 0.942701i \(0.608277\pi\)
\(200\) 0 0
\(201\) 0.0743612 0.00524504
\(202\) 0 0
\(203\) −2.66558 3.66886i −0.187087 0.257503i
\(204\) 0 0
\(205\) 21.2989 + 4.42740i 1.48758 + 0.309223i
\(206\) 0 0
\(207\) 21.9116i 1.52296i
\(208\) 0 0
\(209\) −3.32560 + 10.2351i −0.230036 + 0.707979i
\(210\) 0 0
\(211\) −3.80217 11.7019i −0.261752 0.805589i −0.992424 0.122861i \(-0.960793\pi\)
0.730672 0.682729i \(-0.239207\pi\)
\(212\) 0 0
\(213\) 0.762854 + 0.247866i 0.0522699 + 0.0169835i
\(214\) 0 0
\(215\) 21.5334 2.36102i 1.46857 0.161020i
\(216\) 0 0
\(217\) 1.94871 2.68217i 0.132287 0.182078i
\(218\) 0 0
\(219\) −0.197070 0.143180i −0.0133168 0.00967519i
\(220\) 0 0
\(221\) 1.77349 1.28852i 0.119298 0.0866750i
\(222\) 0 0
\(223\) −13.4389 + 4.36656i −0.899934 + 0.292406i −0.722210 0.691674i \(-0.756873\pi\)
−0.177724 + 0.984080i \(0.556873\pi\)
\(224\) 0 0
\(225\) −1.43225 + 14.9136i −0.0954834 + 0.994243i
\(226\) 0 0
\(227\) −3.72885 + 1.21158i −0.247492 + 0.0804151i −0.430136 0.902764i \(-0.641534\pi\)
0.182644 + 0.983179i \(0.441534\pi\)
\(228\) 0 0
\(229\) 2.16082 1.56993i 0.142791 0.103744i −0.514096 0.857732i \(-0.671873\pi\)
0.656887 + 0.753989i \(0.271873\pi\)
\(230\) 0 0
\(231\) 0.153485 + 0.111514i 0.0100986 + 0.00733705i
\(232\) 0 0
\(233\) 13.1641 18.1188i 0.862409 1.18700i −0.118581 0.992944i \(-0.537835\pi\)
0.980990 0.194059i \(-0.0621654\pi\)
\(234\) 0 0
\(235\) −17.2315 + 15.6560i −1.12406 + 1.02128i
\(236\) 0 0
\(237\) 0.367912 + 0.119542i 0.0238985 + 0.00776508i
\(238\) 0 0
\(239\) −6.69719 20.6118i −0.433205 1.33327i −0.894915 0.446237i \(-0.852764\pi\)
0.461710 0.887031i \(-0.347236\pi\)
\(240\) 0 0
\(241\) 5.45316 16.7831i 0.351269 1.08109i −0.606872 0.794799i \(-0.707576\pi\)
0.958141 0.286296i \(-0.0924239\pi\)
\(242\) 0 0
\(243\) 1.60560i 0.103000i
\(244\) 0 0
\(245\) −0.987708 9.00827i −0.0631023 0.575517i
\(246\) 0 0
\(247\) 1.91369 + 2.63397i 0.121765 + 0.167596i
\(248\) 0 0
\(249\) 0.0543904 0.00344685
\(250\) 0 0
\(251\) −16.2475 −1.02553 −0.512766 0.858528i \(-0.671379\pi\)
−0.512766 + 0.858528i \(0.671379\pi\)
\(252\) 0 0
\(253\) −7.97493 10.9765i −0.501379 0.690090i
\(254\) 0 0
\(255\) −0.0566891 0.517027i −0.00355001 0.0323775i
\(256\) 0 0
\(257\) 9.12754i 0.569361i 0.958623 + 0.284680i \(0.0918874\pi\)
−0.958623 + 0.284680i \(0.908113\pi\)
\(258\) 0 0
\(259\) 0.404692 1.24551i 0.0251463 0.0773924i
\(260\) 0 0
\(261\) −2.44599 7.52800i −0.151403 0.465971i
\(262\) 0 0
\(263\) 18.2735 + 5.93742i 1.12679 + 0.366117i 0.812356 0.583161i \(-0.198184\pi\)
0.314436 + 0.949279i \(0.398184\pi\)
\(264\) 0 0
\(265\) 1.84145 1.67308i 0.113120 0.102776i
\(266\) 0 0
\(267\) 0.183288 0.252274i 0.0112170 0.0154389i
\(268\) 0 0
\(269\) 4.36357 + 3.17032i 0.266052 + 0.193298i 0.712811 0.701356i \(-0.247422\pi\)
−0.446759 + 0.894654i \(0.647422\pi\)
\(270\) 0 0
\(271\) 17.3290 12.5902i 1.05266 0.764803i 0.0799442 0.996799i \(-0.474526\pi\)
0.972717 + 0.231996i \(0.0745258\pi\)
\(272\) 0 0
\(273\) 0.0545861 0.0177361i 0.00330370 0.00107344i
\(274\) 0 0
\(275\) −4.71048 7.99223i −0.284053 0.481950i
\(276\) 0 0
\(277\) −13.7152 + 4.45635i −0.824068 + 0.267756i −0.690545 0.723290i \(-0.742629\pi\)
−0.133524 + 0.991046i \(0.542629\pi\)
\(278\) 0 0
\(279\) 4.68151 3.40132i 0.280275 0.203632i
\(280\) 0 0
\(281\) −10.6166 7.71340i −0.633332 0.460143i 0.224221 0.974538i \(-0.428016\pi\)
−0.857553 + 0.514395i \(0.828016\pi\)
\(282\) 0 0
\(283\) 15.5938 21.4630i 0.926953 1.27584i −0.0340827 0.999419i \(-0.510851\pi\)
0.961036 0.276423i \(-0.0891490\pi\)
\(284\) 0 0
\(285\) 0.767883 0.0841942i 0.0454855 0.00498723i
\(286\) 0 0
\(287\) 15.8844 + 5.16117i 0.937629 + 0.304654i
\(288\) 0 0
\(289\) 0.540169 + 1.66247i 0.0317747 + 0.0977923i
\(290\) 0 0
\(291\) −0.267443 + 0.823105i −0.0156778 + 0.0482513i
\(292\) 0 0
\(293\) 24.1828i 1.41277i 0.707827 + 0.706386i \(0.249676\pi\)
−0.707827 + 0.706386i \(0.750324\pi\)
\(294\) 0 0
\(295\) 11.0763 + 2.30243i 0.644887 + 0.134053i
\(296\) 0 0
\(297\) 0.389506 + 0.536110i 0.0226015 + 0.0311082i
\(298\) 0 0
\(299\) −4.10464 −0.237377
\(300\) 0 0
\(301\) 16.6314 0.958621
\(302\) 0 0
\(303\) −0.0647625 0.0891380i −0.00372051 0.00512084i
\(304\) 0 0
\(305\) 27.6107 12.4419i 1.58098 0.712419i
\(306\) 0 0
\(307\) 19.1169i 1.09106i −0.838091 0.545530i \(-0.816328\pi\)
0.838091 0.545530i \(-0.183672\pi\)
\(308\) 0 0
\(309\) 0.189866 0.584348i 0.0108011 0.0332424i
\(310\) 0 0
\(311\) 7.01668 + 21.5951i 0.397879 + 1.22455i 0.926696 + 0.375811i \(0.122636\pi\)
−0.528817 + 0.848736i \(0.677364\pi\)
\(312\) 0 0
\(313\) −12.7661 4.14797i −0.721585 0.234457i −0.0748747 0.997193i \(-0.523856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(314\) 0 0
\(315\) −2.34102 + 11.2620i −0.131902 + 0.634540i
\(316\) 0 0
\(317\) 15.9915 22.0105i 0.898174 1.23623i −0.0728730 0.997341i \(-0.523217\pi\)
0.971047 0.238889i \(-0.0767832\pi\)
\(318\) 0 0
\(319\) 3.96520 + 2.88089i 0.222009 + 0.161299i
\(320\) 0 0
\(321\) 0.728370 0.529192i 0.0406537 0.0295366i
\(322\) 0 0
\(323\) 21.5434 6.99988i 1.19871 0.389484i
\(324\) 0 0
\(325\) −2.79373 0.268300i −0.154968 0.0148826i
\(326\) 0 0
\(327\) 0.256900 0.0834719i 0.0142066 0.00461601i
\(328\) 0 0
\(329\) −14.4608 + 10.5064i −0.797252 + 0.579238i
\(330\) 0 0
\(331\) −23.3469 16.9625i −1.28326 0.932344i −0.283615 0.958938i \(-0.591534\pi\)
−0.999646 + 0.0265941i \(0.991534\pi\)
\(332\) 0 0
\(333\) 1.34357 1.84927i 0.0736272 0.101339i
\(334\) 0 0
\(335\) −2.42394 1.38499i −0.132434 0.0756703i
\(336\) 0 0
\(337\) −19.9562 6.48418i −1.08709 0.353216i −0.289966 0.957037i \(-0.593644\pi\)
−0.797120 + 0.603821i \(0.793644\pi\)
\(338\) 0 0
\(339\) 0.287649 + 0.885294i 0.0156230 + 0.0480825i
\(340\) 0 0
\(341\) −1.10725 + 3.40776i −0.0599609 + 0.184541i
\(342\) 0 0
\(343\) 18.9748i 1.02455i
\(344\) 0 0
\(345\) −0.483156 + 0.845593i −0.0260122 + 0.0455252i
\(346\) 0 0
\(347\) −10.3583 14.2570i −0.556063 0.765355i 0.434756 0.900548i \(-0.356835\pi\)
−0.990819 + 0.135193i \(0.956835\pi\)
\(348\) 0 0
\(349\) −13.6103 −0.728544 −0.364272 0.931293i \(-0.618682\pi\)
−0.364272 + 0.931293i \(0.618682\pi\)
\(350\) 0 0
\(351\) 0.200476 0.0107006
\(352\) 0 0
\(353\) 7.66202 + 10.5459i 0.407808 + 0.561299i 0.962682 0.270635i \(-0.0872336\pi\)
−0.554874 + 0.831934i \(0.687234\pi\)
\(354\) 0 0
\(355\) −20.2501 22.2880i −1.07476 1.18292i
\(356\) 0 0
\(357\) 0.399328i 0.0211347i
\(358\) 0 0
\(359\) 4.59073 14.1288i 0.242289 0.745690i −0.753781 0.657126i \(-0.771772\pi\)
0.996070 0.0885643i \(-0.0282279\pi\)
\(360\) 0 0
\(361\) 4.52484 + 13.9260i 0.238150 + 0.732949i
\(362\) 0 0
\(363\) 0.428095 + 0.139096i 0.0224691 + 0.00730067i
\(364\) 0 0
\(365\) 3.75711 + 8.33768i 0.196656 + 0.436414i
\(366\) 0 0
\(367\) −15.5525 + 21.4062i −0.811836 + 1.11740i 0.179202 + 0.983812i \(0.442649\pi\)
−0.991038 + 0.133584i \(0.957351\pi\)
\(368\) 0 0
\(369\) 23.5843 + 17.1350i 1.22775 + 0.892013i
\(370\) 0 0
\(371\) 1.54536 1.12277i 0.0802312 0.0582914i
\(372\) 0 0
\(373\) −31.8132 + 10.3367i −1.64722 + 0.535215i −0.978136 0.207968i \(-0.933315\pi\)
−0.669088 + 0.743183i \(0.733315\pi\)
\(374\) 0 0
\(375\) −0.384122 + 0.543953i −0.0198360 + 0.0280896i
\(376\) 0 0
\(377\) 1.41020 0.458201i 0.0726289 0.0235986i
\(378\) 0 0
\(379\) 19.6075 14.2457i 1.00717 0.731753i 0.0435574 0.999051i \(-0.486131\pi\)
0.963614 + 0.267298i \(0.0861309\pi\)
\(380\) 0 0
\(381\) −0.0646596 0.0469779i −0.00331261 0.00240675i
\(382\) 0 0
\(383\) −1.50232 + 2.06777i −0.0767650 + 0.105658i −0.845673 0.533702i \(-0.820800\pi\)
0.768908 + 0.639360i \(0.220800\pi\)
\(384\) 0 0
\(385\) −2.92617 6.49369i −0.149131 0.330949i
\(386\) 0 0
\(387\) 27.6081 + 8.97041i 1.40340 + 0.455992i
\(388\) 0 0
\(389\) 3.92452 + 12.0784i 0.198981 + 0.612400i 0.999907 + 0.0136371i \(0.00434096\pi\)
−0.800926 + 0.598763i \(0.795659\pi\)
\(390\) 0 0
\(391\) −8.82494 + 27.1604i −0.446296 + 1.37356i
\(392\) 0 0
\(393\) 0.824556i 0.0415933i
\(394\) 0 0
\(395\) −9.76628 10.7491i −0.491395 0.540847i
\(396\) 0 0
\(397\) 11.7770 + 16.2097i 0.591072 + 0.813541i 0.994855 0.101314i \(-0.0323046\pi\)
−0.403782 + 0.914855i \(0.632305\pi\)
\(398\) 0 0
\(399\) 0.593079 0.0296911
\(400\) 0 0
\(401\) 0.685119 0.0342132 0.0171066 0.999854i \(-0.494555\pi\)
0.0171066 + 0.999854i \(0.494555\pi\)
\(402\) 0 0
\(403\) 0.637160 + 0.876975i 0.0317392 + 0.0436852i
\(404\) 0 0
\(405\) −9.94857 + 17.4115i −0.494349 + 0.865182i
\(406\) 0 0
\(407\) 1.41539i 0.0701583i
\(408\) 0 0
\(409\) 0.120676 0.371402i 0.00596704 0.0183647i −0.948029 0.318185i \(-0.896927\pi\)
0.953996 + 0.299820i \(0.0969267\pi\)
\(410\) 0 0
\(411\) −0.155235 0.477764i −0.00765718 0.0235664i
\(412\) 0 0
\(413\) 8.26056 + 2.68402i 0.406476 + 0.132072i
\(414\) 0 0
\(415\) −1.77295 1.01303i −0.0870309 0.0497278i
\(416\) 0 0
\(417\) −0.556792 + 0.766359i −0.0272662 + 0.0375288i
\(418\) 0 0
\(419\) −13.9723 10.1515i −0.682591 0.495931i 0.191625 0.981468i \(-0.438624\pi\)
−0.874216 + 0.485537i \(0.838624\pi\)
\(420\) 0 0
\(421\) 14.0506 10.2083i 0.684784 0.497524i −0.190158 0.981754i \(-0.560900\pi\)
0.874941 + 0.484229i \(0.160900\pi\)
\(422\) 0 0
\(423\) −29.6717 + 9.64092i −1.44269 + 0.468758i
\(424\) 0 0
\(425\) −7.78184 + 17.9093i −0.377475 + 0.868728i
\(426\) 0 0
\(427\) 22.1131 7.18497i 1.07013 0.347705i
\(428\) 0 0
\(429\) −0.0501843 + 0.0364610i −0.00242292 + 0.00176035i
\(430\) 0 0
\(431\) 27.9780 + 20.3272i 1.34765 + 0.979126i 0.999125 + 0.0418269i \(0.0133178\pi\)
0.348526 + 0.937299i \(0.386682\pi\)
\(432\) 0 0
\(433\) −22.3305 + 30.7353i −1.07314 + 1.47704i −0.206275 + 0.978494i \(0.566134\pi\)
−0.866861 + 0.498550i \(0.833866\pi\)
\(434\) 0 0
\(435\) 0.0716004 0.344449i 0.00343298 0.0165151i
\(436\) 0 0
\(437\) −40.3383 13.1067i −1.92964 0.626979i
\(438\) 0 0
\(439\) −1.45680 4.48356i −0.0695291 0.213989i 0.910254 0.414050i \(-0.135886\pi\)
−0.979783 + 0.200061i \(0.935886\pi\)
\(440\) 0 0
\(441\) 3.75268 11.5495i 0.178699 0.549979i
\(442\) 0 0
\(443\) 30.4179i 1.44520i 0.691267 + 0.722600i \(0.257053\pi\)
−0.691267 + 0.722600i \(0.742947\pi\)
\(444\) 0 0
\(445\) −10.6733 + 4.80957i −0.505962 + 0.227995i
\(446\) 0 0
\(447\) −0.292663 0.402817i −0.0138425 0.0190526i
\(448\) 0 0
\(449\) 13.7761 0.650133 0.325067 0.945691i \(-0.394613\pi\)
0.325067 + 0.945691i \(0.394613\pi\)
\(450\) 0 0
\(451\) −18.0510 −0.849986
\(452\) 0 0
\(453\) −0.187516 0.258094i −0.00881027 0.0121263i
\(454\) 0 0
\(455\) −2.10967 0.438537i −0.0989030 0.0205589i
\(456\) 0 0
\(457\) 14.6462i 0.685122i −0.939496 0.342561i \(-0.888706\pi\)
0.939496 0.342561i \(-0.111294\pi\)
\(458\) 0 0
\(459\) 0.431022 1.32655i 0.0201184 0.0619180i
\(460\) 0 0
\(461\) 6.89410 + 21.2179i 0.321090 + 0.988215i 0.973175 + 0.230068i \(0.0738949\pi\)
−0.652084 + 0.758147i \(0.726105\pi\)
\(462\) 0 0
\(463\) −15.2144 4.94346i −0.707073 0.229742i −0.0666636 0.997776i \(-0.521235\pi\)
−0.640410 + 0.768033i \(0.721235\pi\)
\(464\) 0 0
\(465\) 0.255665 0.0280322i 0.0118562 0.00129996i
\(466\) 0 0
\(467\) 5.04792 6.94787i 0.233590 0.321509i −0.676090 0.736819i \(-0.736327\pi\)
0.909680 + 0.415310i \(0.136327\pi\)
\(468\) 0 0
\(469\) −1.73401 1.25983i −0.0800692 0.0581737i
\(470\) 0 0
\(471\) −0.641736 + 0.466248i −0.0295696 + 0.0214836i
\(472\) 0 0
\(473\) −17.0951 + 5.55452i −0.786032 + 0.255397i
\(474\) 0 0
\(475\) −26.5987 11.5575i −1.22043 0.530296i
\(476\) 0 0
\(477\) 3.17087 1.03028i 0.145184 0.0471732i
\(478\) 0 0
\(479\) 3.64835 2.65068i 0.166697 0.121113i −0.501309 0.865268i \(-0.667148\pi\)
0.668006 + 0.744156i \(0.267148\pi\)
\(480\) 0 0
\(481\) 0.346418 + 0.251687i 0.0157953 + 0.0114760i
\(482\) 0 0
\(483\) −0.439493 + 0.604910i −0.0199976 + 0.0275244i
\(484\) 0 0
\(485\) 24.0483 21.8494i 1.09198 0.992132i
\(486\) 0 0
\(487\) 6.69405 + 2.17503i 0.303336 + 0.0985599i 0.456730 0.889605i \(-0.349020\pi\)
−0.153394 + 0.988165i \(0.549020\pi\)
\(488\) 0 0
\(489\) 0.260964 + 0.803165i 0.0118012 + 0.0363204i
\(490\) 0 0
\(491\) −7.80243 + 24.0134i −0.352119 + 1.08371i 0.605543 + 0.795813i \(0.292956\pi\)
−0.957661 + 0.287897i \(0.907044\pi\)
\(492\) 0 0
\(493\) 10.3164i 0.464628i
\(494\) 0 0
\(495\) −1.35496 12.3577i −0.0609009 0.555439i
\(496\) 0 0
\(497\) −13.5894 18.7042i −0.609569 0.839000i
\(498\) 0 0
\(499\) 22.8665 1.02364 0.511822 0.859092i \(-0.328971\pi\)
0.511822 + 0.859092i \(0.328971\pi\)
\(500\) 0 0
\(501\) −1.35072 −0.0603459
\(502\) 0 0
\(503\) 5.18231 + 7.13284i 0.231068 + 0.318038i 0.908769 0.417300i \(-0.137024\pi\)
−0.677701 + 0.735338i \(0.737024\pi\)
\(504\) 0 0
\(505\) 0.450840 + 4.11183i 0.0200621 + 0.182974i
\(506\) 0 0
\(507\) 0.755523i 0.0335539i
\(508\) 0 0
\(509\) −6.02799 + 18.5522i −0.267186 + 0.822314i 0.723996 + 0.689804i \(0.242303\pi\)
−0.991182 + 0.132509i \(0.957697\pi\)
\(510\) 0 0
\(511\) 2.16967 + 6.67755i 0.0959804 + 0.295397i
\(512\) 0 0
\(513\) 1.97018 + 0.640150i 0.0869856 + 0.0282633i
\(514\) 0 0
\(515\) −17.0727 + 15.5116i −0.752311 + 0.683523i
\(516\) 0 0
\(517\) 11.3551 15.6289i 0.499395 0.687358i
\(518\) 0 0
\(519\) 0.326269 + 0.237048i 0.0143216 + 0.0104053i
\(520\) 0 0
\(521\) −10.7036 + 7.77662i −0.468933 + 0.340700i −0.797025 0.603946i \(-0.793594\pi\)
0.328092 + 0.944646i \(0.393594\pi\)
\(522\) 0 0
\(523\) 40.6072 13.1941i 1.77563 0.576937i 0.777012 0.629486i \(-0.216734\pi\)
0.998618 + 0.0525482i \(0.0167343\pi\)
\(524\) 0 0
\(525\) −0.338672 + 0.382992i −0.0147808 + 0.0167151i
\(526\) 0 0
\(527\) 7.17283 2.33059i 0.312453 0.101522i
\(528\) 0 0
\(529\) 24.6530 17.9114i 1.07187 0.778758i
\(530\) 0 0
\(531\) 12.2648 + 8.91090i 0.532247 + 0.386700i
\(532\) 0 0
\(533\) −3.20985 + 4.41799i −0.139034 + 0.191364i
\(534\) 0 0
\(535\) −33.5989 + 3.68393i −1.45261 + 0.159270i
\(536\) 0 0
\(537\) −1.42145 0.461856i −0.0613400 0.0199306i
\(538\) 0 0
\(539\) 2.32368 + 7.15154i 0.100088 + 0.308039i
\(540\) 0 0
\(541\) 2.59118 7.97483i 0.111404 0.342865i −0.879776 0.475388i \(-0.842308\pi\)
0.991180 + 0.132523i \(0.0423078\pi\)
\(542\) 0 0
\(543\) 1.50119i 0.0644224i
\(544\) 0 0
\(545\) −9.92881 2.06390i −0.425304 0.0884077i
\(546\) 0 0
\(547\) −8.49189 11.6881i −0.363087 0.499747i 0.587918 0.808920i \(-0.299948\pi\)
−0.951006 + 0.309174i \(0.899948\pi\)
\(548\) 0 0
\(549\) 40.5829 1.73203
\(550\) 0 0
\(551\) 15.3218 0.652732
\(552\) 0 0
\(553\) −6.55396 9.02076i −0.278703 0.383602i
\(554\) 0 0
\(555\) 0.0926267 0.0417392i 0.00393178 0.00177173i
\(556\) 0 0
\(557\) 17.2330i 0.730187i −0.930971 0.365093i \(-0.881037\pi\)
0.930971 0.365093i \(-0.118963\pi\)
\(558\) 0 0
\(559\) −1.68040 + 5.17175i −0.0710734 + 0.218742i
\(560\) 0 0
\(561\) 0.133367 + 0.410460i 0.00563074 + 0.0173296i
\(562\) 0 0
\(563\) −6.78168 2.20350i −0.285814 0.0928665i 0.162602 0.986692i \(-0.448011\pi\)
−0.448415 + 0.893825i \(0.648011\pi\)
\(564\) 0 0
\(565\) 7.11232 34.2153i 0.299218 1.43945i
\(566\) 0 0
\(567\) −9.04953 + 12.4556i −0.380044 + 0.523086i
\(568\) 0 0
\(569\) −11.5916 8.42179i −0.485945 0.353060i 0.317678 0.948199i \(-0.397097\pi\)
−0.803623 + 0.595139i \(0.797097\pi\)
\(570\) 0 0
\(571\) −8.30283 + 6.03236i −0.347462 + 0.252446i −0.747804 0.663920i \(-0.768892\pi\)
0.400341 + 0.916366i \(0.368892\pi\)
\(572\) 0 0
\(573\) −1.12727 + 0.366273i −0.0470924 + 0.0153013i
\(574\) 0 0
\(575\) 31.4987 18.5648i 1.31359 0.774205i
\(576\) 0 0
\(577\) 9.12639 2.96534i 0.379937 0.123449i −0.112821 0.993615i \(-0.535989\pi\)
0.492758 + 0.870166i \(0.335989\pi\)
\(578\) 0 0
\(579\) −0.230904 + 0.167762i −0.00959606 + 0.00697194i
\(580\) 0 0
\(581\) −1.26832 0.921485i −0.0526186 0.0382296i
\(582\) 0 0
\(583\) −1.21346 + 1.67019i −0.0502564 + 0.0691720i
\(584\) 0 0
\(585\) −3.26551 1.86585i −0.135012 0.0771434i
\(586\) 0 0
\(587\) 5.03134 + 1.63478i 0.207666 + 0.0674747i 0.411003 0.911634i \(-0.365179\pi\)
−0.203337 + 0.979109i \(0.565179\pi\)
\(588\) 0 0
\(589\) 3.46138 + 10.6530i 0.142624 + 0.438950i
\(590\) 0 0
\(591\) −0.0123333 + 0.0379580i −0.000507324 + 0.00156138i
\(592\) 0 0
\(593\) 2.21453i 0.0909397i 0.998966 + 0.0454699i \(0.0144785\pi\)
−0.998966 + 0.0454699i \(0.985522\pi\)
\(594\) 0 0
\(595\) −7.43758 + 13.0168i −0.304911 + 0.533639i
\(596\) 0 0
\(597\) −0.329543 0.453577i −0.0134873 0.0185637i
\(598\) 0 0
\(599\) −1.85018 −0.0755964 −0.0377982 0.999285i \(-0.512034\pi\)
−0.0377982 + 0.999285i \(0.512034\pi\)
\(600\) 0 0
\(601\) 32.8477 1.33988 0.669942 0.742413i \(-0.266319\pi\)
0.669942 + 0.742413i \(0.266319\pi\)
\(602\) 0 0
\(603\) −2.19894 3.02658i −0.0895477 0.123252i
\(604\) 0 0
\(605\) −11.3638 12.5075i −0.462006 0.508500i
\(606\) 0 0
\(607\) 29.1371i 1.18264i −0.806438 0.591319i \(-0.798608\pi\)
0.806438 0.591319i \(-0.201392\pi\)
\(608\) 0 0
\(609\) 0.0834671 0.256885i 0.00338226 0.0104095i
\(610\) 0 0
\(611\) −1.80601 5.55832i −0.0730632 0.224865i
\(612\) 0 0
\(613\) −3.61632 1.17501i −0.146062 0.0474584i 0.235074 0.971978i \(-0.424467\pi\)
−0.381136 + 0.924519i \(0.624467\pi\)
\(614\) 0 0
\(615\) 0.532315 + 1.18130i 0.0214650 + 0.0476346i
\(616\) 0 0
\(617\) 28.9502 39.8466i 1.16549 1.60416i 0.477035 0.878884i \(-0.341711\pi\)
0.688456 0.725278i \(-0.258289\pi\)
\(618\) 0 0
\(619\) 5.13396 + 3.73004i 0.206351 + 0.149923i 0.686161 0.727449i \(-0.259294\pi\)
−0.479810 + 0.877372i \(0.659294\pi\)
\(620\) 0 0
\(621\) −2.11290 + 1.53511i −0.0847876 + 0.0616018i
\(622\) 0 0
\(623\) −8.54810 + 2.77745i −0.342472 + 0.111276i
\(624\) 0 0
\(625\) 22.6524 10.5768i 0.906096 0.423072i
\(626\) 0 0
\(627\) −0.609612 + 0.198075i −0.0243455 + 0.00791035i
\(628\) 0 0
\(629\) 2.41021 1.75112i 0.0961014 0.0698218i
\(630\) 0 0
\(631\) 4.48099 + 3.25563i 0.178385 + 0.129604i 0.673395 0.739283i \(-0.264835\pi\)
−0.495010 + 0.868888i \(0.664835\pi\)
\(632\) 0 0
\(633\) 0.430752 0.592879i 0.0171208 0.0235648i
\(634\) 0 0
\(635\) 1.23272 + 2.73563i 0.0489191 + 0.108560i
\(636\) 0 0
\(637\) 2.16355 + 0.702979i 0.0857228 + 0.0278530i
\(638\) 0 0
\(639\) −12.4700 38.3786i −0.493304 1.51823i
\(640\) 0 0
\(641\) 3.16032 9.72646i 0.124825 0.384172i −0.869044 0.494735i \(-0.835265\pi\)
0.993869 + 0.110563i \(0.0352653\pi\)
\(642\) 0 0
\(643\) 20.5779i 0.811515i 0.913981 + 0.405757i \(0.132992\pi\)
−0.913981 + 0.405757i \(0.867008\pi\)
\(644\) 0 0
\(645\) 0.867628 + 0.954943i 0.0341628 + 0.0376009i
\(646\) 0 0
\(647\) 4.06226 + 5.59123i 0.159704 + 0.219814i 0.881369 0.472429i \(-0.156623\pi\)
−0.721665 + 0.692243i \(0.756623\pi\)
\(648\) 0 0
\(649\) −9.38723 −0.368481
\(650\) 0 0
\(651\) 0.197464 0.00773923
\(652\) 0 0
\(653\) 0.974775 + 1.34166i 0.0381459 + 0.0525033i 0.827664 0.561224i \(-0.189669\pi\)
−0.789518 + 0.613727i \(0.789669\pi\)
\(654\) 0 0
\(655\) −15.3575 + 26.8779i −0.600068 + 1.05021i
\(656\) 0 0
\(657\) 12.2549i 0.478110i
\(658\) 0 0
\(659\) 0.956983 2.94529i 0.0372788 0.114732i −0.930685 0.365820i \(-0.880788\pi\)
0.967964 + 0.251088i \(0.0807884\pi\)
\(660\) 0 0
\(661\) −4.38102 13.4834i −0.170402 0.524443i 0.828992 0.559261i \(-0.188915\pi\)
−0.999394 + 0.0348175i \(0.988915\pi\)
\(662\) 0 0
\(663\) 0.124176 + 0.0403472i 0.00482259 + 0.00156696i
\(664\) 0 0
\(665\) −19.3325 11.0462i −0.749682 0.428354i
\(666\) 0 0
\(667\) −11.3540 + 15.6275i −0.439630 + 0.605099i
\(668\) 0 0
\(669\) −0.680886 0.494692i −0.0263246 0.0191259i
\(670\) 0 0
\(671\) −20.3299 + 14.7705i −0.784826 + 0.570210i
\(672\) 0 0
\(673\) 4.87403 1.58367i 0.187880 0.0610460i −0.213566 0.976929i \(-0.568508\pi\)
0.401446 + 0.915883i \(0.368508\pi\)
\(674\) 0 0
\(675\) −1.53844 + 0.906729i −0.0592146 + 0.0349000i
\(676\) 0 0
\(677\) −25.7566 + 8.36884i −0.989908 + 0.321641i −0.758826 0.651294i \(-0.774227\pi\)
−0.231082 + 0.972934i \(0.574227\pi\)
\(678\) 0 0
\(679\) 20.1815 14.6627i 0.774496 0.562704i
\(680\) 0 0
\(681\) −0.188923 0.137261i −0.00723956 0.00525985i
\(682\) 0 0
\(683\) −8.64040 + 11.8925i −0.330616 + 0.455053i −0.941671 0.336534i \(-0.890745\pi\)
0.611056 + 0.791588i \(0.290745\pi\)
\(684\) 0 0
\(685\) −3.83829 + 18.4649i −0.146654 + 0.705507i
\(686\) 0 0
\(687\) 0.151296 + 0.0491590i 0.00577229 + 0.00187553i
\(688\) 0 0
\(689\) 0.192999 + 0.593991i 0.00735269 + 0.0226293i
\(690\) 0 0
\(691\) 4.25630 13.0995i 0.161917 0.498330i −0.836879 0.547388i \(-0.815622\pi\)
0.998796 + 0.0490586i \(0.0156221\pi\)
\(692\) 0 0
\(693\) 9.54458i 0.362569i
\(694\) 0 0
\(695\) 32.4233 14.6105i 1.22988 0.554208i
\(696\) 0 0
\(697\) 22.3326 + 30.7382i 0.845909 + 1.16429i
\(698\) 0 0
\(699\) 1.33393 0.0504538
\(700\) 0 0
\(701\) 3.95616 0.149422 0.0747111 0.997205i \(-0.476197\pi\)
0.0747111 + 0.997205i \(0.476197\pi\)
\(702\) 0 0
\(703\) 2.60075 + 3.57962i 0.0980891 + 0.135008i
\(704\) 0 0
\(705\) −1.35765 0.282214i −0.0511320 0.0106288i
\(706\) 0 0
\(707\) 3.17580i 0.119438i
\(708\) 0 0
\(709\) 10.5384 32.4338i 0.395777 1.21808i −0.532577 0.846381i \(-0.678776\pi\)
0.928355 0.371696i \(-0.121224\pi\)
\(710\) 0 0
\(711\) −6.01406 18.5094i −0.225545 0.694156i
\(712\) 0 0
\(713\) −13.4305 4.36385i −0.502978 0.163427i
\(714\) 0 0
\(715\) 2.31494 0.253821i 0.0865739 0.00949236i
\(716\) 0 0
\(717\) 0.758732 1.04431i 0.0283354 0.0390003i
\(718\) 0 0
\(719\) 18.8977 + 13.7300i 0.704766 + 0.512043i 0.881481 0.472220i \(-0.156547\pi\)
−0.176715 + 0.984262i \(0.556547\pi\)
\(720\) 0 0
\(721\) −14.3275 + 10.4095i −0.533584 + 0.387672i
\(722\) 0 0
\(723\) 0.999614 0.324794i 0.0371760 0.0120792i
\(724\) 0 0
\(725\) −8.74938 + 9.89437i −0.324944 + 0.367468i
\(726\) 0 0
\(727\) −12.1847 + 3.95904i −0.451904 + 0.146833i −0.526121 0.850409i \(-0.676354\pi\)
0.0742170 + 0.997242i \(0.476354\pi\)
\(728\) 0 0
\(729\) −21.6886 + 15.7577i −0.803283 + 0.583619i
\(730\) 0 0
\(731\) 30.6086 + 22.2384i 1.13210 + 0.822518i
\(732\) 0 0
\(733\) −15.7602 + 21.6920i −0.582115 + 0.801213i −0.993925 0.110057i \(-0.964897\pi\)
0.411810 + 0.911270i \(0.364897\pi\)
\(734\) 0 0
\(735\) 0.399490 0.362963i 0.0147354 0.0133881i
\(736\) 0 0
\(737\) 2.20310 + 0.715832i 0.0811524 + 0.0263680i
\(738\) 0 0
\(739\) 15.7123 + 48.3574i 0.577986 + 1.77886i 0.625780 + 0.780000i \(0.284781\pi\)
−0.0477941 + 0.998857i \(0.515219\pi\)
\(740\) 0 0
\(741\) −0.0599233 + 0.184425i −0.00220134 + 0.00677502i
\(742\) 0 0
\(743\) 25.4540i 0.933816i −0.884306 0.466908i \(-0.845368\pi\)
0.884306 0.466908i \(-0.154632\pi\)
\(744\) 0 0
\(745\) 2.03736 + 18.5815i 0.0746430 + 0.680772i
\(746\) 0 0
\(747\) −1.60838 2.21374i −0.0588475 0.0809966i
\(748\) 0 0
\(749\) −25.9503 −0.948203
\(750\) 0 0
\(751\) −21.1719 −0.772574 −0.386287 0.922379i \(-0.626243\pi\)
−0.386287 + 0.922379i \(0.626243\pi\)
\(752\) 0 0
\(753\) −0.568806 0.782895i −0.0207285 0.0285303i
\(754\) 0 0
\(755\) 1.30538 + 11.9056i 0.0475077 + 0.433288i
\(756\) 0 0
\(757\) 34.8326i 1.26601i 0.774147 + 0.633006i \(0.218179\pi\)
−0.774147 + 0.633006i \(0.781821\pi\)
\(758\) 0 0
\(759\) 0.249718 0.768554i 0.00906420 0.0278967i
\(760\) 0 0
\(761\) −2.49606 7.68209i −0.0904822 0.278476i 0.895568 0.444925i \(-0.146770\pi\)
−0.986050 + 0.166450i \(0.946770\pi\)
\(762\) 0 0
\(763\) −7.40478 2.40596i −0.268071 0.0871015i
\(764\) 0 0
\(765\) −19.3672 + 17.5963i −0.700221 + 0.636196i
\(766\) 0 0
\(767\) −1.66926 + 2.29753i −0.0602733 + 0.0829591i
\(768\) 0 0
\(769\) −10.2491 7.44644i −0.369593 0.268525i 0.387449 0.921891i \(-0.373356\pi\)
−0.757042 + 0.653366i \(0.773356\pi\)
\(770\) 0 0
\(771\) −0.439816 + 0.319545i −0.0158396 + 0.0115081i
\(772\) 0 0
\(773\) 38.9161 12.6446i 1.39971 0.454795i 0.490615 0.871376i \(-0.336772\pi\)
0.909098 + 0.416582i \(0.136772\pi\)
\(774\) 0 0
\(775\) −8.85597 3.84805i −0.318116 0.138226i
\(776\) 0 0
\(777\) 0.0741836 0.0241037i 0.00266132 0.000864716i
\(778\) 0 0
\(779\) −45.6522 + 33.1682i −1.63566 + 1.18838i
\(780\) 0 0
\(781\) 20.2150 + 14.6871i 0.723351 + 0.525545i
\(782\) 0 0
\(783\) 0.554547 0.763269i 0.0198179 0.0272770i
\(784\) 0 0
\(785\) 29.6025 3.24576i 1.05656 0.115846i
\(786\) 0 0
\(787\) −2.46599 0.801249i −0.0879031 0.0285615i 0.264735 0.964321i \(-0.414715\pi\)
−0.352638 + 0.935760i \(0.614715\pi\)
\(788\) 0 0
\(789\) 0.353637 + 1.08838i 0.0125898 + 0.0387474i
\(790\) 0 0
\(791\) 8.29108 25.5173i 0.294797 0.907291i
\(792\) 0 0
\(793\) 7.60228i 0.269965i
\(794\) 0 0
\(795\) 0.145086 + 0.0301589i 0.00514565 + 0.00106963i
\(796\) 0 0
\(797\) −12.6487 17.4095i −0.448041 0.616676i 0.523934 0.851759i \(-0.324464\pi\)
−0.971975 + 0.235083i \(0.924464\pi\)
\(798\) 0 0
\(799\) −40.6623 −1.43853
\(800\) 0 0
\(801\) −15.6878 −0.554302
\(802\) 0 0
\(803\) −4.46029 6.13907i −0.157400 0.216643i
\(804\) 0 0
\(805\) 25.5927 11.5325i 0.902023 0.406468i
\(806\) 0 0
\(807\) 0.321251i 0.0113086i
\(808\) 0 0
\(809\) 1.07271 3.30147i 0.0377146 0.116074i −0.930427 0.366478i \(-0.880564\pi\)
0.968141 + 0.250404i \(0.0805636\pi\)
\(810\) 0 0
\(811\) −11.3665 34.9826i −0.399133 1.22841i −0.925696 0.378269i \(-0.876519\pi\)
0.526563 0.850136i \(-0.323481\pi\)
\(812\) 0 0
\(813\) 1.21334 + 0.394237i 0.0425536 + 0.0138265i
\(814\) 0 0
\(815\) 6.45252 31.0412i 0.226022 1.08732i
\(816\) 0 0
\(817\) −33.0283 + 45.4596i −1.15552 + 1.59043i
\(818\) 0 0
\(819\) −2.33604 1.69723i −0.0816280 0.0593062i
\(820\) 0 0
\(821\) −38.2615 + 27.7986i −1.33534 + 0.970179i −0.335735 + 0.941957i \(0.608985\pi\)
−0.999602 + 0.0282220i \(0.991015\pi\)
\(822\) 0 0
\(823\) −9.96867 + 3.23902i −0.347486 + 0.112905i −0.477560 0.878599i \(-0.658479\pi\)
0.130074 + 0.991504i \(0.458479\pi\)
\(824\) 0 0
\(825\) 0.220202 0.506777i 0.00766645 0.0176437i
\(826\) 0 0
\(827\) 5.48824 1.78324i 0.190845 0.0620093i −0.212035 0.977262i \(-0.568009\pi\)
0.402880 + 0.915253i \(0.368009\pi\)
\(828\) 0 0
\(829\) −23.6650 + 17.1936i −0.821919 + 0.597159i −0.917261 0.398286i \(-0.869605\pi\)
0.0953427 + 0.995445i \(0.469605\pi\)
\(830\) 0 0
\(831\) −0.694887 0.504865i −0.0241054 0.0175136i
\(832\) 0 0
\(833\) 9.30322 12.8048i 0.322337 0.443659i
\(834\) 0 0
\(835\) 44.0294 + 25.1575i 1.52370 + 0.870612i
\(836\) 0 0
\(837\) 0.655966 + 0.213136i 0.0226735 + 0.00736707i
\(838\) 0 0
\(839\) −4.96033 15.2663i −0.171250 0.527052i 0.828193 0.560444i \(-0.189369\pi\)
−0.999442 + 0.0333911i \(0.989369\pi\)
\(840\) 0 0
\(841\) −6.80517 + 20.9442i −0.234661 + 0.722212i
\(842\) 0 0
\(843\) 0.781604i 0.0269199i
\(844\) 0 0
\(845\) −14.0718 + 24.6277i −0.484084 + 0.847217i
\(846\) 0 0
\(847\) −7.62605 10.4964i −0.262034 0.360659i
\(848\) 0 0
\(849\) 1.58013 0.0542298
\(850\) 0 0
\(851\) −5.57828 −0.191221
\(852\) 0 0
\(853\) 19.7934 + 27.2433i 0.677713 + 0.932792i 0.999904 0.0138826i \(-0.00441911\pi\)
−0.322190 + 0.946675i \(0.604419\pi\)
\(854\) 0 0
\(855\) −26.1339 28.7639i −0.893760 0.983705i
\(856\) 0 0
\(857\) 18.5384i 0.633260i 0.948549 + 0.316630i \(0.102551\pi\)
−0.948549 + 0.316630i \(0.897449\pi\)
\(858\) 0 0
\(859\) 0.00514740 0.0158421i 0.000175627 0.000540524i −0.950969 0.309287i \(-0.899910\pi\)
0.951144 + 0.308747i \(0.0999095\pi\)
\(860\) 0 0
\(861\) 0.307403 + 0.946089i 0.0104763 + 0.0322426i
\(862\) 0 0
\(863\) 31.6593 + 10.2867i 1.07769 + 0.350164i 0.793480 0.608597i \(-0.208267\pi\)
0.284214 + 0.958761i \(0.408267\pi\)
\(864\) 0 0
\(865\) −6.22027 13.8039i −0.211495 0.469345i
\(866\) 0 0
\(867\) −0.0611964 + 0.0842296i −0.00207834 + 0.00286059i
\(868\) 0 0
\(869\) 9.74939 + 7.08335i 0.330725 + 0.240286i
\(870\) 0 0
\(871\) 0.566961 0.411921i 0.0192107 0.0139574i
\(872\) 0 0
\(873\) 41.4098 13.4548i 1.40151 0.455378i
\(874\) 0 0
\(875\) 18.1729 6.17649i 0.614357 0.208804i
\(876\) 0 0
\(877\) 38.7660 12.5958i 1.30903 0.425331i 0.430319 0.902677i \(-0.358401\pi\)
0.878715 + 0.477346i \(0.158401\pi\)
\(878\) 0 0
\(879\) −1.16526 + 0.846612i −0.0393033 + 0.0285555i
\(880\) 0 0
\(881\) −20.0854 14.5929i −0.676694 0.491647i 0.195565 0.980691i \(-0.437346\pi\)
−0.872259 + 0.489044i \(0.837346\pi\)
\(882\) 0 0
\(883\) 0.996201 1.37115i 0.0335248 0.0461430i −0.791926 0.610618i \(-0.790921\pi\)
0.825450 + 0.564475i \(0.190921\pi\)
\(884\) 0 0
\(885\) 0.276825 + 0.614324i 0.00930538 + 0.0206503i
\(886\) 0 0
\(887\) 11.5402 + 3.74964i 0.387482 + 0.125901i 0.496278 0.868164i \(-0.334700\pi\)
−0.108796 + 0.994064i \(0.534700\pi\)
\(888\) 0 0
\(889\) 0.711877 + 2.19093i 0.0238756 + 0.0734816i
\(890\) 0 0
\(891\) 5.14190 15.8252i 0.172260 0.530163i
\(892\) 0 0
\(893\) 60.3913i 2.02092i
\(894\) 0 0
\(895\) 37.7325 + 41.5298i 1.26126 + 1.38819i
\(896\) 0 0
\(897\) −0.143699 0.197784i −0.00479796 0.00660383i
\(898\) 0 0
\(899\) 5.10137 0.170140
\(900\) 0 0
\(901\) 4.34538 0.144766
\(902\) 0 0
\(903\) 0.582249 + 0.801396i 0.0193760 + 0.0266688i
\(904\) 0 0
\(905\) −27.9600 + 48.9341i −0.929423 + 1.62663i
\(906\) 0 0
\(907\) 14.9224i 0.495491i 0.968825 + 0.247746i \(0.0796898\pi\)
−0.968825 + 0.247746i \(0.920310\pi\)
\(908\) 0 0
\(909\) −1.71291 + 5.27180i −0.0568137 + 0.174855i
\(910\) 0 0
\(911\) −14.2166 43.7543i −0.471018 1.44964i −0.851254 0.524754i \(-0.824157\pi\)
0.380236 0.924890i \(-0.375843\pi\)
\(912\) 0 0
\(913\) 1.61143 + 0.523584i 0.0533304 + 0.0173281i
\(914\) 0 0
\(915\) 1.56614 + 0.894862i 0.0517750 + 0.0295832i
\(916\) 0 0
\(917\) −13.9697 + 19.2276i −0.461319 + 0.634952i
\(918\) 0 0
\(919\) −4.67512 3.39667i −0.154218 0.112046i 0.508000 0.861357i \(-0.330385\pi\)
−0.662218 + 0.749311i \(0.730385\pi\)
\(920\) 0 0
\(921\) 0.921160 0.669262i 0.0303532 0.0220529i
\(922\) 0 0
\(923\) 7.18935 2.33596i 0.236640 0.0768891i
\(924\) 0 0
\(925\) −3.79674 0.364625i −0.124836 0.0119888i
\(926\) 0 0
\(927\) −29.3981 + 9.55202i −0.965560 + 0.313730i
\(928\) 0 0
\(929\) 11.1761 8.11994i 0.366677 0.266406i −0.389155 0.921172i \(-0.627233\pi\)
0.755832 + 0.654766i \(0.227233\pi\)
\(930\) 0 0
\(931\) 19.0175 + 13.8171i 0.623275 + 0.452836i
\(932\) 0 0
\(933\) −0.794928 + 1.09412i −0.0260248 + 0.0358200i
\(934\) 0 0
\(935\) 3.29758 15.8637i 0.107842 0.518798i
\(936\) 0 0
\(937\) −2.29684 0.746290i −0.0750346 0.0243802i 0.271259 0.962506i \(-0.412560\pi\)
−0.346294 + 0.938126i \(0.612560\pi\)
\(938\) 0 0
\(939\) −0.247056 0.760360i −0.00806237 0.0248134i
\(940\) 0 0
\(941\) 9.18367 28.2644i 0.299379 0.921394i −0.682336 0.731039i \(-0.739036\pi\)
0.981715 0.190356i \(-0.0609641\pi\)
\(942\) 0 0
\(943\) 71.1417i 2.31669i
\(944\) 0 0
\(945\) −1.24998 + 0.563264i −0.0406619 + 0.0183230i
\(946\) 0 0
\(947\) −5.37375 7.39633i −0.174623 0.240348i 0.712730 0.701438i \(-0.247458\pi\)
−0.887353 + 0.461090i \(0.847458\pi\)
\(948\) 0 0
\(949\) −2.29568 −0.0745209
\(950\) 0 0
\(951\) 1.62043 0.0525461
\(952\) 0 0
\(953\) 17.2277 + 23.7118i 0.558059 + 0.768102i 0.991078 0.133283i \(-0.0425518\pi\)
−0.433019 + 0.901385i \(0.642552\pi\)
\(954\) 0 0
\(955\) 43.5674 + 9.05634i 1.40981 + 0.293056i
\(956\) 0 0
\(957\) 0.291922i 0.00943651i
\(958\) 0 0
\(959\) −4.47443 + 13.7709i −0.144487 + 0.444685i
\(960\) 0 0
\(961\) −8.42707 25.9359i −0.271841 0.836640i
\(962\) 0 0
\(963\) −43.0773 13.9967i −1.38815 0.451036i
\(964\) 0 0
\(965\) 10.6514 1.16786i 0.342879 0.0375948i
\(966\) 0 0
\(967\) 20.3443 28.0016i 0.654230 0.900470i −0.345044 0.938587i \(-0.612136\pi\)
0.999273 + 0.0381168i \(0.0121359\pi\)
\(968\) 0 0
\(969\) 1.09151 + 0.793025i 0.0350642 + 0.0254756i
\(970\) 0 0
\(971\) 24.0628 17.4826i 0.772211 0.561044i −0.130420 0.991459i \(-0.541633\pi\)
0.902631 + 0.430415i \(0.141633\pi\)
\(972\) 0 0
\(973\) 25.9674 8.43732i 0.832477 0.270488i
\(974\) 0 0
\(975\) −0.0848773 0.144011i −0.00271825 0.00461203i
\(976\) 0 0
\(977\) −40.1184 + 13.0352i −1.28350 + 0.417035i −0.869812 0.493384i \(-0.835760\pi\)
−0.413689 + 0.910418i \(0.635760\pi\)
\(978\) 0 0
\(979\) 7.85878 5.70974i 0.251168 0.182484i
\(980\) 0 0
\(981\) −10.9942 7.98775i −0.351017 0.255029i
\(982\) 0 0
\(983\) −13.6846 + 18.8353i −0.436472 + 0.600752i −0.969424 0.245394i \(-0.921083\pi\)
0.532952 + 0.846146i \(0.321083\pi\)
\(984\) 0 0
\(985\) 1.10900 1.00760i 0.0353357 0.0321048i
\(986\) 0 0
\(987\) −1.01252 0.328987i −0.0322288 0.0104718i
\(988\) 0 0
\(989\) −21.8913 67.3744i −0.696102 2.14238i
\(990\) 0 0
\(991\) 16.3062 50.1854i 0.517984 1.59419i −0.259802 0.965662i \(-0.583657\pi\)
0.777786 0.628529i \(-0.216343\pi\)
\(992\) 0 0
\(993\) 1.71882i 0.0545452i
\(994\) 0 0
\(995\) 2.29409 + 20.9230i 0.0727275 + 0.663303i
\(996\) 0 0
\(997\) 34.7408 + 47.8165i 1.10025 + 1.51437i 0.835052 + 0.550171i \(0.185438\pi\)
0.265199 + 0.964194i \(0.414562\pi\)
\(998\) 0 0
\(999\) 0.272451 0.00861997
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.q.a.169.5 yes 32
4.3 odd 2 400.2.y.d.369.4 32
5.2 odd 4 1000.2.m.d.401.5 32
5.3 odd 4 1000.2.m.e.401.4 32
5.4 even 2 1000.2.q.c.849.4 32
25.2 odd 20 5000.2.a.r.1.8 16
25.3 odd 20 1000.2.m.e.601.4 32
25.4 even 10 inner 200.2.q.a.129.5 32
25.21 even 5 1000.2.q.c.649.4 32
25.22 odd 20 1000.2.m.d.601.5 32
25.23 odd 20 5000.2.a.q.1.9 16
100.23 even 20 10000.2.a.br.1.8 16
100.27 even 20 10000.2.a.bq.1.9 16
100.79 odd 10 400.2.y.d.129.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.129.5 32 25.4 even 10 inner
200.2.q.a.169.5 yes 32 1.1 even 1 trivial
400.2.y.d.129.4 32 100.79 odd 10
400.2.y.d.369.4 32 4.3 odd 2
1000.2.m.d.401.5 32 5.2 odd 4
1000.2.m.d.601.5 32 25.22 odd 20
1000.2.m.e.401.4 32 5.3 odd 4
1000.2.m.e.601.4 32 25.3 odd 20
1000.2.q.c.649.4 32 25.21 even 5
1000.2.q.c.849.4 32 5.4 even 2
5000.2.a.q.1.9 16 25.23 odd 20
5000.2.a.r.1.8 16 25.2 odd 20
10000.2.a.bq.1.9 16 100.27 even 20
10000.2.a.br.1.8 16 100.23 even 20